Methods to Study Mitochondrial Structure and Function

  • José Marín-García


Cardiac mitochondria are complex highly organized cellular organelles, which play central roles not only in energy homeostasis but also in various biosynthetic, signaling, and cell death pathways. A wide range of methodological approaches have been developed to assess mitochondrial function in the heart. High- and super-resolution fluorescent microscopy has been used to visualize mitochondria and measure number of mitochondrial characteristics. Electron microscopy and electron tomography can visualize not only mitochondrial ultrastructure but also mitochondrial multiprotein complexes at near-atomic resolution. A whole arsenal of modern molecular biological methods has been exploited in analysis of mtDNA and its dynamics. The in vitro spectrophotometric enzyme assays and polarographic measurements of oxygen consumption are commonly utilized to assess mitochondrial function. Noninvasive methods based on magnetic resonance spectroscopy (MRS) have emerged as a powerful tool to study mitochondrial function in vivo in human heart. Electrophoretic techniques, such as 1D-, 2D-PAGE, and BN-PAGE, have proved to be a very sensitive and informative approach to analyze complex content of mitochondrial proteins. Advances in separation and mass spectrometry (MS)-based technologies have led to the identification of a significant number of mitochondrial proteins from various rodent and human tissues, including heart. Animal models are of a great utility for the investigation of mitochondrial functions and their roles in the heart; however, mtDNA gene targeting still presents a significant technical challenge. Great advances in these methodological approaches have fueled progress in our understanding of mitochondrial functional role in heart physiology and pathophysiology.


Mitochondrial Function Mitochondrial Protein Fluorescence Resonance Energy Transfer Cardiac Mitochondrion Mitochondrial Ultrastructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jakobs S. High resolution imaging of live mitochondria. Biochim Biophys Acta. 2006;1763(5–6):561–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Jakobs S, Stoldt S, Neumann D. Light Microscopic Analysis of Mitochondrial Heterogeneity in Cell Populations and Within Single Cells. Adv Biochem Eng Biotechnol. 2011;124:1–19.PubMedGoogle Scholar
  3. 3.
    Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46(1):126–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Dykens JA, Stout AK. Assessment of mitochondrial membrane potential in situ using single potentiometric dyes and a novel fluorescence resonance energy transfer technique. Methods Cell Biol. 2001;65:285–309.PubMedCrossRefGoogle Scholar
  5. 5.
    Haugland RP. Handbook of fluorescent probes and research products. 9th ed. Eugene, OR: Molecular Probes, Inc; 2002.Google Scholar
  6. 6.
    Duchen MR, Surin A, Jacobson J. Imaging mitochondrial function in intact cells. Methods Enzymol. 2003;361:353–89.PubMedCrossRefGoogle Scholar
  7. 7.
    Rottenberg H, Wu S. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta. 1998;1404(3):393–404.PubMedCrossRefGoogle Scholar
  8. 8.
    Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997;411(1):77–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Erbrich U, Septinus M, Naujok A, Zimmermann HW. Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells. 2. Comparison of staining of living and fixed Hela-cells with NAO and DPPAO. Histochemistry. 1984;80(4):385–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM. Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J. 1988;53(5):785–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol. 1995;5(6):635–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004;22(12):1567–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Chudakov DM, Lukyanov S, Lukyanov KA. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 2005;23(12):605–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods. 2005;2(12):905–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA. 1998;95(12):6803–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Porcelli AM, Pinton P, Ainscow EK, et al. Targeting of reporter molecules to mitochondria to measure calcium, ATP, and pH. Methods Cell Biol. 2001;65:353–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Rudolf R, Mongillo M, Rizzuto R, Pozzan T. Looking forward to seeing calcium. Nat Rev Mol Cell Biol. 2003;4(7):579–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Abad MF, Di Benedetto G, Magalhaes PJ, Filippin L, Pozzan T. Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem. 2004;279(12):11521–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Hanson GT, Aggeler R, Oglesbee D, et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem. 2004;279(13):13044–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Porcelli AM, Ghelli A, Zanna C, Pinton P, Rizzuto R, Rugolo M. pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun. 2005;326(4):799–804.PubMedCrossRefGoogle Scholar
  21. 21.
