Skip to main content

CMOS Ultra-High-Speed Time-Interleaved ADCs

  • Chapter
  • First Online:
Nyquist AD Converters, Sensor Interfaces, and Robustness

Abstract

CMOS technologies have been able to fabricate ultra-high-speed time-interleaved (TI) ADCs that achieve a sampling rate over 10 GS/s. The TI architecture relaxes the speed requirement for each A/D channel. It also introduces inter-channel mismatches that cause conversion errors. These errors can be reduced by calibration. An 8-channel 6-bit 16-GS/s TI ADC is presented to illustrate several circuit design and calibration techniques. Each A/D channel is a 6-bit flash ADC. The low-power comparators in the flash ADC are latches with offset calibration. A delay-locked loop generates the 8-phase sampling clocks for the TI ADC. Timing-skew calibration is used to ensure uniform sampling intervals. Both the offset calibration and the timing-skew calibration run continuously in the background. This TI ADC was fabricated using a 65 nm CMOS technology. At 16 GS/s sampling rate, this chip consumes 435 mW from a 1.5V supply. It achieves a signal-to-distortion-plus-noise ratio (SNDR) of 30.8 dB. The ADC active area is \( 0.93 \times 1.58{\text{ m}}{{\text{m}}^2} \)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poulton K, Neff R, Setterberg B et al (2003) A 20 GS/s 8b ADC with a 1 MB memory in 0.18 μm CMOS. In: International solid-state circuits conference, pp 318–319

    Google Scholar 

  2. Schvan P et al (2008) A 24 GS/s 6b ADC in 90 nm CMOS. In: International solid-state circuits conference, pp 544–545

    Google Scholar 

  3. Nazemi A et al (2008) A 10.3 GS/s 6 bit (5.1 ENOB at Nyquist) time-interleaved pipelined ADC using open-loop amplifiers and digital calibration in 90 nm CMOS. In: Symposium on VLSI circuits, Digest of technical papers, pp 18–19

    Google Scholar 

  4. Greshishchev Y et al (2010) A 40 GS/s 6b ADC in 65 nm CMOS. In: International solid-state circuits conference, pp 390–391, Feb 2010

    Google Scholar 

  5. El-Chammas M, Murmann B (2011) A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration. IEEE J Solid-St Circ 46:838–847

    Article  Google Scholar 

  6. Huang C-C, Wang C-Y, Wu J-T (2011) A CMOS 6-bit 16-GS/s time-interleaved ADC using digital background calibration techniques. IEEE J Solid-St Circ 46:848–858

    Article  Google Scholar 

  7. Yu W et al (1999) Distortion analysis of MOS track-and-hold sampling mixers using time-varying Volterra series. IEEE Trans Circuits Syst-II 46:101–113

    Article  Google Scholar 

  8. Dessouky M et al (1999) Input switch configuration suitable for rail-to-rail operation. IEE Electron Lett 35:8–9

    Article  Google Scholar 

  9. Abo A et al (1999) A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline ADC. IEEE J Solid-St Circ 34:599–606

    Article  Google Scholar 

  10. Kurosawa N et al (2001) Explicit analysis of channel mismatch effect in time-interleaved ADC systems. IEEE Trans Circuits Syst-1 48:261–271

    Article  Google Scholar 

  11. Vogel C (2005) The impact of combined channel mismatch effects in time-interleaved ADCs. IEEE Trans Instrum Meas 54:415–427

    Article  Google Scholar 

  12. Sin S-W et al (2008) Statistical spectra and distortion analysis of time-interleaved sampling bandwidth mismatch. IEEE Trans Circuits Syst-2 55:648–652

    Article  MathSciNet  Google Scholar 

  13. El-Chammas M, Murmann B (2009) General analysis on the impact of phase-skew in time-interleaved ADCs. IEEE Trans Circuits Syst-1 56:902–910

    Article  MathSciNet  Google Scholar 

  14. Elbornsson J, Gustafsson F, Eklund J (2004) Blind adaptive equalization of mismatch errors in a time-interleaved A/D converter system. IEEE Trans Circuits Syst-1 51:151–158

    Article  Google Scholar 

  15. Prendergast R, Levy B, Hurst P (2004) Reconstruction of band-limited periodic nonuniformly sampled signals through multirate filter banks. IEEE Trans Circuits Syst-1 51:1612–1622

    Article  MathSciNet  Google Scholar 

  16. Seo M, Rodwell M, Madhow U (2005) Comprehensive digital correction of mismatch errors for a 400-Msamples/s 80-dB SFDR time-interleaved analog-to-digital converter. IEEE Trans Microw Theory Tech 53:1072–1082

    Article  Google Scholar 

  17. Tsai T, Hurst P, Lewis S (2005) Bandwidth mismatch and its correction in time-interleaved analog-to-digital converters. IEEE Trans Circuits Syst-2 53:1133–1137

    Article  Google Scholar 

  18. Huang S, Levy B (2007) Blind calibration of timing offsets for four-channel time-interleaved ADCs. IEEE Trans Circuits Syst-I 54:863–876

    Article  Google Scholar 

  19. Divi V, Wornell G (2009) Blind calibration of timing skew in time-interleaved analog-to-digital converters. IEEE J Sel Topics Signal Process 3:509–522

    Article  Google Scholar 

  20. Marelli D, Mahata K, Fu M (2009) Linear LMS compensation for timing mismatch in time-interleaved ADCs. IEEE Trans Circuits Syst-1 56:2476–2486

    Article  MathSciNet  Google Scholar 

  21. Jamal S, Fu D, Singh M, Hurst P, Lewis S (2004) Calibration of sample-time error in a two-channel time-interleaved analog-to-digital converter. IEEE Trans Circuits Syst-1 51:130–139

    Article  Google Scholar 

  22. Haftbaradaran A, Martin K (2008) A background sample-time error calibration technique using random data for wide-band high-resolution time-interleaved ADCs. IEEE Trans Circuits Syst-2 55:234–238

    Article  Google Scholar 

  23. Camarero D, Kalaia K, Naviner J, Loumeau P (2008) Mixed-signal clock-skew calibration technique for time-interleaved ADCs. IEEE Trans Circuits Syst-I 55:3676–3687

    Article  MathSciNet  Google Scholar 

  24. Saleem S, Vogel C (2011) Adaptive blind background calibration of polynomial-represented frequency response mismatches in a two-channel time-interleaved ADC. IEEE Trans Circuits Syst-1 58:1300–1310

    Article  MathSciNet  Google Scholar 

  25. McNeill JA, David C, Coln M, Croughwell R (2009) Split ADC calibration for all-digital correction of time-interleaved ADC errors. IEEE Trans Circuits Syst-II 56(5):344–348

    Article  Google Scholar 

  26. Sandner C, Clara M, Santner A, Hartig T, Kutter F (2005) A 6-bit 1.2-GS/s low-power flash-ADC in 0.13-um digital CMOS. IEEE J Solid-St Circ 40:1499–1505

    Article  Google Scholar 

  27. Ismail A, Elmasry M (2008) A 6-bit 1.6-GS/s low-power wideband flash ADC converter in 0.13-um CMOS technology. IEEE J Solid-St Circ 43:1982–1990

    Article  Google Scholar 

  28. Van der Plas G, Decoutere S, Donnay S (2006) A 0.16 pJ/conversion-step 2.5 mW 1.25 GS/s 4b ADC in a 90 nm digital CMOS process. In: International solid-state circuits conference, pp 2310–2312

    Google Scholar 

  29. Huang C-C, Wu J-T (2005) A background comparator calibration technique for flash analog-to-digital converters. IEEE Trans Circuits Syst-I 52:1732–1740

    Article  Google Scholar 

  30. Wang C-Y, Wu J-T (2009) A multiphase timing-skew calibration technique using zero-crossing detection. IEEE Trans Circuits Syst-I 56:1102–1114

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Taiwan Semiconductor Manufacturing Company (TSMC), Hsin-Chu, Taiwan, for chip fabrication. This research was supported by the National Science Council of Taiwan, R.O.C., and by the MediaTek Research Center at National Chiao-Tung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieh-Tsorng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, JT., Huang, CC., Wang, CY. (2013). CMOS Ultra-High-Speed Time-Interleaved ADCs. In: van Roermund, A., Baschirotto, A., Steyaert, M. (eds) Nyquist AD Converters, Sensor Interfaces, and Robustness. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4587-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4587-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4586-9

  • Online ISBN: 978-1-4614-4587-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics