Advertisement

Current Progress and Future Perspectives: Toward Mitochondrial Medicine

  • José Marín-García
Chapter

Abstract

Mitochondrial disorders encompass a highly heterogeneous group of diseases characterized by not only defects in the OXPHOS system but also alterations in diverse signaling pathways, intracellular Ca2+ homeostasis, and cell survival and death. Numerous pathogenic mutations in genes encoding proteins, in genes involved in mtDNA synthesis and maintenance, OXPHOS subunits and complex assembly factors, and proteins implicated in mitochondrial dynamics have been described. Growing number of identified disease-causing mutations in both nuclear and mitochondrial genomes makes diagnosis of mitochondrial disorders extremely challenging. The current algorithm for molecular diagnosis of patients with suspected mitochondrial disease is a complex multistep process that implicates thorough clinical testing, histochemical and biochemical analyses, followed by molecular genetic screening.

The advent of the “omics” era has opened up unprecedented opportunities for a system biology approach to assess mitochondrial function and to diagnose mitochondria-related cardiovascular disease (CVD). The development of next-generation sequencing (NGS) and global gene expression profiling technologies has enabled genome-wide screening for disease-related mutations, single nucleotide polymorphisms, and copy number variants in time- and cost-effective manner. While progress in proteomics has not been as dramatic, recent technological advancements in this field have enabled the identification of proteins at sub-femtomolar levels in complex biological samples and brought quantification to the proteome accelerating translation of proteomic research into clinical practice.

Despite the enormous potential of this systemic approach, its use for diagnosis of mitochondria-related cardiac diseases remains rather limited. The convergence of mitochondrial research and high-throughput genomic, transcriptomic, proteomic, and bioinformatic technologies will improve our understanding of the role of this organelle in the heart and will ultimately lead to more individualized targeted therapies of mitochondria-related CVD.

Keywords

Mitochondrial Disease Mitochondrial Disorder Cyclic Vomiting Syndrome Progressive External Ophthalmoplegia OXPHOS Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65.PubMedGoogle Scholar
  2. 2.
    Calvo S, Jain M, Xie X, et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet. 2006;38(5):576–82.PubMedGoogle Scholar
  3. 3.
    Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest. 1962;41:1776–804.PubMedGoogle Scholar
  4. 4.
    Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci USA. 1994;91(19):8731–8.PubMedGoogle Scholar
  5. 5.
    DiMauro S, Garone C. Historical perspective on mitochondrial medicine. Dev Disabil Res Rev. 2010;16(2):106–13.PubMedGoogle Scholar
  6. 6.
    Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331(6158):717–9.PubMedGoogle Scholar
  7. 7.
    Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30.PubMedGoogle Scholar
  8. 8.
    Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA anbormalities. Ann Neurol. 2001;49(3):377–83.PubMedGoogle Scholar
  9. 9.
    Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF. The epidemiology of mitochondrial disorders–past, present and future. Biochim Biophys Acta. 2004;1659(2–3):115–20.PubMedGoogle Scholar
  10. 10.
    Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83(2):254–60.PubMedGoogle Scholar
  11. 11.
    Cree LM, Samuels DC, Chinnery PF. The inheritance of pathogenic mitochondrial DNA mutations. Biochim Biophys Acta. 2009; 1792(12):1097–102.PubMedGoogle Scholar
  12. 12.
    Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283(5407):1482–8.PubMedGoogle Scholar
  13. 13.
    Haas RH, Parikh S, Falk MJ, et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics. 2007;120(6):1326–33.PubMedGoogle Scholar
  14. 14.
    Haas RH, Parikh S, Falk MJ, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 2008;94(1): 16–37.PubMedGoogle Scholar
  15. 15.
    Wong LJ. Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev. 2010;16(2):154–62.PubMedGoogle Scholar
  16. 16.
    Alesci S, Manoli I, Michopoulos VJ, et al. Development of a human mitochondria-focused cDNA microarray (hMitChip) and validation in skeletal muscle cells: implications for pharmaco- and mitogenomics. Pharmacogenomics J. 2006;6(5):333–42.PubMedGoogle Scholar
  17. 17.
    Cizkova A, Stranecky V, Ivanek R, et al. Development of a human mitochondrial oligonucleotide microarray (h-MitoArray) and gene expression analysis of fibroblast cell lines from 13 patients with isolated F1Fo ATP synthase deficiency. BMC Genomics. 2008;9:38.PubMedGoogle Scholar
  18. 18.
    Subramaniam V, Golik P, Murdock DG, et al. MITOCHIP assessment of differential gene expression in the skeletal muscle of Ant1 knockout mice: coordinate regulation of OXPHOS, antioxidant, and apoptotic genes. Biochim Biophys Acta. 2008;1777(7–8): 666–75.PubMedGoogle Scholar
  19. 19.
    Johnston DS, Su YA, Alesci S. Mitochondrial gene profiling: translational perspectives. Pharmacogenomics. 2009;10(10): 1645–55.PubMedGoogle Scholar
  20. 20.
    Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med. 1990;8(6):523–39.PubMedGoogle Scholar
  21. 21.
    Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90(17):7915–22.PubMedGoogle Scholar
  22. 22.
    Nachman MW, Brown WM, Stoneking M, Aquadro CF. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics. 1996;142(3):953–63.PubMedGoogle Scholar
  23. 23.
    Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA. 1997;94(2):514–9.PubMedGoogle Scholar
  24. 24.
    Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010;1797(2):113–28.PubMedGoogle Scholar
  25. 25.
    Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348(6302):651–3.PubMedGoogle Scholar
  26. 26.
    Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990;61(6):931–7.PubMedGoogle Scholar
  27. 27.
    Howell N, Bindoff LA, McCullough DA, et al. Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees. Am J Hum Genet. 1991;49(5):939–50.PubMedGoogle Scholar
  28. 28.
