Skip to main content

Mitochondria in the Aging Heart

  • Chapter
  • First Online:
Book cover Mitochondria and Their Role in Cardiovascular Disease
  • 1789 Accesses

Abstract

Aging is associated with progressive impairment of a variety of vital functions, resulting in an increased vulnerability to environmental challenges and a growing risk of disease and death. Cardiac aging, in particular, reduces cardiac functional reserve and predisposes the heart to stress, serving as one of the major risk factors for cardiovascular diseases (e.g., left ventricular hypertrophy, fibrosis, diastolic dysfunction). Thus, aging contributes to increased cardiovascular mortality in the elderly. During the last two decades, several different molecular pathways involved in the aging process have been revealed, and mitochondria were pointed out as one of the key regulators of longevity. Aging of cardiac tissue is accompanied by accumulation of mitochondrial protein oxidation, increased mitochondrial DNA mutations, deterioration of the respiratory chain function, and changes in mitochondrial biogenesis. Respiratory chain-deficient cells are more susceptible to undergo apoptosis, and increased cell loss is likely to be associated with the age-associated mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115(5):e69–171.

    Article  PubMed  Google Scholar 

  2. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.

    PubMed  CAS  Google Scholar 

  3. Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med. 1990;8(6):523–39.

    Article  PubMed  CAS  Google Scholar 

  4. Hiona A, Leeuwenburgh C. The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol. 2008;43(1):24–33.

    Article  PubMed  CAS  Google Scholar 

  5. Kujoth GC, Leeuwenburgh C, Prolla TA. Mitochondrial DNA mutations and apoptosis in mammalian aging. Cancer Res. 2006;66(15):7386–9.

    Article  PubMed  CAS  Google Scholar 

  6. Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309(5733):481–4.

    Article  PubMed  CAS  Google Scholar 

  7. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–23.

    Article  PubMed  CAS  Google Scholar 

  8. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.

    Article  PubMed  CAS  Google Scholar 

  9. Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292(2):C670–86.

    Article  PubMed  CAS  Google Scholar 

  10. Ago T, Matsushima S, Kuroda J, Zablocki D, Kitazono T, Sadoshima J. The NADPH oxidase Nox4 and aging in the heart. Aging (Albany NY). 2010;2(12):1012–6.

    CAS  Google Scholar 

  11. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res. 2010;106(7):1253–64.

    Article  PubMed  CAS  Google Scholar 

  12. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA. 2010;107(35):15565–70.

    Article  PubMed  CAS  Google Scholar 

  13. Dai DF, Rabinovitch PS. Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends Cardiovasc Med. 2009;19(7):213–20.

    Article  PubMed  CAS  Google Scholar 

  14. Riobo NA, Clementi E, Melani M, et al. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem J. 2001;359(Pt 1):139–45.

    Article  PubMed  CAS  Google Scholar 

  15. Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA. Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem. 2003;278(39):37223–30.

    Article  PubMed  CAS  Google Scholar 

  16. Cassina AM, Hodara R, Souza JM, et al. Cytochrome c nitration by peroxynitrite. J Biol Chem. 2000;275(28):21409–15.

    Article  PubMed  CAS  Google Scholar 

  17. Castro L, Rodriguez M, Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem. 1994;269(47):29409–15.

    PubMed  CAS  Google Scholar 

  18. Schriner SE, Linford NJ, Martin GM, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308(5730):1909–11.

    Article  PubMed  CAS  Google Scholar 

  19. Dai DF, Santana LF, Vermulst M, et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation. 2009;119(21):2789–97.

    Article  PubMed  CAS  Google Scholar 

  20. Suh JH, Heath SH, Hagen TM. Two subpopulations of mitochondria in the aging rat heart display heterogenous levels of oxidative stress. Free Radic Biol Med. 2003;35(9):1064–72.

    Article  PubMed  CAS  Google Scholar 

  21. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C. Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J. 2005;19(3):419–21.

    PubMed  CAS  Google Scholar 

  22. Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand. 2004;182(4):321–31.

    Article  PubMed  CAS  Google Scholar 

  23. Lee CK, Allison DB, Brand J, Weindruch R, Prolla TA. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci USA. 2002;99(23):14988–93.

    Article  PubMed  CAS  Google Scholar 

  24. Kumaran S, Subathra M, Balu M, Panneerselvam C. Age-associated decreased activities of mitochondrial electron transport chain complexes in heart and skeletal muscle: role of L-carnitine. Chem Biol Interact. 2004;148(1–2):11–8.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez MI, Carretero M, Escames G, et al. Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic Res. 2007;41(1):15–24.

    Article  PubMed  CAS  Google Scholar 

  26. Kumaran S, Subathra M, Balu M, Panneerselvam C. Supplementation of l-carnitine improves mitochondrial enzymes in heart and skeletal muscle of aged rats. Exp Aging Res. 2005;31(1):55–67.

    Article  PubMed  CAS  Google Scholar 

  27. Yarian CS, Toroser D, Sohal RS. Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mech Ageing Dev. 2006;127(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  28. Phaneuf S, Leeuwenburgh C. Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Physiol Regul Integr Comp Physiol. 2002;282(2):R423–30.

    PubMed  CAS  Google Scholar 

  29. Preston CC, Oberlin AS, Holmuhamedov EL, et al. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev. 2008;129(6):304–12.

    Article  PubMed  CAS  Google Scholar 

  30. Davies SM, Poljak A, Duncan MW, Smythe GA, Murphy MP. Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic Biol Med. 2001;31(2):181–90.

    Article  PubMed  CAS  Google Scholar 

  31. Cocco T, Sgobbo P, Clemente M, et al. Tissue-specific changes of mitochondrial functions in aged rats: effect of a long-term dietary treatment with N-acetylcysteine. Free Radic Biol Med. 2005;38(6):796–805.

    Article  PubMed  CAS  Google Scholar 

  32. Choksi KB, Papaconstantinou J. Age-related alterations in oxidatively damaged proteins of mouse heart mitochondrial electron transport chain complexes. Free Radic Biol Med. 2008;44(10):1795–805.

    Article  PubMed  CAS  Google Scholar 

  33. Tatarkova Z, Kuka S, Racay P, et al. Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Physiol Res. 2011;60(2):281–9.

    PubMed  CAS  Google Scholar 

  34. Kwong LK, Sohal RS. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys. 2000;373(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  35. Leeuwenburgh C, Wagner P, Holloszy JO, Sohal RS, Heinecke JW. Caloric restriction attenuates dityrosine cross-linking of cardiac and skeletal muscle proteins in aging mice. Arch Biochem Biophys. 1997;346(1):74–80.

    Article  PubMed  CAS  Google Scholar 

  36. Babusikova E, Kaplan P, Lehotsky J, Jesenak M, Dobrota D. Oxidative modification of rat cardiac mitochondrial membranes and myofibrils by hydroxyl radicals. Gen Physiol Biophys. 2004;23(3):327–35.

    PubMed  CAS  Google Scholar 

  37. Chen J, Schenker S, Frosto TA, Henderson GI. Inhibition of cytochrome c oxidase activity by 4-hydroxynonenal (HNE). Role of HNE adduct formation with the enzyme subunits. Biochim Biophys Acta. 1998;1380(3):336–44.

    Article  PubMed  CAS  Google Scholar 

  38. Humphries KM, Szweda LI. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry. 1998;37(45):15835–41.

    Article  PubMed  CAS  Google Scholar 

  39. Kaplan P, Tatarkova Z, Racay P, Lehotsky J, Pavlikova M, Dobrota D. Oxidative modifications of cardiac mitochondria and inhibition of cytochrome c oxidase activity by 4-hydroxynonenal. Redox Rep. 2007;12(5):211–8.

    Article  PubMed  CAS  Google Scholar 

  40. Long J, Wang X, Gao H, et al. Malonaldehyde acts as a mitochondrial toxin: inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci. 2006;79(15):1466–72.

    Article  PubMed  CAS  Google Scholar 

  41. Gomez LA, Monette JS, Chavez JD, Maier CS, Hagen TM. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys. 2009;490(1):30–5.

    Article  PubMed  CAS  Google Scholar 

  42. Pepe S, Tsuchiya N, Lakatta EG, Hansford RG. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol. 1999;276(1 Pt 2):H149–58.

    PubMed  CAS  Google Scholar 

  43. McLennan PL, Abeywardena MY, Charnock JS. The influence of age and dietary fat in an animal model of sudden cardiac death. Aust N Z J Med. 1989;19(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  44. Pepe S, McLennan PL. Dietary fish oil confers direct anti­arrhythmic properties on the myocardium of rats. J Nutr. 1996;126(1):34–42.

    PubMed  CAS  Google Scholar 

  45. Pepe S, McLennan PL. Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation. 2002;105(19):2303–8.

    Article  PubMed  CAS  Google Scholar 

  46. Hallman M, Kankare P. Mitochondrial and microsomal phospholipid phosphorus metabolism during postnatal growth in rat heart and liver. Lipids. 1979;14(5):435–40.

    Article  PubMed  CAS  Google Scholar 

  47. Nagatomo T, Hattori K, Ikeda M, Shimada K. Lipid composition of sarcolemma, mitochondria and sarcoplasmic reticulum from newborn and adult rabbit cardiac muscle. Biochem Med. 1980;23(1):108–18.

    Article  PubMed  CAS  Google Scholar 

  48. McMurchie EJ, Raison JK. Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes. Biochim Biophys Acta. 1979;554(2):364–74.

    Article  PubMed  CAS  Google Scholar 

  49. Innis SM, Clandinin MT. Dynamic modulation of mitochondrial membrane physical properties and ATPase activity by diet lipid. Biochem J. 1981;198(1):167–75.

    PubMed  CAS  Google Scholar 

  50. Innis SM, Clandinin MT. Dynamic modulation of mitochondrial inner-membrane lipids in rat heart by dietary fat. Biochem J. 1981;193(1):155–67.

    PubMed  CAS  Google Scholar 

  51. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128.

    Article  PubMed  CAS  Google Scholar 

  52. Lucas DT, Szweda LI. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci USA. 1998;95(2):510–4.

    Article  PubMed  CAS  Google Scholar 

  53. Lucas DT, Szweda LI. Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-­ketoglutarate dehydrogenase. Proc Natl Acad Sci USA. 1999;96(12):6689–93.