    Gronemeyer T, Godin G, Johnsson K. Adding value to fusion proteins through covalent labelling. Curr Opin Biotechnol. 2005;16(4):453–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Prescher JA, Bertozzi CR. Chemistry in living systems. Nat Chem Biol. 2005;1(1):13–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Hell SW. Microscopy and its focal switch. Nat Methods. 2009;6(1):24–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.PubMedCrossRefGoogle Scholar
  25. 25.
    Patterson G, Davidson M, Manley S, Lippincott-Schwartz J. Superresolution imaging using single-molecule localization. Annu Rev Phys Chem. 2010;61:345–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19(11):780–2.PubMedCrossRefGoogle Scholar
  27. 27.
    Hell SW, Jacobs S, Kastrup L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys. 2003;A 77:859–60.Google Scholar
  28. 28.
    Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW. Spherical nanosized focal spot unravels the interior of cells. Nat Methods. 2008;5(6):539–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW. Mitochondrial cristae revealed with focused light. Nano Lett. 2009;9(6):2508–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Neumann D, Buckers J, Kastrup L, Hell SW, Jakobs S. Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys. 2010;3(1):4.PubMedCrossRefGoogle Scholar
  31. 31.
    Palade GE. An electron microscope study of the mitochondrial structure. J Histochem Cytochem. 1953;1(4):188–211.PubMedCrossRefGoogle Scholar
  32. 32.
    Sjostrand FS. Electron microscopy of mitochondria and cytoplasmic double membranes. Nature. 1953;171(4340):30–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T. Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol. 1997;119(3):260–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Ambu R, Riva A, Lai ML, Loffredo F, Riva FT, Tandler B. Scanning electron microscopy of the interior of cells in Hurthle cell tumors. Ultrastruct Pathol. 2000;24(4):211–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C. Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2005;289(2):H868–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Mannella CA. The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta. 2006;1762(2):140–7.PubMedCrossRefGoogle Scholar
  37. 37.
    McEwen BF, Renken C, Marko M, Mannella C. Chapter 6: Principles and practice in electron tomography. Methods Cell Biol. 2008;89:129–68.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoppel CL,Tandler B, Fujioka H, Riva A. Dynamic organization of mitochondria in human heart and in myocardial disease. Internat J Biochem Cell Biol. 2009;41:1949–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Costello MJ. Cryo-electron microscopy of biological samples. Ultrastruct Pathol. 2006;30(5):361–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Dubochet J. The physics of rapid cooling and its implications for cryoimmobilization of cells. Methods Cell Biol. 2007;79:7–21.PubMedCrossRefGoogle Scholar
  41. 41.
    Koning RI, Koster AJ. Cryo-electron tomography in biology and medicine. Ann Anat. 2009;191(5):427–45.PubMedCrossRefGoogle Scholar
  42. 42.
    Bartesaghi A, Subramaniam S. Membrane protein structure determination using cryo-electron tomography and 3D image averaging. Curr Opin Struct Biol. 2009;19(4):402–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Leis A, Rockel B, Andrees L, Baumeister W. Visualizing cells at the nanoscale. Trends Biochem Sci. 2009;34(2):60–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Dudkina NV, Kouril R, Bultema JB, Boekema EJ. Imaging of organelles by electron microscopy reveals protein-protein interactions in mitochondria and chloroplasts. FEBS Lett. 2010;584(12):2510–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Palmer JW, Tandler B, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977;252(23):8731–9.PubMedGoogle Scholar
  46. 46.
    Hoppel CL, Tandler B, Parland W, Turkaly JS, Albers LD. Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J Biol Chem. 1982;257(3):1540–8.PubMedGoogle Scholar
  47. 47.
    Weinstein ES, Benson DW, Fry DE. Subpopulations of human heart mitochondria. J Surg Res. 1986;40(5):495–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA. Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta. 1987;892(2):191–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 2008;3(6):965–76.PubMedCrossRefGoogle Scholar
  50. 50.
    King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989;246(4929):500–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Chomyn A, Meola G, Bresolin N, Lai ST, Scarlato G, Attardi G. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol Cell Biol. 1991;11(4):2236–44.PubMedGoogle Scholar
  52. 52.