    Johns DR, Neufeld MJ, Park RD. An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem Biophys Res Commun. 1992;187(3):1551–7.PubMedGoogle Scholar
  29. 29.
    Moraes CT, DiMauro S, Zeviani M, et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med. 1989;320(20):1293–9.PubMedGoogle Scholar
  30. 30.
    Rotig A, Cormier V, Blanche S, et al. Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest. 1990;86(5):1601–8.PubMedGoogle Scholar
  31. 31.
    Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science. 1989;244(4902):346–9.PubMedGoogle Scholar
  32. 32.
    Krishnan KJ, Reeve AK, Samuels DC, et al. What causes mitochondrial DNA deletions in human cells? Nat Genet. 2008;40(3):275–9.PubMedGoogle Scholar
  33. 33.
    Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol. 2012;226(2):274–86.PubMedGoogle Scholar
  34. 34.
    Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet. 2001;28(3):211–2.PubMedGoogle Scholar
  35. 35.
    Naviaux RK, Nguyen KV. POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion. Ann Neurol. 2004;55(5):706–12.PubMedGoogle Scholar
  36. 36.
    Nguyen KV, Ostergaard E, Ravn SH, et al. POLG mutations in Alpers syndrome. Neurology. 2005;65(9):1493–5.PubMedGoogle Scholar
  37. 37.
    DiMauro S. The many faces of mitochondrial diseases. Mitochondrion. 2004;4(5–6):799–807.PubMedGoogle Scholar
  38. 38.
    Wong LJ, Naviaux RK, Brunetti-Pierri N, et al. Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum Mutat. 2008;29(9):E150–72.PubMedGoogle Scholar
  39. 39.
    Longley MJ, Clark S, Yu Wai Man C, et al. Mutant POLG2 disrupts DNA polymerase gamma subunits and causes progressive external ophthalmoplegia. Am J Hum Genet. 2006;78(6):1026–34.PubMedGoogle Scholar
  40. 40.
    Wanrooij S, Falkenberg M. The human mitochondrial replication fork in health and disease. Biochim Biophys Acta. 2010;1797(8): 1378–88.PubMedGoogle Scholar
  41. 41.
    Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet. 2001;28(3):223–31.PubMedGoogle Scholar
  42. 42.
    Suomalainen A, Kaukonen J, Amati P, et al. An autosomal locus predisposing to deletions of mitochondrial DNA. Nat Genet. 1995;9(2):146–51.PubMedGoogle Scholar
  43. 43.
    Hakonen AH, Isohanni P, Paetau A, Herva R, Suomalainen A, Lonnqvist T. Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain. 2007;130(Pt 11):3032–40.PubMedGoogle Scholar
  44. 44.
    Spinazzola A, Viscomi C, Fernandez-Vizarra E, et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet. 2006;38(5):570–5.PubMedGoogle Scholar
  45. 45.
    Wong LJ, Brunetti-Pierri N, Zhang Q, et al. Mutations in the MPV17 gene are responsible for rapidly progressive liver failure in infancy. Hepatology. 2007;46(4):1218–27.PubMedGoogle Scholar
  46. 46.
    Dimmock DP, Zhang Q, Dionisi-Vici C, et al. Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase. Hum Mutat. 2008;29(2):330–1.PubMedGoogle Scholar
  47. 47.
    Poulton J, Hirano M, Spinazzola A, et al. Collated mutations in mitochondrial DNA (mtDNA) depletion syndrome (excluding the mitochondrial gamma polymerase, POLG1). Biochim Biophys Acta. 2009;1792(12):1109–12.PubMedGoogle Scholar
  48. 48.
    Rotig A, Poulton J. Genetic causes of mitochondrial DNA depletion in humans. Biochim Biophys Acta. 2009;1792(12):1103–8.PubMedGoogle Scholar
  49. 49.
    Spinazzola A, Invernizzi F, Carrara F, et al. Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis. 2009;32(2):143–58.PubMedGoogle Scholar
  50. 50.
    Kaukonen J, Juselius JK, Tiranti V, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science. 2000;289(5480): 782–5.PubMedGoogle Scholar
  51. 51.
    Jacobs HT, Turnbull DM. Nuclear genes and mitochondrial translation: a new class of genetic disease. Trends Genet. 2005;21(6): 312–4.PubMedGoogle Scholar
  52. 52.
    Smits P, Smeitink J, van den Heuvel L. Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol. 2010;2010: 737385.PubMedGoogle Scholar
  53. 53.
    Miller C, Saada A, Shaul N, et al. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol. 2004;56(5):734–8.PubMedGoogle Scholar
  54. 54.
    Smits P, Saada A, Wortmann SB, et al. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur J Hum Genet. 2011;19(4):394–9.PubMedGoogle Scholar
  55. 55.
    Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet. 2004;74(6):1303–8.PubMedGoogle Scholar
  56. 56.
    Bykhovskaya Y, Mengesha E, Fischel-Ghodsian N. Pleiotropic effects and compensation mechanisms determine tissue specificity in mitochondrial myopathy and sideroblastic anemia (MLASA). Mol Genet Metab. 2007;91(2):148–56.PubMedGoogle Scholar
  57. 57.
    Fernandez-Vizarra E, Berardinelli A, Valente L, Tiranti V, Zeviani M. Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet. 2007;44(3):173–80.PubMedGoogle Scholar
  58. 58.
    Smeitink JA, Elpeleg O, Antonicka H, et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am J Hum Genet. 2006;79(5): 869–77.PubMedGoogle Scholar
  59. 59.
    Valente L, Shigi N, Suzuki T, Zeviani M. The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex. Biochim Biophys Acta. 2009;1792(8):791–5.PubMedGoogle Scholar
  60. 60.
    Smits P, Antonicka H, van Hasselt PM, et al. Mutation in subdomain G′ of mitochondrial elongation factor G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle. Eur J Hum Genet. 2011;19(3):275–9.PubMedGoogle Scholar
  61. 61.