    Article  PubMed  CAS  Google Scholar 

  54. Droge W. Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol. 2002;37(12):1333–45.

    Article  PubMed  CAS  Google Scholar 

  55. Quiles JL, Pamplona R, Ramirez-Tortosa MC, et al. Coenzyme Q addition to an n-6 PUFA-rich diet resembles benefits on age-related mitochondrial DNA deletion and oxidative stress of a MUFA-rich diet in rat heart. Mech Ageing Dev. 2010;131(1):38–47.

    Article  PubMed  CAS  Google Scholar 

  56. Vieira HL, Belzacq AS, Haouzi D, et al. The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene. 2001;20(32):4305–16.

    Article  PubMed  CAS  Google Scholar 

  57. Quiles JL, Martinez E, Ibanez S, et al. Ageing-related tissue-specific alterations in mitochondrial composition and function are modulated by dietary fat type in the rat. J Bioenerg Biomembr. 2002;34(6):517–24.

    Article  PubMed  CAS  Google Scholar 

  58. Quiles JL, Ochoa JJ, Ramirez-Tortosa C, et al. Dietary fat type (virgin olive vs. sunflower oils) affects age-related changes in DNA double-strand-breaks, antioxidant capacity and blood lipids in rats. Exp Gerontol. 2004;39(8):1189–98.

    Article  PubMed  CAS  Google Scholar 

  59. Quiles JL, Ochoa JJ, Ramirez-Tortosa MC, Huertas JR, Mataix J. Age-related mitochondrial DNA deletion in rat liver depends on dietary fat unsaturation. J Gerontol A Biol Sci Med Sci. 2006;61(2):107–14.

    Article  PubMed  Google Scholar 

  60. Ochoa JJ, Quiles JL, Ibanez S, et al. Aging-related oxidative stress depends on dietary lipid source in rat postmitotic tissues. J Bioenerg Biomembr. 2003;35(3):267–75.

    Article  PubMed  CAS  Google Scholar 

  61. Pamplona R, Barja G, Portero-Otin M. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci. 2002;959:475–90.

    Article  PubMed  CAS  Google Scholar 

  62. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev. 2007;87(4):1175–213.

    Article  PubMed  CAS  Google Scholar 

  63. Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium. 2009;45(6):643–50.

    Article  PubMed  CAS  Google Scholar 

  64. Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Prog Lipid Res. 2000;39(3):257–88.

    Article  PubMed  CAS  Google Scholar 

  65. Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008;65(16):2493–506.

    Article  PubMed  CAS  Google Scholar 

  66. Lesnefsky EJ, Stoll MS, Minkler PE, Hoppel CL. Separation and quantitation of phospholipids and lysophospholipids by high-performance liquid chromatography. Anal Biochem. 2000;285(2):246–54.

    Article  PubMed  CAS  Google Scholar 

  67. Lesnefsky EJ, Slabe TJ, Stoll MS, Minkler PE, Hoppel CL. Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol. 2001;280(6):H2770–8.

    PubMed  CAS  Google Scholar 

  68. Sevanian A, Wratten ML, McLeod LL, Kim E. Lipid peroxidation and phospholipase A2 activity in liposomes composed of unsaturated phospholipids: a structural basis for enzyme activation. Biochim Biophys Acta. 1988;961(3):316–27.

    Article  PubMed  CAS  Google Scholar 

  69. Iwase H, Sakurada K, Hatanaka K, Kobayashi M, Takatori T. Effect of cytochrome c on the linoleic acid-degrading activity of porcine leukocyte 12-lipoxygenase. Free Radic Biol Med. 2000;28(6):912–9.

    Article  PubMed  CAS  Google Scholar 

  70. Iwase H, Takatori T, Nagao M, et al. Formation of keto and hydroxy compounds of linoleic acid in submitochondrial particles of bovine heart. Free Radic Biol Med. 1998;24(9):1492–503.

    Article  PubMed  CAS  Google Scholar 

  71. Moghaddas S, Stoll MS, Minkler PE, Salomon RG, Hoppel CL, Lesnefsky EJ. Preservation of cardiolipin content during aging in rat heart interfibrillar mitochondria. J Gerontol A Biol Sci Med Sci. 2002;57(1):B22–8.

    Article  PubMed  Google Scholar 

  72. Lesnefsky EJ, Minkler P, Hoppel CL. Enhanced modification of cardiolipin during ischemia in the aged heart. J Mol Cell Cardiol. 2009;46(6):1008–15.

    Article  PubMed  CAS  Google Scholar 

  73. Petrosillo G, Moro N, Paradies V, Ruggiero FM, Paradies G. Increased susceptibility to Ca(2+)-induced permeability transition and to cytochrome c release in rat heart mitochondria with aging: effect of melatonin. J Pineal Res. 2010;48(4):340–6.

    Article  PubMed  CAS  Google Scholar 

  74. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Lett. 1997;406(1–2):136–8.

    Article  PubMed  CAS  Google Scholar 

  75. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations. FEBS Lett. 1998;424(3):155–8.