    Lanza IR, Nair KS. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 2009;457:349–72.PubMedCrossRefGoogle Scholar
  53. 53.
    Befroy DE. Falk Petersen K, Rothman DL, Shulman GI. Assessment of in vivo mitochondrial metabolism by magnetic resonance spectroscopy. Methods Enzymol. 2009;457:373–93.PubMedCrossRefGoogle Scholar
  54. 54.
    Lanza IR, Nair KS. Mitochondrial metabolic function assessed in vivo and in vitro. Curr Opin Clin Nutr Metab Care. 2010;13(5):511–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Lemieux H, Hoppel CL. Mitochondria in the human heart. J Bioenerg Biomembr. 2009;41(2):99–106.PubMedCrossRefGoogle Scholar
  56. 56.
    DeLuca M, McElroy WD. Kinetics of the firefly luciferase catalyzed reactions. Biochemistry. 1974;13(5):921–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Wibom R, Hultman E. ATP production rate in mitochondria isolated from microsamples of human muscle. Am J Physiol. 1990;259(2 Pt 1):E204–9.PubMedGoogle Scholar
  58. 58.
    Puchowicz MA, Varnes ME, Cohen BH, Friedman NR, Kerr DS, Hoppel CL. Oxidative phosphorylation analysis: assessing the integrated functional activity of human skeletal muscle mitochondria–case studies. Mitochondrion. 2004;4(5–6):377–85.PubMedCrossRefGoogle Scholar
  59. 59.
    Gnaiger E. Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol. 2001;128(3):277–97.PubMedCrossRefGoogle Scholar
  60. 60.
    Gnaiger E. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol. 2009;41(10):1837–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Anderson EJ, Lustig ME, Boyle KE, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573–81.PubMedCrossRefGoogle Scholar
  62. 62.
    Hoult DI, Busby SJ, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974;252(5481):285–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Dobbins RL, Malloy CR. Measuring in-vivo metabolism using nuclear magnetic resonance. Curr Opin Clin Nutr Metab Care. 2003;6(5):501–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Hudsmith LE, Neubauer S. Magnetic resonance spectroscopy in myocardial disease. JACC Cardiovasc Imaging. 2009;2(1):87–96.PubMedCrossRefGoogle Scholar
  65. 65.
    Beadle R, Frenneaux M. Magnetic resonance spectroscopy in myocardial disease. Expert Rev Cardiovasc Ther. 2010;8(2):269–77.PubMedCrossRefGoogle Scholar
  66. 66.
    Hudsmith LE, Neubauer S. Detection of myocardial disorders by magnetic resonance spectroscopy. Nat Clin Pract Cardiovasc Med. 2008;5 Suppl 2:S49–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med. 1990;323(23):1593–600.PubMedCrossRefGoogle Scholar
  68. 68.
    Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991;338(8773):973–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Nakae I, Mitsunami K, Omura T, et al. Proton magnetic resonance spectroscopy can detect creatine depletion associated with the progression of heart failure in cardiomyopathy. J Am Coll Cardiol. 2003;42(9):1587–93.PubMedCrossRefGoogle Scholar
  70. 70.
    Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci USA. 2005;102(3):808–13.PubMedCrossRefGoogle Scholar
  71. 71.
    Befroy DE, Petersen KF, Dufour S, Mason GF, Rothman DL, Shulman GI. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Proc Natl Acad Sci USA. 2008;105(43):16701–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Taylor SW, Warnock DE, Glenn GM, et al. An alternative strategy to determine the mitochondrial proteome using sucrose gradient fractionation and 1D PAGE on highly purified human heart mitochondria. J Proteome Res. 2002;1(5):451–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Barnouin K. Two-dimensional gel electrophoresis for analysis of protein complexes. Methods Mol Biol. 2004;261:479–98.PubMedGoogle Scholar
  74. 74.
    Zhang J, Li X, Mueller M, et al. Systematic characterization of the murine mitochondrial proteome using functionally validated cardiac mitochondria. Proteomics. 2008;8(8):1564–75.PubMedCrossRefGoogle Scholar
  75. 75.