    Edvardson S, Shaag A, Kolesnikova O, et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet. 2007;81(4):857–62.PubMedGoogle Scholar
  62. 62.
    Scheper GC, van der Klok T, van Andel RJ, et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet. 2007;39(4):534–9.PubMedGoogle Scholar
  63. 63.
    Bourgeron T, Rustin P, Chretien D, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet. 1995;11(2):144–9.PubMedGoogle Scholar
  64. 64.
    Smeitink J, van den Heuvel L. Human mitochondrial complex I in health and disease. Am J Hum Genet. 1999;64(6):1505–10.PubMedGoogle Scholar
  65. 65.
    Smeitink J, Sengers R, Trijbels F, van den Heuvel L. Human NADH:ubiquinone oxidoreductase. J Bioenerg Biomembr. 2001;33(3):259–66.PubMedGoogle Scholar
  66. 66.
    Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA. Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis. 2006;29(4):499–515.PubMedGoogle Scholar
  67. 67.
    Fernandez-Moreira D, Ugalde C, Smeets R, et al. X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Ann Neurol. 2007;61(1):73–83.PubMedGoogle Scholar
  68. 68.
    Hoefs SJ, Skjeldal OH, Rodenburg RJ, et al. Novel mutations in the NDUFS1 gene cause low residual activities in human complex I deficiencies. Mol Genet Metab. 2010;100(3):251–6.PubMedGoogle Scholar
  69. 69.
    Haut S, Brivet M, Touati G, et al. A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Hum Genet. 2003;113(2):118–22.PubMedGoogle Scholar
  70. 70.
    Massa V, Fernandez-Vizarra E, Alshahwan S, et al. Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet. 2008;82(6):1281–9.PubMedGoogle Scholar
  71. 71.
    Valnot I, Osmond S, Gigarel N, et al. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet. 2000;67(5):1104–9.PubMedGoogle Scholar
  72. 72.
    Tay SK, Shanske S, Kaplan P, DiMauro S. Association of mutations in SCO2, a cytochrome c oxidase assembly gene, with early lethality. Arch Neurol. 2004;61(6):950–2.PubMedGoogle Scholar
  73. 73.
    Tiranti V, Hoertnagel K, Carrozzo R, et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet. 1998;63(6):1609–21.PubMedGoogle Scholar
  74. 74.
    Antonicka H, Mattman A, Carlson CG, et al. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet. 2003;72(1):101–14.PubMedGoogle Scholar
  75. 75.
    de Lonlay P, Valnot I, Barrientos A, et al. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet. 2001;29(1):57–60.PubMedGoogle Scholar
  76. 76.
    De Meirleir L, Seneca S, Lissens W, et al. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J Med Genet. 2004;41(2):120–4.PubMedGoogle Scholar
  77. 77.
    Cizkova A, Stranecky V, Mayr JA, et al. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat Genet. 2008;40(11):1288–90.PubMedGoogle Scholar
  78. 78.
    Houstek J, Kmoch S, Zeman J. TMEM70 protein—a novel ancillary factor of mammalian ATP synthase. Biochim Biophys Acta. 2009;1787(5):529–32.PubMedGoogle Scholar
  79. 79.
    Vreken P, Valianpour F, Nijtmans LG, et al. Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun. 2000;279(2):378–82.PubMedGoogle Scholar
  80. 80.
    Schlame M, Ren M. The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta. 2009;1788(10):2080–3.PubMedGoogle Scholar
  81. 81.
    Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138(4):628–44.PubMedGoogle Scholar
  82. 82.
    Roesch K, Curran SP, Tranebjaerg L, Koehler CM. Human deafness dystonia syndrome is caused by a defect in assembly of the DDP1/TIMM8a-TIMM13 complex. Hum Mol Genet. 2002;11(5):477–86.PubMedGoogle Scholar
  83. 83.
    Hansen JJ, Durr A, Cournu-Rebeix I, et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet. 2002;70(5):1328–32.PubMedGoogle Scholar
  84. 84.
    Magen D, Georgopoulos C, Bross P, et al. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet. 2008;83(1):30–42.PubMedGoogle Scholar
  85. 85.
    Davey KM, Parboosingh JS, McLeod DR, et al. Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. J Med Genet. 2006;43(5):385–93.PubMedGoogle Scholar
  86. 86.
    Mollet J, Delahodde A, Serre V, et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet. 2008;82(3):623–30.PubMedGoogle Scholar
  87. 87.
    Mollet J, Giurgea I, Schlemmer D, et al. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest. 2007;117(3):765–72.PubMedGoogle Scholar
  88. 88.
    Quinzii CM, Kattah AG, Naini A, et al. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology. 2005;64(3):539–41.PubMedGoogle Scholar
  89. 89.
    Quinzii C, Naini A, Salviati L, et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet. 2006;78(2):345–9.PubMedGoogle Scholar
  90. 90.
    Lagier-Tourenne C, Tazir M, Lopez LC, et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet. 2008;82(3): 661–72.PubMedGoogle Scholar
  91. 91.
    McGregor A, Temperley R, Chrzanowska-Lightowlers ZM, Lightowlers RN. Absence of expression from RNA internalised into electroporated mammalian mitochondria. Mol Genet Genomics. 2001;265(4):721–9.PubMedGoogle Scholar
  92. 92.
    Bonnefoy N, Fox TD. Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Cell Biol. 2001;65:381–96.PubMedGoogle Scholar
  93. 93.
    Feuermann M, Francisci S, Rinaldi T, et al. The yeast counterparts of human ‘MELAS’ mutations cause mitochondrial dysfunction that can be rescued by overexpression of the mitochondrial translation factor EF-Tu. EMBO Rep. 2003;4(1):53–8.PubMedGoogle Scholar
  94. 94.