    Article  PubMed  CAS  Google Scholar 

  76. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA. 2002;99(3):1259–63.

    Article  PubMed  CAS  Google Scholar 

  77. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun. 1999;264(2):343–7.

    Article  PubMed  CAS  Google Scholar 

  78. Kagan VE, Tyurin VA, Jiang J, et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol. 2005;1(4):223–32.

    Article  PubMed  CAS  Google Scholar 

  79. Rytomaa M, Kinnunen PK. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J Biol Chem. 1994;269(3):1770–4.

    PubMed  CAS  Google Scholar 

  80. Salamon Z, Tollin G. Interaction of horse heart cytochrome c with lipid bilayer membranes: effects on redox potentials. J Bioenerg Biomembr. 1997;29(3):211–21.

    Article  PubMed  CAS  Google Scholar 

  81. Spooner PJ, Watts A. Cytochrome c interactions with cardiolipin in bilayers: a multinuclear magic-angle spinning NMR study. Biochemistry. 1992;31(41):10129–38.

    Article  PubMed  CAS  Google Scholar 

  82. Liu L, Azhar G, Gao W, Zhang X, Wei JY. Bcl-2 and Bax expression in adult rat hearts after coronary occlusion: age-associated differences. Am J Physiol. 1998;275(1 Pt 2):R315–22.

    PubMed  CAS  Google Scholar 

  83. Tani M, Suganuma Y, Hasegawa H, et al. Decrease in ischemic tolerance with aging in isolated perfused Fischer 344 rat hearts: relation to increases in intracellular Na+ after ischemia. J Mol Cell Cardiol. 1997;29(11):3081–9.

    Article  PubMed  CAS  Google Scholar 

  84. Frolkis VV, Frolkis RA, Mkhitarian LS, Fraifeld VE. Age-dependent effects of ischemia and reperfusion on cardiac function and Ca2+ transport in myocardium. Gerontology. 1991;37(5):233–9.

    Article  PubMed  CAS  Google Scholar 

  85. Ataka K, Chen D, Levitsky S, Jimenez E, Feinberg H. Effect of aging on intracellular Ca2+, pHi, and contractility during ischemia and reperfusion. Circulation. 1992;86(5 Suppl):II371–6.

    PubMed  CAS  Google Scholar 

  86. Azhar G, Gao W, Liu L, Wei JY. Ischemia-reperfusion in the adult mouse heart influence of age. Exp Gerontol. 1999;34(5):699–714.

    Article  PubMed  CAS  Google Scholar 

  87. Lesnefsky EJ, Lundergan CF, Hodgson JM, et al. Increased left ventricular dysfunction in elderly patients despite successful thrombolysis: the GUSTO-I angiographic experience. J Am Coll Cardiol. 1996;28(2):331–7.

    Article  PubMed  CAS  Google Scholar 

  88. Monette JS, Gomez LA, Moreau RF, Bemer BA, Taylor AW, Hagen TM. Characteristics of the rat cardiac sphingolipid pool in two mitochondrial subpopulations. Biochem Biophys Res Commun. 2010;398(2):272–7.

    Article  PubMed  CAS  Google Scholar 

  89. Monette JS, Gomez LA, Moreau RF, et al. (R)-alpha-Lipoic acid treatment restores ceramide balance in aging rat cardiac mitochondria. Pharmacol Res. 2011;63(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  90. Futerman AH, Hannun YA. The complex life of simple sphingolipids. EMBO Rep. 2004;5(8):777–82.

    Article  PubMed  CAS  Google Scholar 

  91. Lang PA, Schenck M, Nicolay JP, et al. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med. 2007;13(2):164–70.

    Article  PubMed  CAS  Google Scholar 

  92. Birbes H, El Bawab S, Obeid LM, Hannun YA. Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv Enzyme Regul. 2002;42:113–29.

    Article  PubMed  CAS  Google Scholar 

  93. Gudz TI, Tserng KY, Hoppel CL. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem. 1997;272(39):24154–8.

    Article  PubMed  CAS  Google Scholar 

  94. Di Paola M, Cocco T, Lorusso M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry. 2000;39(22):6660–8.

    Article  PubMed  CAS  Google Scholar 

  95. Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997;272(17):11369–77.

    Article  PubMed  CAS  Google Scholar 

  96. Rutkute K, Asmis RH, Nikolova-Karakashian MN. Regulation of neutral sphingomyelinase-2 by GSH: a new insight to the role of oxidative stress in aging-associated inflammation. J Lipid Res. 2007;48(11):2443–52.

    Article  PubMed  CAS  Google Scholar 

  97. Liu B, Hannun YA. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem. 1997;272(26):16281–7.

    Article  PubMed  CAS  Google Scholar 

  98. Suh JH, Wang H, Liu RM, Liu J, Hagen TM. (R)-alpha-lipoic acid reverses the age-related loss in GSH redox status in post-mitotic tissues: evidence for increased cysteine requirement for GSH synthesis. Arch Biochem Biophys. 2004;423(1):126–35.

    Article  PubMed  CAS  Google Scholar 

  99. Cortopassi GA, Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 1990;18(23):6927–33.

    Article  PubMed  CAS  Google Scholar 

  100. Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res. 1992;275(3–6):169–80.