    Pflieger D, Le Caer JP, Lemaire C, Bernard BA, Dujardin G, Rossier J. Systematic identification of mitochondrial proteins by LC-MS/MS. Anal Chem. 2002;74(10):2400–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Rais I, Karas M, Schagger H. Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification. Proteomics. 2004;4(9):2567–71.PubMedCrossRefGoogle Scholar
  77. 77.
    Zahedi RP, Meisinger C, Sickmann A. Two-dimensional benzyldimethyl-n-hexadecylammonium chloride/SDS-PAGE for membrane proteomics. Proteomics. 2005;5(14):3581–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Schagger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991;199(2):223–31.PubMedCrossRefGoogle Scholar
  79. 79.
    Schagger H, Cramer WA, von Jagow G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem. 1994;217(2):220–30.PubMedCrossRefGoogle Scholar
  80. 80.
    Wittig I, Braun HP, Schagger H. Blue native PAGE. Nat Protoc. 2006;1(1):418–28.PubMedCrossRefGoogle Scholar
  81. 81.
    Jung C, Higgins CM, Xu Z. Measuring the quantity and activity of mitochondrial electron transport chain complexes in tissues of central nervous system using blue native polyacrylamide gel electrophoresis. Anal Biochem. 2000;286(2):214–23.PubMedCrossRefGoogle Scholar
  82. 82.
    Eubel H, Heinemeyer J, Sunderhaus S, Braun HP. Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem. 2004;42(12):937–42.PubMedCrossRefGoogle Scholar
  83. 83.
    Sunderhaus S, Dudkina NV, Jansch L, et al. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. J Biol Chem. 2006;281(10):6482–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Schagger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19(8):1777–83.PubMedCrossRefGoogle Scholar
  85. 85.
    Pfeiffer K, Gohil V, Stuart RA, et al. Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem. 2003;278(52):52873–80.PubMedCrossRefGoogle Scholar
  86. 86.
    Eubel H, Jansch L, Braun HP. New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol. 2003;133(1):274–86.PubMedCrossRefGoogle Scholar
  87. 87.
    Devreese B, Vanrobaeys F, Smet J, Van Beeumen J, Van Coster R. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis. Electrophoresis. 2002;23(15):2525–33.PubMedCrossRefGoogle Scholar
  88. 88.
    Schagger H. Quantification of oxidative phosphorylation enzymes after blue native electrophoresis and two-dimensional resolution: normal complex I protein amounts in Parkinson’s disease conflict with reduced catalytic activities. Electrophoresis. 1995;16(5):763–70.PubMedCrossRefGoogle Scholar
  89. 89.
    Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schagger H. Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J. 1998;17(24):7170–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP. Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci USA. 2005;102(9):3225–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Model K, Meisinger C, Prinz T, et al. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat Struct Biol. 2001;8(4):361–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Horie C, Suzuki H, Sakaguchi M, Mihara K. Targeting and assembly of mitochondrial tail-anchored protein Tom5 to the TOM complex depend on a signal distinct from that of tail-anchored proteins dispersed in the membrane. J Biol Chem. 2003;278(42):41462–71.PubMedCrossRefGoogle Scholar
  93. 93.
    Nakamura Y, Suzuki H, Sakaguchi M, Mihara K. Targeting and assembly of rat mitochondrial translocase of outer membrane 22 (TOM22) into the TOM complex. J Biol Chem. 2004;279(20):21223–32.PubMedCrossRefGoogle Scholar
  94. 94.
    McDonald TG, Van Eyk JE. Mitochondrial proteomics. Undercover in the lipid bilayer. Basic Res Cardiol. 2003;98(4):219–27.PubMedGoogle Scholar
  95. 95.
    Taylor SW, Fahy E, Ghosh SS. Global organellar proteomics. Trends Biotechnol. 2003;21(2):82–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Taylor SW, Fahy E, Zhang B, et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003;21(3):281–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Mayr M, Zhang J, Greene AS, Gutterman D, Perloff J, Ping P. Proteomics-based development of biomarkers in cardiovascular disease: mechanistic, clinical, and therapeutic insights. Mol Cell Proteomics. 2006;5(10):1853–64.PubMedCrossRefGoogle Scholar
  98. 98.
    Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. 2010;11:25–44.PubMedCrossRefGoogle Scholar
  99. 99.
    Da Cruz S, Parone PA, Martinou JC. Building the mitochondrial proteome. Expert Rev Proteomics. 2005;2(4):541–51.PubMedCrossRefGoogle Scholar
  100. 100.
    Distler AM, Kerner J, Hoppel CL. Proteomics of mitochondrial inner and outer membranes. Proteomics. 2008;8(19):4066–82.PubMedCrossRefGoogle Scholar
  101. 101.
    Lopez MF, Kristal BS, Chernokalskaya E, et al. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000;21(16):3427–40.PubMedCrossRefGoogle Scholar
  102. 102.
    Brugiere S, Kowalski S, Ferro M, et al. The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochemistry. 2004;65(12):1693–707.PubMedCrossRefGoogle Scholar
  103. 103.
    Aggeler R, Coons J, Taylor SW, et al. A functionally active human F1F0 ATPase can be purified by immunocapture from heart tissue and fibroblast cell lines. Subunit structure and activity studies. J Biol Chem. 2002;277(37):33906–12.PubMedCrossRefGoogle Scholar
  104. 104.
    Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell. 2006;23(4):607–18.PubMedCrossRefGoogle Scholar
  105. 105.
    Rabilloud T, Kieffer S, Procaccio V, et al. Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis. 1998;19(6):1006–14.PubMedCrossRefGoogle Scholar
  106. 106.
    Scheffler NK, Miller SW, Carroll AK, et al. Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH-SY5Y neuroblastoma cell line. Mitochondrion. 2001;1(2):161–79.PubMedCrossRefGoogle Scholar
  107. 107.
    Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003;115(5):629–40.PubMedCrossRefGoogle Scholar
  108. 108.
    Forner F, Foster LJ, Campanaro S, Valle G, Mann M. Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol Cell Proteomics. 2006;5(4):608–19.PubMedGoogle Scholar
  109. 109.
    Foster LJ, de Hoog CL, Zhang Y, Xie X, Mootha VK, Mann M. A mammalian organelle map by protein correlation profiling. Cell. 2006;125(1):187–99.PubMedCrossRefGoogle Scholar
  110. 110.
    Kislinger T, Cox B, Kannan A, et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell. 2006;125(1):173–86.PubMedCrossRefGoogle Scholar
  111. 111.
    Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134(1):112–23.PubMedCrossRefGoogle Scholar
  112. 112.
    Kumar A, Agarwal S, Heyman JA, et al. Subcellular localization of the yeast proteome. Genes Dev. 2002;16(6):707–19.PubMedCrossRefGoogle Scholar
  113. 113.
    Calvo S, Jain M, Xie X, et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet. 2006;38(5):576–82.PubMedCrossRefGoogle Scholar
  114. 114.
    Cotter D, Guda P, Fahy E, Subramaniam S. MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res. 2004;32(Database issue):D463–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Elstner M, Andreoli C, Ahting U, et al. MitoP2: an integrative tool for the analysis of the mitochondrial proteome. Mol Biotechnol. 2008;40(3):306–15.PubMedCrossRefGoogle Scholar
  116. 116.
    Smith AC, Robinson AJ. MitoMiner, an integrated database for the storage and analysis of mitochondrial proteomics data. Mol Cell Proteomics. 2009;8(6):1324–37.PubMedCrossRefGoogle Scholar
  117. 117.
    Scharfe C, Lu HH, Neuenburg JK, et al. Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol. 2009;5(4):e1000374.PubMedCrossRefGoogle Scholar
  118. 118.
    Jafri MS, Dudycha SJ, O’Rourke B. Cardiac energy metabolism: models of cellular respiration. Annu Rev Biomed Eng. 2001;3:57–81.PubMedCrossRefGoogle Scholar
  119. 119.
    Lambeth MJ, Kushmerick MJ. A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng. 2002;30(6):808–27.PubMedCrossRefGoogle Scholar
  120. 120.
    Nguyen MH, Jafri MS. Mitochondrial calcium signaling and energy metabolism. Ann N Y Acad Sci. 2005;1047:127–37.PubMedCrossRefGoogle Scholar
  121. 121.