    De Luca C, Besagni C, Frontali L, Bolotin-Fukuhara M, Francisci S. Mutations in yeast mt tRNAs: specific and general suppression by nuclear encoded tRNA interactors. Gene. 2006;377:169–76.PubMedGoogle Scholar
  95. 95.
    Montanari A, Besagni C, De Luca C, et al. Yeast as a model of human mitochondrial tRNA base substitutions: investigation of the molecular basis of respiratory defects. RNA. 2008;14(2): 275–83.PubMedGoogle Scholar
  96. 96.
    Sasarman F, Antonicka H, Shoubridge EA. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet. 2008;17(23):3697–707.PubMedGoogle Scholar
  97. 97.
    Park H, Davidson E, King MP. Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. RNA. 2008;14(11): 2407–16.PubMedGoogle Scholar
  98. 98.
    Kucharczyk R, Rak M, di Rago JP. Biochemical consequences in yeast of the human mitochondrial DNA 8993 T  >  C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta. 2009;1793(5):817–24.PubMedGoogle Scholar
  99. 99.
    King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989;246(4929):500–3.PubMedGoogle Scholar
  100. 100.
    Khan SM, Smigrodzki RM, Swerdlow RH. Cell and animal models of mtDNA biology: progress and prospects. Am J Physiol Cell Physiol. 2007;292(2):C658–69.PubMedGoogle Scholar
  101. 101.
    Swerdlow RH. Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res. 2007;85(15): 3416–28.PubMedGoogle Scholar
  102. 102.
    Behan A, Doyle S, Farrell M. Adaptive responses to mitochondrial dysfunction in the rho degrees Namalwa cell. Mitochondrion. 2005;5(3):173–93.PubMedGoogle Scholar
  103. 103.
    Danielson SR, Carelli V, Tan G, et al. Isolation of transcriptomal changes attributable to LHON mutations and the cybridization process. Brain. 2005;128(Pt 5):1026–37.PubMedGoogle Scholar
  104. 104.
    Rorbach J, Yusoff AA, Tuppen H, et al. Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res. 2008;36(9):3065–74.PubMedGoogle Scholar
  105. 105.
    Jenuth JP, Peterson AC, Fu K, Shoubridge EA. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet. 1996;14(2):146–51.PubMedGoogle Scholar
  106. 106.
    Jenuth JP, Peterson AC, Shoubridge EA. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet. 1997;16(1):93–5.PubMedGoogle Scholar
  107. 107.
    Battersby BJ, Loredo-Osti JC, Shoubridge EA. Nuclear genetic control of mitochondrial DNA segregation. Nat Genet. 2003;33(2):183–6.PubMedGoogle Scholar
  108. 108.
    Battersby BJ, Redpath ME, Shoubridge EA. Mitochondrial DNA segregation in hematopoietic lineages does not depend on MHC presentation of mitochondrially encoded peptides. Hum Mol Genet. 2005;14(17):2587–94.PubMedGoogle Scholar
  109. 109.
    Inoue K, Nakada K, Ogura A, et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet. 2000;26(2):176–81.PubMedGoogle Scholar
  110. 110.
    Nakada K, Sato A, Sone H, et al. Accumulation of pathogenic DeltamtDNA induced deafness but not diabetic phenotypes in mito-mice. Biochem Biophys Res Commun. 2004;323(1):175–84.PubMedGoogle Scholar
  111. 111.
    Fan W, Waymire KG, Narula N, et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science. 2008;319(5865):958–62.PubMedGoogle Scholar
  112. 112.
    Li J, Zhou K, Meng X, et al. Increased ROS generation and SOD activity in heteroplasmic tissues of transmitochondrial mice with A3243G mitochondrial DNA mutation. Genet Mol Res. 2008;7(4):1054–62.PubMedGoogle Scholar
  113. 113.
    Sligh JE, Levy SE, Waymire KG, et al. Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci USA. 2000;97(26):14461–6.PubMedGoogle Scholar
  114. 114.
    Trounce I, Schmiedel J, Yen HC, et al. Cloning of neuronal mtDNA variants in cultured cells by synaptosome fusion with mtDNA-less cells. Nucleic Acids Res. 2000;28(10):2164–70.PubMedGoogle Scholar
  115. 115.
    Kasahara A, Ishikawa K, Yamaoka M, et al. Generation of trans-mitochondrial mice carrying homoplasmic mtDNAs with a missense mutation in a structural gene using ES cells. Hum Mol Genet. 2006;15(6):871–81.PubMedGoogle Scholar
  116. 116.
    Vempati UD, Torraco A, Moraes CT. Mouse models of oxidative phosphorylation dysfunction and disease. Methods. 2008;46(4): 241–7.PubMedGoogle Scholar
  117. 117.
    Joza N, Oudit GY, Brown D, et al. Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol. 2005;25(23):10261–72.PubMedGoogle Scholar
  118. 118.
    Radford NB, Wan B, Richman A, et al. Cardiac dysfunction in mice lacking cytochrome-c oxidase subunit VIaH. Am J Physiol Heart Circ Physiol. 2002;282(2):H726–33.PubMedGoogle Scholar
  119. 119.
    Wang J, Wilhelmsson H, Graff C, et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet. 1999;21(1):133–7.PubMedGoogle Scholar
  120. 120.
    Li H, Wang J, Wilhelmsson H, et al. Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci USA. 2000;97(7):3467–72.PubMedGoogle Scholar
  121. 121.
    Tyynismaa H, Mjosund KP, Wanrooij S, et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci USA. 2005;102(49):17687–92.PubMedGoogle Scholar
  122. 122.
    Park CB, Asin-Cayuela J, Camara Y, et al. MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell. 2007;130(2): 273–85.PubMedGoogle Scholar
  123. 123.
    Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet. 1997;16(3):226–34.PubMedGoogle Scholar
  124. 124.