    PubMed  CAS  Google Scholar 

  101. Sugiyama S, Hattori K, Hayakawa M, Ozawa T. Quantitative analysis of age-associated accumulation of mitochondrial DNA with deletion in human hearts. Biochem Biophys Res Commun. 1991;180(2):894–9.

    Article  PubMed  CAS  Google Scholar 

  102. Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990;61(6):931–7.

    Article  PubMed  CAS  Google Scholar 

  103. Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348(6302):651–3.

    Article  PubMed  CAS  Google Scholar 

  104. Vermulst M, Wanagat J, Kujoth GC, et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet. 2008;40(4):392–4.

    Article  PubMed  CAS  Google Scholar 

  105. Edgar D, Shabalina I, Camara Y, et al. Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab. 2009;10(2):131–8.

    Article  PubMed  CAS  Google Scholar 

  106. Zhang C, Bills M, Quigley A, Maxwell RJ, Linnane AW, Nagley P. Varied prevalence of age-associated mitochondrial DNA deletions in different species and tissues: a comparison between human and rat. Biochem Biophys Res Commun. 1997;230(3):630–5.

    Article  PubMed  CAS  Google Scholar 

  107. Corral-Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC. Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. JAMA. 1991;266(13):1812–6.

    Article  PubMed  CAS  Google Scholar 

  108. Muller-Hocker J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart–an age-related phenomenon. A histochemical ultracytochemical study. Am J Pathol. 1989;134(5):1167–73.

    PubMed  CAS  Google Scholar 

  109. Trifunovic A, Larsson NG. Mitochondrial dysfunction as a cause of ageing. J Intern Med. 2008;263(2):167–78.

    Article  PubMed  CAS  Google Scholar 

  110. Zheng W, Khrapko K, Coller HA, Thilly WG, Copeland WC. Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat Res. 2006;599(1–2):11–20.

    PubMed  CAS  Google Scholar 

  111. Stuart JA, Bourque BM, de Souza-Pinto NC, Bohr VA. No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic Biol Med. 2005;38(6):737–45.

    Article  PubMed  CAS  Google Scholar 

  112. Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci USA. 2001;98(7):4038–43.

    Article  PubMed  CAS  Google Scholar 

  113. Trifunovic A, Hansson A, Wredenberg A, et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA. 2005;102(50):17993–8.

    Article  PubMed  CAS  Google Scholar 

  114. Anversa P, Hiler B, Ricci R, Guideri G, Olivetti G. Myocyte cell loss and myocyte hypertrophy in the aging rat heart. J Am Coll Cardiol. 1986;8(6):1441–8.

    Article  PubMed  CAS  Google Scholar 

  115. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res. 1990;67(4):871–85.

    Article  PubMed  CAS  Google Scholar 

  116. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res. 1991;68(6):1560–8.

    Article  PubMed  CAS  Google Scholar 

  117. Wanagat J, Wolff MR, Aiken JM. Age-associated changes in function, structure and mitochondrial genetic and enzymatic abnormalities in the Fischer 344 x Brown Norway F(1) hybrid rat heart. J Mol Cell Cardiol. 2002;34(1):17–28.

    Article  PubMed  CAS  Google Scholar 

  118. Kajstura J, Cheng W, Sarangarajan R, et al. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol. 1996;271(3 Pt 2):H1215–28.

    PubMed  CAS  Google Scholar 

  119. Ljubicic V, Menzies KJ, Hood DA. Mitochondrial dysfunction is associated with a pro-apoptotic cellular environment in senescent cardiac muscle. Mech Ageing Dev. 2010;131(2):79–88.

    Article  PubMed  CAS  Google Scholar 

  120. Juhaszova M, Rabuel C, Zorov DB, Lakatta EG, Sollott SJ. Protection in the aged heart: preventing the heart-break of old age? Cardiovasc Res. 2005;66(2):233–44.

    Article  PubMed  CAS  Google Scholar 

  121. Packer MA, Scarlett JL, Martin SW, Murphy MP. Induction of the mitochondrial permeability transition by peroxynitrite. Biochem Soc Trans. 1997;25(3):909–14.

    PubMed  CAS  Google Scholar 

  122. Petrosillo G, Casanova G, Matera M, Ruggiero FM, Paradies G. Interaction of peroxidized cardiolipin with rat-heart mitochondrial membranes: induction of permeability transition and cytochrome c release. FEBS Lett. 2006;580(27):6311–6.

    Article  PubMed  CAS  Google Scholar 

  123. Petrosillo G, Moro N, Ruggiero FM, Paradies G. Melatonin inhibits cardiolipin peroxidation in mitochondria and prevents the mitochondrial permeability transition and cytochrome c release. Free Radic Biol Med. 2009;47(7):969–74.

    Article  PubMed  CAS  Google Scholar 

  124. Hofer T, Servais S, Seo AY, et al. Bioenergetics and permeability transition pore opening in heart subsarcolemmal and interfibrillar mitochondria: effects of aging and lifelong calorie restriction. Mech Ageing Dev. 2009;130(5):297–307.

