Front End Electronics for Solid State Detectors in Today and Future High Energy Physics Experiments



We present circuit design techniques currently employed for the development of analog front end electronics dedicated to the readout of radiation semiconductor sensors used in tracking detectors for High Energy Physics (HEP) experiments, where the channel counts can be very large. It is shown that for very large numbers of channels, power consumption turns out to be a critical issue in the design of the analog front end. In general, Signal-to-Noise-Ratio (SNR) and speed requirements have to be optimized together with the permitted power consumption. A selection of amplifier circuits are discussed in the context of the evolution of the CMOS technologies that impose the adaptation of design techniques to the new properties of deep scaled MOS transistors.


Noise Contribution Input Transistor Open Loop Gain Power Supply Rejection Ratio Gain Bandwidth Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anghinolfi F et al (2004) NINO: an ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber. Nucl Instrum Method A 533:183CrossRefGoogle Scholar
  2. 2.
    Turchetta R et al (2003) Monolithic active pixel sensors (MAPS) in a VLSI CMOS technology. Nucl Instrum Method A 501:251CrossRefGoogle Scholar
  3. 3.
    Kaplon J (2004) Fast bipolar and CMOS rad-hard front end electronics for silicon strip detectors. Ph.D. thesis, 2004 JINST TH 002Google Scholar
  4. 4.
    Martin E et al (2009) The 5ns peaking time transimpedance front end amplifier for the silicon pixel detector in the NA62 Gigatracker. In: Nuclear science symposium conference record (NSS/MIC), 2009 IEEE, pp 381–388Google Scholar
  5. 5.
    Bingefors N et al (1993) The DELPHI microvertex detector. Nucl Instrum Method A 328:447CrossRefGoogle Scholar
  6. 6.
    Jarron P et al (1996) A transimpedance amplifier using a novel current mode feedback loop. Nucl Instrum Method A 377:435CrossRefGoogle Scholar
  7. 7.
    Kaplon J, Dabrowski W (2005) Fast CMOS binary front end for silicon strip detectors at LHC experiments. IEEE Trans Nucl Sci 52(6):2713–2720CrossRefGoogle Scholar
  8. 8.
    Krummenacher F (1991) Pixel detectors with local intelligence: an IC designer point of view. Nucl Instrum Method A 305:527CrossRefGoogle Scholar
  9. 9.
    Anghinolfi F et al (1991) A 1006 element hybrid silicon pixel detector with strobed binary output. In: Nuclear science symposium conference record (NSS/MIC), 1991 IEEE, pp 255–262Google Scholar
  10. 10.
    Llopart X et al (2001) Medipix2, a 64k pixel read out chip with 55 μm square elements working in single photon counting mode. In: Nuclear science symposium conference record (NSS/MIC), 2001 IEEE, pp 1484–1488Google Scholar
  11. 11.
    Campbell M et al (1997) Readout for a 64×64 pixel matrix with 15-bit single photon counting. In: Nuclear science symposium conference record (NSS/MIC), 1997 IEEE, pp 189–191Google Scholar
  12. 12.
    Ballabriga R et al (2007) The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. IEEE Trans Nucl Sci 54(5):1824–1829CrossRefGoogle Scholar
  13. 13.
    De Geronimo G, O’Connor P (1999) A CMOS detector leakage current self-adaptable continuous reset system: theoretical analysis. Nucl Instrum Method A 421:322CrossRefGoogle Scholar
  14. 14.
    Bilotti A, Mariani E (1975) Noise characteristics of current mirror sinks/sources. IEEE J Solid-State Circuits 10(6):516–524CrossRefGoogle Scholar
  15. 15.
    Rice S (1944) Mathematical analysis of random noise. Bell Syst Tech J 23:282–332, 24:46–156Google Scholar
  16. 16.
    Enz C, Krummenacher F, Vittoz E (1995) An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. J Analog Integr Circuit Signal Process 8:83–114, Kluwer Academic PublishersCrossRefGoogle Scholar
  17. 17.
    Kaplon J, Dabrowski W (2006) Experience with bipolar front-end amplifiers and perspectives for LHC upgrade. Nucl Instrum Method A 568:877CrossRefGoogle Scholar
  18. 18.
    Dabrowski W et al (2005) Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker. Nucl Instrum Method A 552:292CrossRefGoogle Scholar
  19. 19.
    Aspell P et al (2008) VFAT2: a front-end “system on chip” providing fast trigger information and digitized data storage for the charge sensitive readout of multi-channel silicon and gas particle detectors. In: Nuclear science symposium conference record (NSS/MIC), 2008 IEEE, pp 1489–1494Google Scholar
  20. 20.
    Dabrowski W et al (2009) Design and performance of the ABCN-25 readout chip for ATLAS inner detector upgrade. In: Nuclear science symposium conference record (NSS/MIC), 2009 IEEE, pp 373–380Google Scholar
  21. 21.
    Moraes D et al (2008) CERN_DxCTA counting mode chip. Nucl Instrum Method A 591:167CrossRefGoogle Scholar
  22. 22.
    Kaplon J, Noy M (2012) Front end electronics for SLHC semiconductor trackers in CMOS 90 nm and 130 nm processes. IEEE Trans Nucl Sci 59(4):1611–1620CrossRefGoogle Scholar
  23. 23.
    Fiorini M et al (2011) The Gigatracker: an ultra-fast and low-mass silicon pixel detector for the NA62 experiment. Nucl Instrum Method A 628:292CrossRefGoogle Scholar
  24. 24.
    Noy M et al (2011) Characterisation of the NA62 GigaTracker end of column demonstrator hybrid pixel detector. 2011 JINST 6 C11025Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.CERNGenève 23Switzerland
  2. 2.INFNTorinoItaly

Personalised recommendations