    Murdock DG, Boone BE, Esposito LA, Wallace DC. Up-regulation of nuclear and mitochondrial genes in the skeletal muscle of mice lacking the heart/muscle isoform of the adenine nucleotide translocator. J Biol Chem. 1999;274(20):14429–33.PubMedGoogle Scholar
  125. 125.
    Li Y, Huang TT, Carlson EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11(4):376–81.PubMedGoogle Scholar
  126. 126.
    Lebovitz RM, Zhang H, Vogel H, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA. 1996;93(18):9782–7.PubMedGoogle Scholar
  127. 127.
    Huang TT, Carlson EJ, Kozy HM, et al. Genetic modification of prenatal lethality and dilated cardiomyopathy in Mn superoxide dismutase mutant mice. Free Radic Biol Med. 2001;31(9): 1101–10.PubMedGoogle Scholar
  128. 128.
    Ikegami T, Suzuki Y, Shimizu T, Isono K, Koseki H, Shirasawa T. Model mice for tissue-specific deletion of the manganese superoxide dismutase (MnSOD) gene. Biochem Biophys Res Commun. 2002;296(3):729–36.PubMedGoogle Scholar
  129. 129.
    Misawa H, Nakata K, Matsuura J, et al. Conditional knockout of Mn superoxide dismutase in postnatal motor neurons reveals resistance to mitochondrial generated superoxide radicals. Neurobiol Dis. 2006;23(1):169–77.PubMedGoogle Scholar
  130. 130.
    Papanicolaou KN, Khairallah RJ, Ngoh GA, et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31(6):1309–28.PubMedGoogle Scholar
  131. 131.
    Chen Y, Liu Y, Dorn 2nd GW. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res. 2011;109(12):1327–31.PubMedGoogle Scholar
  132. 132.
    Ashrafian H, Docherty L, Leo V, et al. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet Jun. 2010;6(6):e1001000.Google Scholar
  133. 133.
    Ramachandran R, Surka M, Chappie JS, et al. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J. 2007;26(2):559–66.PubMedGoogle Scholar
  134. 134.
    Mears JA, Ray P, Hinshaw JE. A corkscrew model for dynamin constriction. Structure. 2007;15(10):1190–202.PubMedGoogle Scholar
  135. 135.
    Wong LJ, Scaglia F, Graham BH, Craigen WJ. Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab. 2010;100(2):111–7.PubMedGoogle Scholar
  136. 136.
    McFarland R, Taylor RW, Turnbull DM. A neurological per­spective on mitochondrial disease. Lancet Neurol. 2010;9(8): 829–40.PubMedGoogle Scholar
  137. 137.
    Hell SW. Microscopy and its focal switch. Nat Methods. 2009;6(1):24–32.PubMedGoogle Scholar
  138. 138.
    Jakobs S, Stoldt S, Neumann D. Light microscopic analysis of mitochondrial heterogeneity in cell populations and within single cells. Adv Biochem Eng Biotechnol. 2011;124:1–19.PubMedGoogle Scholar
  139. 139.
    Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.PubMedGoogle Scholar
  140. 140.
    Patterson G, Davidson M, Manley S, Lippincott-Schwartz J. Superresolution imaging using single-molecule localization. Annu Rev Phys Chem. 2010;61:345–67.PubMedGoogle Scholar
  141. 141.
    McEwen BF, Renken C, Marko M, Mannella C. Chapter 6: principles and practice in electron tomography. Methods Cell Biol. 2008;89:129–68.PubMedGoogle Scholar
  142. 142.
    Koning RI, Koster AJ. Cryo-electron tomography in biology and medicine. Ann Anat. 2009;191(5):427–45.PubMedGoogle Scholar
  143. 143.
    Bartesaghi A, Subramaniam S. Membrane protein structure ­determination using cryo-electron tomography and 3D image averaging. Curr Opin Struct Biol. 2009;19(4):402–7.PubMedGoogle Scholar
  144. 144.
    Leis A, Rockel B, Andrees L, Baumeister W. Visualizing cells at the nanoscale. Trends Biochem Sci. 2009;34(2):60–70.PubMedGoogle Scholar
  145. 145.
    DeLuca M, McElroy WD. Kinetics of the firefly luciferase catalyzed reactions. Biochemistry. 1974;13(5):921–5.PubMedGoogle Scholar
  146. 146.
    Wibom R, Hultman E. ATP production rate in mitochondria isolated from microsamples of human muscle. Am J Physiol. 1990;259(2 Pt 1):E204–9.PubMedGoogle Scholar
  147. 147.
    Lanza IR, Nair KS. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 2009;457:349–72.PubMedGoogle Scholar
  148. 148.
    Puchowicz MA, Varnes ME, Cohen BH, Friedman NR, Kerr DS, Hoppel CL. Oxidative phosphorylation analysis: assessing the integrated functional activity of human skeletal muscle mitochondria–case studies. Mitochondrion. 2004;4(5–6):377–85.PubMedGoogle Scholar
  149. 149.
    Gnaiger E. Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol. 2001;128(3):277–97.PubMedGoogle Scholar
  150. 150.
    Gnaiger E. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol. 2009;41(10):1837–45.PubMedGoogle Scholar
  151. 151.
    Anderson EJ, Lustig ME, Boyle KE, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573–81.PubMedGoogle Scholar
  152. 152.
    Hoult DI, Busby SJ, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974;252(5481):285–7.PubMedGoogle Scholar
  153. 153.
    Dobbins RL, Malloy CR. Measuring in-vivo metabolism using nuclear magnetic resonance. Curr Opin Clin Nutr Metab Care. 2003;6(5):501–9.PubMedGoogle Scholar
  154. 154.
    Befroy DE, Falk Petersen K, Rothman DL, Shulman GI. Assessment of in vivo mitochondrial metabolism by magnetic resonance spectroscopy. Methods Enzymol. 2009;457:373–93.PubMedGoogle Scholar
  155. 155.
    Hudsmith LE, Neubauer S. Magnetic resonance spectroscopy in myocardial disease. JACC Cardiovasc Imaging. 2009;2(1):87–96.PubMedGoogle Scholar
  156. 156.
    Beadle R, Frenneaux M. Magnetic resonance spectroscopy in myocardial disease. Expert Rev Cardiovasc Ther. 2010;8(2): 269–77.PubMedGoogle Scholar
  157. 157.
    Lanza IR, Nair KS. Mitochondrial metabolic function assessed in vivo and in vitro. Curr Opin Clin Nutr Metab Care. 2010;13(5):511–7.PubMedGoogle Scholar
  158. 158.
    Bonilla E, Sciacco M, Tanji K, Sparaco M, Petruzzella V, Moraes CT. New morphological approaches to the study of mitochondrial encephalomyopathies. Brain Pathol. 1992;2(2):113–9.PubMedGoogle Scholar
  159. 159.
    Rahman S, Lake BD, Taanman JW, et al. Cytochrome oxidase immunohistochemistry: clues for genetic mechanisms. Brain. 2000;123(Pt 3):591–600.PubMedGoogle Scholar
  160. 160.
    McDonnell MT, Schaefer AM, Blakely EL, et al. Noninvasive diagnosis of the 3243A  >  G mitochondrial DNA mutation using urinary epithelial cells. Eur J Hum Genet. 2004;12(9):778–81.PubMedGoogle Scholar
  161. 161.
    Shanske S, Pancrudo J, Kaufmann P, et al. Varying loads of the mitochondrial DNA A3243G mutation in different tissues: implications for diagnosis. Am J Med Genet A. 2004;130A(2):134–7.PubMedGoogle Scholar
  162. 162.
    Whittaker RG, Blackwood JK, Alston CL, et al. Urine heteroplasmy is the best predictor of clinical outcome in the m.3243A  >  G mtDNA mutation. Neurology. 2009;72(6):568–9.PubMedGoogle Scholar
  163. 163.
    Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31–46.PubMedGoogle Scholar
  164. 164.
    Ware JS, Roberts AM, Cook SA. Next generation sequencing for clinical diagnostics and personalised medicine: implications for the next generation cardiologist. Heart. 2012;98(4):276–81.PubMedGoogle Scholar
  165. 165.
    Zhou S, Kassauei K, Cutler DJ, et al. An oligonucleotide microarray for high-throughput sequencing of the mitochondrial genome. J Mol Diagn. 2006;8(4):476–82.PubMedGoogle Scholar
  166. 166.
    Hartmann A, Thieme M, Nanduri LK, et al. Validation of microarray-based resequencing of 93 worldwide mitochondrial genomes. Hum Mutat. 2009;30(1):115–22.PubMedGoogle Scholar
  167. 167.
    Fan JB, Chee MS, Gunderson KL. Highly parallel genomic assays. Nat Rev Genet. 2006;7(8):632–44.PubMedGoogle Scholar
  168. 168.
    Branton D, Deamer DW, Marziali A, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol. 2008;26(10): 1146–53.PubMedGoogle Scholar
  169. 169.
    Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology. Trends Genet. 2008;24(3):142–9.PubMedGoogle Scholar
  170. 170.
    Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66–72.PubMedGoogle Scholar
  171. 171.
    Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66.PubMedGoogle Scholar
  172. 172.
    Lupski JR, Reid JG, Gonzaga-Jauregui C, et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med. 2010;362(13):1181–91.PubMedGoogle Scholar
  173. 173.
    Burton H, Alberg C, Stewart A. Heart to heart: inherited cardiovascular conditions services—a needs assessment and service review. Cambridge: The PHG Foundation; 2009.Google Scholar
  174. 174.
    Hedley PL, Jorgensen P, Schlamowitz S, et al. The genetic basis of long QT and short QT syndromes: a mutation update. Hum Mutat. 2009;30(11):1486–511.PubMedGoogle Scholar
  175. 175.
    Yang Y, Liang B, Liu J, et al. Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet. 2010;86(6):872–80.PubMedGoogle Scholar
  176. 176.
    Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(3):201–11.PubMedGoogle Scholar
  177. 177.
    Genschel J, Schmidt HH. Mutations in the LMNA gene encoding lamin A/C. Hum Mutat. 2000;16(6):451–9.PubMedGoogle Scholar
  178. 178.
    Mogensen J, Murphy RT, Shaw T, et al. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2004;44(10):2033–40.PubMedGoogle Scholar
  179. 179.
    Villard E, Duboscq-Bidot L, Charron P, et al. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur Heart J. 2005;26(8):794–803.PubMedGoogle Scholar
  180. 180.
    Chiu RW, Akolekar R, Zheng YW, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ. 2011;342:c7401.PubMedGoogle Scholar
  181. 181.
    Lo YM, Chan KC, Sun H, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2(61):61ra91.PubMedGoogle Scholar
  182. 182.
    Chiu RW, Cantor CR, Lo YM. Non-invasive prenatal diagnosis by single molecule counting technologies. Trends Genet. 2009;25(7):324–31.PubMedGoogle Scholar
  183. 183.
    Hall A, Bostanci A, Wright CF. Non-invasive prenatal diagnosis using cell-free fetal DNA technology: applications and implications. Public Health Genomics. 2010;13(4):246–55.PubMedGoogle Scholar
  184. 184.
    Ashley EA, Butte AJ, Wheeler MT, et al. Clinical assessment incorporating a personal genome. Lancet. 2010;375(9725):1525–35.PubMedGoogle Scholar
  185. 185.
    Klein TE, Altman RB, Eriksson N, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.PubMedGoogle Scholar
  186. 186.
    Mega JL, Close SL, Wiviott SD, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62.PubMedGoogle Scholar
  187. 187.
    Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360(4):363–75.PubMedGoogle Scholar
  188. 188.