    Cortassa S, Aon MA, O’Rourke B, et al. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J. 2006;91(4):1564–89.PubMedCrossRefGoogle Scholar
  122. 122.
    Korzeniewski B. Regulation of oxidative phosphorylation through parallel activation. Biophys Chem. 2007;129(2–3):93–110.PubMedCrossRefGoogle Scholar
  123. 123.
    Nguyen MH, Dudycha SJ, Jafri MS. Effect of Ca2+ on cardiac mitochondrial energy production is modulated by Na  +  and H  +  dynamics. Am J Physiol Cell Physiol. 2007;292(6):C2004–20.PubMedCrossRefGoogle Scholar
  124. 124.
    Plank G, Zhou L, Greenstein JL, et al. From mitochondrial ion channels to arrhythmias in the heart: computational techniques to bridge the spatio-temporal scales. Philos Transact A Math Phys Eng Sci. 2008;366(1879):3381–409.PubMedCrossRefGoogle Scholar
  125. 125.
    Wang W, Fang H, Groom L, et al. Superoxide flashes in single mitochondria. Cell. 2008;134(2):279–90.PubMedCrossRefGoogle Scholar
  126. 126.
    Lukyanenko V, Chikando A, Lederer WJ. Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol. 2009;41(10):1957–71.PubMedCrossRefGoogle Scholar
  127. 127.
    Lebovitz RM, Zhang H, Vogel H, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA. 1996;93(18):9782–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet. 1997;16(3):226–34.PubMedCrossRefGoogle Scholar
  129. 129.
    Djouadi F, Brandt JM, Weinheimer CJ, Leone TC, Gonzalez FJ, Kelly DP. The role of the peroxisome proliferator-activated ­receptor alpha (PPAR alpha) in the control of cardiac lipid metabolism. Prostaglandins Leukot Essent Fatty Acids. 1999;60(5–6):339–43.PubMedCrossRefGoogle Scholar
  130. 130.
    Ibdah JA, Paul H, Zhao Y, et al. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest. 2001;107(11):1403–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009;71:177–203.PubMedCrossRefGoogle Scholar
  132. 132.
    Rimbaud S, Garnier A, Ventura-Clapier R. Mitochondrial biogenesis in cardiac pathophysiology. Pharmacol Rep. 2009;61(1):131–8.PubMedGoogle Scholar
  133. 133.
    Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3):e76.PubMedCrossRefGoogle Scholar
  134. 134.
    Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88(2):611–38.PubMedCrossRefGoogle Scholar
  135. 135.
    Shimizu T, Nojiri H, Kawakami S, Uchiyama S, Shirasawa T. Model mice for tissue-specific deletion of the manganese superoxide dismutase gene. Geriatr Gerontol Int. 2010;10 Suppl 1:S70–9.PubMedCrossRefGoogle Scholar
  136. 136.
    N’Guessan B, Zoll J, Ribera F, et al. Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles. Mol Cell Biochem. 2004;256–257(1–2):267–80.PubMedGoogle Scholar
  137. 137.
    Aragones J, Schneider M, Van Geyte K, et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet. 2008;40(2):170–80.PubMedCrossRefGoogle Scholar
  138. 138.
    Lindenmayer GE, Sordahl LA, Harigaya S, Allen JC, Besch Jr HR, Schwartz A. Some biochemical studies on subcellular systems isolated from fresh recipient human cardiac tissue obtained during transplantation. Am J Cardiol. 1971;27(3):277–83.PubMedCrossRefGoogle Scholar
  139. 139.
    Gerlich D, Ellenberg J (2003) 4D imaging to assay complex dynamics in live specimens. Nat Cell Biol Suppl:S14–19Google Scholar
  140. 140.
    Jares-Erijman EA, Jovin TM. FRET imaging. Nat Biotechnol. 2003;21(11):1387–95.PubMedCrossRefGoogle Scholar
  141. 141.
    Mahajan NP, Linder K, Berry G, Gordon GW, Heim R, Herman B. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol. 1998;16(6):547–52.PubMedCrossRefGoogle Scholar
  142. 142.
    Onuki R, Nagasaki A, Kawasaki H, Baba T, Uyeda TQ, Taira K. Confirmation by FRET in individual living cells of the absence of significant amyloid beta -mediated caspase 8 activation. Proc Natl Acad Sci USA. 2002;99(23):14716–21.PubMedCrossRefGoogle Scholar
  143. 143.
    Gavin PD, Devenish RJ, Prescott M. FRET reveals changes in the F1-stator stalk interaction during activity of F1F0-ATP synthase. Biochim Biophys Acta. 2003;1607(2–3):167–79.PubMedGoogle Scholar
  144. 144.
    Gavin PD, Prescott M, Devenish RJ. F1F0-ATP synthase complex interactions in vivo can occur in the absence of the dimer specific subunit e. J Bioenerg Biomembr. 2005;37(2):55–66.PubMedCrossRefGoogle Scholar
  145. 145.
    Rudolf R, Mongillo M, Magalhaes PJ, Pozzan T. In vivo monitoring of Ca(2+) uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol. 2004;166(4):527–36.PubMedCrossRefGoogle Scholar
  146. 146.
    Chang WH, Chiu MT, Chen CY, et al. Zernike phase plate cryoelectron microscopy facilitates single particle analysis of unstained asymmetric protein complexes. Structure. 2010;18(1):17–27.PubMedCrossRefGoogle Scholar
  147. 147.
    Ruiz-Pesini E, Lott MT, Procaccio V, et al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 2007;35(Database issue):D823–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Montoya J, Lopez-Gallardo E, Diez-Sanchez C, Lopez-Perez MJ, Ruiz-Pesini E. 20 years of human mtDNA pathologic point mutations: carefully reading the pathogenicity criteria. Biochim Biophys Acta. 2009;1787(5):476–83.PubMedCrossRefGoogle Scholar
  149. 149.
    Wong LJ. Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev. 2010;16(2):154–62.PubMedCrossRefGoogle Scholar
  150. 150.
    Wenz T, Williams SL, Bacman SR, Moraes CT. Emerging therapeutic approaches to mitochondrial diseases. Dev Disabil Res Rev. 2010;16(2):219–29.PubMedCrossRefGoogle Scholar
  151. 151.
    Vasta V, Ng SB, Turner EH, Shendure J, Hahn SH. Next generation sequence analysis for mitochondrial disorders. Genome Med. 2009;1(10):100.PubMedCrossRefGoogle Scholar
  152. 152.
    Hamaoka T, Iwane H, Shimomitsu T, et al. Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. J Appl Physiol. 1996;81(3):1410–7.PubMedGoogle Scholar
  153. 153.
    Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjaer M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports. 2001;11(4):213–22.PubMedCrossRefGoogle Scholar
  154. 154.
    Lai N, Zhou H, Saidel GM, et al. Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy. J Appl Physiol. 2009;106(6):1858–74.PubMedCrossRefGoogle Scholar
  155. 155.
    Marcinek DJ, Schenkman KA, Ciesielski WA, Conley KE. Mitochondrial coupling in vivo in mouse skeletal muscle. Am J Physiol Cell Physiol. 2004;286(2):C457–63.PubMedCrossRefGoogle Scholar
  156. 156.
    Amara CE, Shankland EG, Jubrias SA, Marcinek DJ, Kushmerick MJ, Conley KE. Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc Natl Acad Sci USA. 2007;104(3):1057–62.PubMedCrossRefGoogle Scholar
  157. 157.
    Jaleel A, Short KR, Asmann YW, et al. In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. Am J Physiol Endocrinol Metab. 2008;295(5):E1255–68.PubMedCrossRefGoogle Scholar
  158. 158.
    Gordus A, MacBeath G. Circumventing the problems caused by protein diversity in microarrays: implications for protein interaction networks. J Am Chem Soc. 2006;128(42):13668–9.PubMedCrossRefGoogle Scholar
  159. 159.
    He M, Stoevesandt O, Palmer EA, Khan F, Ericsson O, Taussig MJ. Printing protein arrays from DNA arrays. Nat Methods. 2008;5(2):175–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • José Marín-García
    • 1
  1. 1.The Molecular Cardiology and Neuromuscular InstituteHighland ParkUSA

Personalised recommendations