    Article  PubMed  CAS  Google Scholar 

  125. Primeau AJ, Adhihetty PJ, Hood DA. Apoptosis in heart and skeletal muscle. Can J Appl Physiol. 2002;27(4):349–95.

    Article  PubMed  CAS  Google Scholar 

  126. Gustafsson AB, Gottlieb RA. Heart mitochondria: gates of life and death. Cardiovasc Res. 2008;77(2):334–43.

    Article  PubMed  CAS  Google Scholar 

  127. Tuominen EK, Wallace CJ, Kinnunen PK. Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage. J Biol Chem. 2002;277(11):8822–6.

    Article  PubMed  CAS  Google Scholar 

  128. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett. 2001;509(3):435–8.

    Article  PubMed  CAS  Google Scholar 

  129. Kagan VE, Borisenko GG, Tyurina YY, et al. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med. 2004;37(12):1963–85.

    Article  PubMed  CAS  Google Scholar 

  130. Grazette LP, Boecker W, Matsui T, et al. Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol. 2004;44(11):2231–8.

    Article  PubMed  CAS  Google Scholar 

  131. Rohrbach S, Muller-Werdan U, Werdan K, Koch S, Gellerich NF, Holtz J. Apoptosis-modulating interaction of the neuregulin/erbB pathway with anthracyclines in regulating Bcl-xS and Bcl-xL in cardiomyocytes. J Mol Cell Cardiol. 2005;38(3):485–93.

    Article  PubMed  CAS  Google Scholar 

  132. Rohrbach S, Niemann B, Abushouk AM, Holtz J. Caloric restriction and mitochondrial function in the ageing myocardium. Exp Gerontol. 2006;41(5):525–31.

    Article  PubMed  CAS  Google Scholar 

  133. Gross A, Jockel J, Wei MC, Korsmeyer SJ. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 1998;17(14):3878–85.

    Article  PubMed  CAS  Google Scholar 

  134. Saikumar P, Dong Z, Patel Y, et al. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene. 1998;17(26):3401–15.

    Article  PubMed  CAS  Google Scholar 

  135. Murphy KM, Streips UN, Lock RB. Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene. 1999;18(44):5991–9.

    Article  PubMed  CAS  Google Scholar 

  136. Karbowski M, Lee YJ, Gaume B, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol. 2002;159(6):931–8.

    Article  PubMed  CAS  Google Scholar 

  137. Arnoult D, Rismanchi N, Grodet A, et al. Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr Biol. 2005;15(23):2112–8.

    Article  PubMed  CAS  Google Scholar 

  138. Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem. 2005;280(26):25060–70.

    Article  PubMed  CAS  Google Scholar 

  139. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ. Role of Bax and Bak in mitochondrial morphogenesis. Nature. 2006;443(7112):658–62.

    Article  PubMed  CAS  Google Scholar 

  140. Sheridan C, Delivani P, Cullen SP, Martin SJ. Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell. 2008;31(4):570–85.

    Article  PubMed  CAS  Google Scholar 

  141. Migliaccio E, Giorgio M, Mele S, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402(6759):309–13.

    Article  PubMed  CAS  Google Scholar 

  142. Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122(2):221–33.

    Article  PubMed  CAS  Google Scholar 

  143. Orsini F, Moroni M, Contursi C, et al. Regulatory effects of the mitochondrial energetic status on mitochondrial p66Shc. Biol Chem. 2006;387(10–11):1405–10.

    PubMed  CAS  Google Scholar 

  144. Pinton P, Rimessi A, Marchi S, et al. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science. 2007;315(5812):659–63.

    Article  PubMed  CAS  Google Scholar 

  145. Graiani G, Lagrasta C, Migliaccio E, et al. Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage. Hypertension. 2005;46(2):433–40.

    Article  PubMed  CAS  Google Scholar 

  146. Bianchi G, Di Giulio C, Rapino C, Rapino M, Antonucci A, Cataldi A. p53 and p66 proteins compete for hypoxia-inducible factor 1 alpha stabilization in young and old rat hearts exposed to intermittent hypoxia. Gerontology. 2006;52(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  147. Obreztchikova M, Elouardighi H, Ho M, Wilson BA, Gertsberg Z, Steinberg SF. Distinct signaling functions for Shc isoforms in the heart. J Biol Chem. 2006;281(29):20197–204.

    Article  PubMed  CAS  Google Scholar 

  148. Malhotra A, Vashistha H, Yadav VS, et al. Inhibition of p66ShcA redox activity in cardiac muscle cells attenuates hyperglycemia-induced oxidative stress and apoptosis. Am J Physiol Heart Circ Physiol. 2009;296(2):H380–8.

    Article  PubMed  CAS  Google Scholar 

  149. Craig EE, Hood DA. Influence of aging on protein import into cardiac mitochondria. Am J Physiol. 1997;272(6 Pt 2):H2983–8.

    PubMed  CAS  Google Scholar 

  150. Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515–25.

    Article  PubMed  CAS  Google Scholar 

  151. Olichon A, Baricault L, Gas N, et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003;278(10):7743–6.

    Article  PubMed  CAS  Google Scholar 

  152. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell. 2004;15(11):5001–11.

    Article  PubMed  CAS  Google Scholar 

  153. Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem. 2005;280(42):35742–50.

    Article  PubMed  CAS  Google Scholar 

  154. Frezza C, Cipolat S, Martins de Brito O, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126(1):177–89.

    Article  PubMed  CAS  Google Scholar 

  155. Estaquier J, Arnoult D. Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ. 2007;14(6):1086–94.

    Article  PubMed  CAS  Google Scholar 

  156. Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 2005;6(8):657–63.

    Article  PubMed  CAS  Google Scholar 

  157. Iemitsu M, Miyauchi T, Maeda S, et al. Aging-induced decrease in the PPAR-alpha level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol. 2002;283(5):H1750–60.

    PubMed  CAS  Google Scholar 

  158. Dinardo MM, Musicco C, Fracasso F, et al. Acetylation and level of mitochondrial transcription factor A in several organs of young and old rats. Biochem Biophys Res Commun. 2003;301(1):187–91.

    Article  PubMed  CAS  Google Scholar 

  159. Masuyama M, Iida R, Takatsuka H, Yasuda T, Matsuki T. Quantitative change in mitochondrial DNA content in various mouse tissues during aging. Biochim Biophys Acta. 2005;1723(1–3):302–8.

    Article  PubMed  CAS  Google Scholar 

  160. LeMoine CM, McClelland GB, Lyons CN, Mathieu-Costello O, Moyes CD. Control of mitochondrial gene expression in the aging rat myocardium. Biochem Cell Biol. 2006;84(2):191–8.

    Article  PubMed  CAS  Google Scholar 

  161. Jian B, Yang S, Chen D, Chaudry I, Raju R. Influence of aging and hemorrhage injury on Sirt1 expression: possible role of myc-Sirt1 regulation in mitochondrial function. Biochim Biophys Acta. 2011;1812(11):1446–51.

    Article  PubMed  CAS  Google Scholar 

  162. Bodyak N, Kang PM, Hiromura M, et al. Gene expression profiling of the aging mouse cardiac myocytes. Nucleic Acids Res. 2002;30(17):3788–94.

    Article  PubMed  CAS  Google Scholar 

  163. Andreu AL, Arbos MA, Perez-Martos A, et al. Reduced mitochondrial DNA transcription in senescent rat heart. Biochem Biophys Res Commun. 1998;252(3):577–81.

    Article  PubMed  CAS  Google Scholar 

  164. Gadaleta MN, Petruzzella V, Renis M, Fracasso F, Cantatore P. Reduced transcription of mitochondrial DNA in the senescent rat. Tissue dependence and effect of L-carnitine. Eur J Biochem. 1990;187(3):501–6.

    Article  PubMed  CAS  Google Scholar 

  165. Hudson EK, Tsuchiya N, Hansford RG. Age-associated changes in mitochondrial mRNA expression and translation in the Wistar rat heart. Mech Ageing Dev. 1998;103(2):179–93.

    Article  PubMed  CAS  Google Scholar 

  166. Barazzoni R, Short KR, Nair KS. Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem. 2000;275(5):3343–7.

    Article  PubMed  CAS  Google Scholar 

  167. Goyns MH, Charlton MA, Dunford JE, et al. Differential display analysis of gene expression indicates that age-related changes are restricted to a small cohort of genes. Mech Ageing Dev. 1998;101(1–2):73–90.

    Article  PubMed  CAS  Google Scholar 

  168. Gadaleta MN, Rainaldi G, Lezza AM, Milella F, Fracasso F, Cantatore P. Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats. Mutat Res. 1992;275(3–6):181–93.

    PubMed  CAS  Google Scholar 

  169. Frahm T, Mohamed SA, Bruse P, Gemund C, Oehmichen M, Meissner C. Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech Ageing Dev. 2005;126(11):1192–200.

    Article  PubMed  CAS  Google Scholar 

  170. Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003;31(11):e61.

    Article  PubMed  CAS  Google Scholar 

  171. Hoppel CL, Moghaddas S, Lesnefsky EJ. Interfibrillar cardiac mitochondrial complex III defects in the aging rat heart. Biogerontology. 2002;3(1–2):41–4.

    Article  PubMed  CAS  Google Scholar 

  172. Lesnefsky EJ, Gudz TI, Moghaddas S, et al. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. J Mol Cell Cardiol. 2001;33(1):37–47.

    Article  PubMed  CAS  Google Scholar 

  173. Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys. 1999;372(2):399–407.

    Article  PubMed  CAS  Google Scholar 

  174. Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.

    Article  PubMed  CAS  Google Scholar 

  175. Crane JD, Devries MC, Safdar A, Hamadeh MJ, Tarnopolsky MA. The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. J Gerontol A Biol Sci Med Sci. 2010;65(2):119–28.

    Article  PubMed  Google Scholar 

  176. Cartoni R, Leger B, Hock MB, et al. Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol. 2005;567(Pt 1):349–58.

    Article  PubMed  CAS  Google Scholar 

  177. Soriano FX, Liesa M, Bach D, Chan DC, Palacin M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes. 2006;55(6):1783–91.

    Article  PubMed  CAS  Google Scholar 

  178. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  PubMed  CAS  Google Scholar 

  179. Anversa P, Rota M, Urbanek K, et al. Myocardial aging—a stem cell problem. Basic Res Cardiol. 2005;100(6):482–93.

    Article  PubMed  CAS  Google Scholar 

  180. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60.