    Brunham LR, Lansberg PJ, Zhang L, et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 2012;12(3): 233–7.PubMedGoogle Scholar
  189. 189.
    Sofi F, Giusti B, Marcucci R, Gori AM, Abbate R, Gensini GF. Cytochrome P450 2 C19*2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: a meta-analysis. Pharmacogenomics J. 2011;11(3):199–206.PubMedGoogle Scholar
  190. 190.
    Marshall A, Hodgson J. DNA chips: an array of possibilities. Nat Biotechnol. 1998;16(1):27–31.PubMedGoogle Scholar
  191. 191.
    Ramsay G. DNA chips: state-of-the art. Nat Biotechnol. 1998;16(1):40–4.PubMedGoogle Scholar
  192. 192.
    Southern E, Mir K, Shchepinov M. Molecular interactions on microarrays. Nat Genet. 1999;21(1 Suppl):5–9.PubMedGoogle Scholar
  193. 193.
    Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature. 2000;405(6788):827–36.PubMedGoogle Scholar
  194. 194.
    Gorreta F, Carbone W, Barzaghi D. Genomic profiling: cDNA arrays and oligoarrays. Methods Mol Biol. 2012;823:89–105.PubMedGoogle Scholar
  195. 195.
    Yang J, Moravec CS, Sussman MA, et al. Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation. 2000;102(25):3046–52.PubMedGoogle Scholar
  196. 196.
    Barrans JD, Allen PD, Stamatiou D, Dzau VJ, Liew CC. Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol. 2002;160(6):2035–43.PubMedGoogle Scholar
  197. 197.
    Grzeskowiak R, Witt H, Drungowski M, et al. Expression profiling of human idiopathic dilated cardiomyopathy. Cardiovasc Res. 2003;59(2):400–11.PubMedGoogle Scholar
  198. 198.
    Yung CK, Halperin VL, Tomaselli GF, Winslow RL. Gene expression profiles in end-stage human idiopathic dilated cardiomyopathy: altered expression of apoptotic and cytoskeletal genes. Genomics. 2004;83(2):281–97.PubMedGoogle Scholar
  199. 199.
    Kittleson MM, Minhas KM, Irizarry RA, et al. Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genomics. 2005;21(3):299–307.PubMedGoogle Scholar
  200. 200.
    Barth AS, Kuner R, Buness A, et al. Identification of a common gene expression signature in dilated cardiomyopathy across independent microarray studies. J Am Coll Cardiol. 2006;48(8):1610–7.PubMedGoogle Scholar
  201. 201.
    Colak D, Kaya N, Al-Zahrani J, et al. Left ventricular global transcriptional profiling in human end-stage dilated cardiomyopathy. Genomics. 2009;94(1):20–31.PubMedGoogle Scholar
  202. 202.
    Asakura M, Kitakaze M. Global gene expression profiling in the failing myocardium. Circ J. 2009;73(9):1568–76.PubMedGoogle Scholar
  203. 203.
    Szewczyk A, Wojtczak L. Mitochondria as a pharmacological target. Pharmacol Rev. 2002;54(1):101–27.PubMedGoogle Scholar
  204. 204.
    van der Westhuizen FH, van den Heuvel LP, Smeets R, et al. Human mitochondrial complex I deficiency: investigating transcriptional responses by microarray. Neuropediatrics. 2003;34(1):14–22.PubMedGoogle Scholar
  205. 205.
    Bai X, Wu J, Zhang Q, et al. Third-generation human mitochondria-focused cDNA microarray and its bioinformatic tools for analysis of gene expression. Biotechniques. 2007;42(3):365–75.PubMedGoogle Scholar
  206. 206.
    Voss JG, Raju R, Logun C, et al. A focused microarray to study human mitochondrial and nuclear gene expression. Biol Res Nurs. 2008;9(4):272–9.PubMedGoogle Scholar
  207. 207.
    Reddy PH, McWeeney S, Park BS, et al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum Mol Genet. 2004;13(12):1225–40.PubMedGoogle Scholar
  208. 208.
    Duke DC, Moran LB, Kalaitzakis ME, et al. Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson’s disease. Neurogenetics. 2006;7(3):139–48.PubMedGoogle Scholar
  209. 209.
    Su YA, Wu J, Zhang L, et al. Dysregulated mitochondrial genes and networks with drug targets in postmortem brain of patients with posttraumatic stress disorder (PTSD) revealed by human mitochondria-focused cDNA microarrays. Int J Biol Sci. 2008;4(4):223–35.PubMedGoogle Scholar
  210. 210.
    Wang Q, Ito M, Adams K, et al. Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome. Am J Med Genet A. 2004;131(1):50–8.PubMedGoogle Scholar
  211. 211.
    Makawita S, Diamandis EP. The bottleneck in the cancer biomarker pipeline and protein quantification through mass spectrometry-based approaches: current strategies for candidate verification. Clin Chem. 2010;56(2):212–22.PubMedGoogle Scholar
  212. 212.
    Umar A, Kang H, Timmermans AM, et al. Identification of a putative protein profile associated with tamoxifen therapy resistance in breast cancer. Mol Cell Proteomics. 2009;8(6):1278–94.PubMedGoogle Scholar
  213. 213.
    Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. 2010;11:25–44.PubMedGoogle Scholar
  214. 214.
    Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79.PubMedGoogle Scholar
  215. 215.
    Gucek M, Murphy E. What can we learn about cardioprotection from the cardiac mitochondrial proteome? Cardiovasc Res. 2010;88(2):211–8.PubMedGoogle Scholar
  216. 216.
    Panfoli I, Ravera S, Bruschi M, Candiano G, Morelli A. Proteomics unravels the exportability of mitochondrial respiratory chains. Expert Rev Proteomics. 2011;8(2):231–9.PubMedGoogle Scholar
  217. 217.
    Herrmann PC, Herrmann EC. Mitochondrial proteome: toward the detection and profiling of disease associated alterations. Methods Mol Biol. 2012;823:265–77.PubMedGoogle Scholar
  218. 218.
    Cotter D, Guda P, Fahy E, Subramaniam S. MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res. 2004;32(Database issue):D463–7.PubMedGoogle Scholar
  219. 219.
    Elstner M, Andreoli C, Ahting U, et al. MitoP2: an integrative tool for the analysis of the mitochondrial proteome. Mol Biotechnol. 2008;40(3):306–15.PubMedGoogle Scholar
  220. 220.
    Smith AC, Robinson AJ. MitoMiner, an integrated database for the storage and analysis of mitochondrial proteomics data. Mol Cell Proteomics. 2009;8(6):1324–37.PubMedGoogle Scholar
  221. 221.
    Scharfe C, Lu HH, Neuenburg JK, et al. Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol Apr. 2009;5(4):e1000374.Google Scholar
  222. 222.
    Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics. 2004;4(12):3943–52.PubMedGoogle Scholar
  223. 223.
    Fountoulakis M, Schlaeger EJ. The mitochondrial proteins of the neuroblastoma cell line IMR-32. Electrophoresis. 2003;24(1–2):260–75.PubMedGoogle Scholar
  224. 224.
    Herrmann PC, Gillespie JW, Charboneau L, et al. Mitochondrial proteome: altered cytochrome c oxidase subunit levels in prostate cancer. Proteomics. 2003;3(9):1801–10.PubMedGoogle Scholar
  225. 225.
    Forner F, Foster LJ, Campanaro S, Valle G, Mann M. Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol Cell Proteomics. 2006;5(4):608–19.PubMedGoogle Scholar
  226. 226.
    Johnson DT, Harris RA, French S, et al. Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol. 2007;292(2):C689–97.PubMedGoogle Scholar
  227. 227.
    Chakravarti B, Oseguera M, Dalal N, et al. Proteomic profiling of aging in the mouse heart: Altered expression of mitochondrial proteins. Arch Biochem Biophys. 2008;474(1):22–31.PubMedGoogle Scholar
  228. 228.
    Zhang J, Li X, Mueller M, et al. Systematic characterization of the murine mitochondrial proteome using functionally validated cardiac mitochondria. Proteomics. 2008;8(8):1564–75.PubMedGoogle Scholar
  229. 229.
    Duan X, Young R, Straubinger RM, et al. A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome. J Proteome Res. 2009;8(6):2838–50.PubMedGoogle Scholar
  230. 230.
    Monnet E, Chachques JC. Animal models of heart failure: what is new? Ann Thorac Surg. 2005;79(4):1445–53.PubMedGoogle Scholar
  231. 231.
    Jin X, Xia L, Wang LS, et al. Differential protein expression in hypertrophic heart with and without hypertension in spontaneously hypertensive rats. Proteomics. 2006;6(6):1948–56.PubMedGoogle Scholar
  232. 232.
    Meng C, Jin X, Xia L, et al. Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J Proteome Res. 2009;8(5): 2463–75.PubMedGoogle Scholar
  233. 233.
    Agnetti G, Kaludercic N, Kane LA, et al. Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. Circ Cardiovasc Genet. 2010;3(1):78–87.PubMedGoogle Scholar
  234. 234.
    Bugger H, Schwarzer M, Chen D, et al. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res. 2010;85(2):376–84.PubMedGoogle Scholar
  235. 235.
    Ulasova E, Gladden JD, Chen Y, et al. Loss of interstitial collagen causes structural and functional alterations of cardiomyocyte subsarcolemmal mitochondria in acute volume overload. J Mol Cell Cardiol. 2011;50(1):147–56.PubMedGoogle Scholar
  236. 236.
    Hollander JM, Baseler WA, Dabkowski ER. Proteomic remodeling of mitochondria in heart failure. Congest Heart Fail. 2011;17(6):262–8.PubMedGoogle Scholar
  237. 237.
    Urbonavicius S, Wiggers H, Botker HE, et al. Proteomic analysis identifies mitochondrial metabolic enzymes as major discriminators between different stages of the failing human myocardium. Acta Cardiol. 2009;64(4):511–22.PubMedGoogle Scholar
  238. 238.
    Mayr M, Liem D, Zhang J, et al. Proteomic and metabolomic analysis of cardioprotection: Interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. J Mol Cell Cardiol. 2009;46(2):268–77.PubMedGoogle Scholar
  239. 239.
    Wong R, Aponte AM, Steenbergen C, Murphy E. Cardioprotection leads to novel changes in the mitochondrial proteome. Am J Physiol Heart Circ Physiol. 2010;298(1):H75–91.PubMedGoogle Scholar
  240. 240.
    Auffray C, Caulfield T, Khoury MJ, Lupski JR, Schwab M, Veenstra T. Genome Medicine: past, present and future. Genome Med. 2011;3(1):6.PubMedGoogle Scholar
  241. 241.
    Auffray C, Caulfield T, Khoury MJ, Lupski JR, Schwab M, Veenstra T. Looking back at genomic medicine in 2011. Genome Med. 2012;4(1):9.PubMedGoogle Scholar
  242. 242.
    Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360(8):790–800.PubMedGoogle Scholar
  243. 243.
    Wenz T, Williams SL, Bacman SR, Moraes CT. Emerging therapeutic approaches to mitochondrial diseases. Dev Disabil Res Rev. 2010;16(2):219–29.PubMedGoogle Scholar
  244. 244.
    Adhya S, Mahato B, Jash S, Koley S, Dhar G, Chowdhury T. Mitochondrial gene therapy: the tortuous path from bench to bedside. Mitochondrion. 2011;11(6):839–44.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • José Marín-García
    • 1
  1. 1.The Molecular Cardiology and Neuromuscular InstituteHighland ParkUSA

Personalised recommendations