    Article  PubMed  CAS  Google Scholar 

  181. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52.

    Article  PubMed  CAS  Google Scholar 

  182. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.

    Article  Google Scholar 

  183. Passos JF, von Zglinicki T. Mitochondria, telomeres and cell senescence. Exp Gerontol. 2005;40(6):466–72.

    Article  PubMed  CAS  Google Scholar 

  184. Saretzki G, Murphy MP, von Zglinicki T. MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell. 2003;2(2):141–3.

    Article  PubMed  CAS  Google Scholar 

  185. Liu L, Trimarchi JR, Smith PJ, Keefe DL. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell. 2002;1(1):40–6.

    Article  PubMed  CAS  Google Scholar 

  186. Jahangir A, Ozcan C, Holmuhamedov EL, Terzic A. Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener. Mech Ageing Dev. 2001;122(10):1073–86.

    Article  PubMed  CAS  Google Scholar 

  187. Vitorica J, Cano J, Satrustegui J, Machado A. Comparison between developmental and senescent changes in enzyme activities linked to energy metabolism in rat heart. Mech Ageing Dev. 1981;16(2):105–16.

    Article  PubMed  CAS  Google Scholar 

  188. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011;476(7360):336–40.

    Article  PubMed  CAS  Google Scholar 

  189. Di Lisa F, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res. 2005;66(2):222–32.

    Article  PubMed  CAS  Google Scholar 

  190. Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardio­protection. Biochim Biophys Acta. 2003;1606(1–3):1–21.

    PubMed  CAS  Google Scholar 

  191. Lesnefsky EJ, Gallo DS, Ye J, Whittingham TS, Lust WD. Aging increases ischemia-reperfusion injury in the isolated, buffer-­perfused heart. J Lab Clin Med. 1994;124(6):843–51.

    PubMed  CAS  Google Scholar 

  192. Lee TM, Su SF, Chou TF, Lee YT, Tsai CH. Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation. 2002;105(3):334–40.

    Article  PubMed  CAS  Google Scholar 

  193. Schulman D, Latchman DS, Yellon DM. Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-­reperfusion injury. Am J Physiol Heart Circ Physiol. 2001;281(4):H1630–6.

    PubMed  CAS  Google Scholar 

  194. Fenton RA, Dickson EW, Meyer TE, Dobson Jr JG. Aging reduces the cardioprotective effect of ischemic preconditioning in the rat heart. J Mol Cell Cardiol. 2000;32(7):1371–5.

    Article  PubMed  CAS  Google Scholar 

  195. Goodell S, Cortopassi G. Analysis of oxygen consumption and mitochondrial permeability with age in mice. Mech Ageing Dev. 1998;101(3):245–56.

    Article  PubMed  CAS  Google Scholar 

  196. Kanski J, Behring A, Pelling J, Schoneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol Heart Circ Physiol. 2005;288(1):H371–81.

    Article  PubMed  CAS  Google Scholar 

  197. Madesh M, Hajnoczky G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol. 2001;155(6):1003–15.

    Article  PubMed  CAS  Google Scholar 

  198. Nohl H, Kramer R. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech Ageing Dev. 1980;14(1–2):137–44.

    Article  PubMed  CAS  Google Scholar 

  199. Crompton M. Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol. 2000;529(Pt 1):11–21.

    Article  PubMed  CAS  Google Scholar 

  200. Chen JJ, Bertrand H, Yu BP. Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic Biol Med. 1995;19(5):583–90.

    Article  PubMed  CAS  Google Scholar 

  201. Kristal BS, Park BK, Yu BP. 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J Biol Chem. 1996;271(11):6033–8.

    Article  PubMed  CAS  Google Scholar 

  202. Chorna SV, Dosenko V, Strutyns’ka NA, Vavilova HL, Sahach VF. Increased expression of voltage-dependent anion channel and adenine nucleotide translocase and the sensitivity of calcium-induced mitochondrial permeability transition opening pore in the old rat heart. Fiziol Zh. 2010;56(4):19–25.

    PubMed  CAS  Google Scholar 

  203. Woodfield K, Ruck A, Brdiczka D, Halestrap AP. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998;336(Pt 2):287–90.

    PubMed  CAS  Google Scholar 

  204. Liu L, Zhu J, Brink PR, Glass PS, Rebecchi MJ. Age-associated differences in the inhibition of mitochondrial permeability transition pore opening by cyclosporine A. Acta Anaesthesiol Scand. 2011;55(5):622–30.

    Article  PubMed  CAS  Google Scholar 

  205. Zhu J, Rebecchi MJ, Tan M, Glass PS, Brink PR, Liu L. Age-associated differences in activation of Akt/GSK-3beta signaling pathways and inhibition of mitochondrial permeability transition pore opening in the rat heart. J Gerontol A Biol Sci Med Sci. 2010;65(6):611–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marín-García, J. (2013). Mitochondria in the Aging Heart. In: Mitochondria and Their Role in Cardiovascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4599-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4599-9_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4598-2

  • Online ISBN: 978-1-4614-4599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics