Continuity of attractors

  • Alexandre N. Carvalho
  • José A. Langa
  • James C. Robinson
Part of the Applied Mathematical Sciences book series (AMS, volume 182)


In this chapter we study the continuity of attractors under perturbation. The problems of upper semicontinuity (‘no explosion’) and lower semicontinuity (‘no implosion’) are distinct, and we will treat them separately. Broadly speaking, one expects upper semicontinuity to hold widely, but lower semicontinuity requires structural assumptions on the unperturbed process and its attractor.


Manifold Carbone 


  1. Arrieta JM, Carvalho AN, Lozada-Cruz G (2009a) Dynamics in dumbbell domains. II: The limiting problem. J Differential Equations 247:174–202MathSciNetMATHGoogle Scholar
  2. Arrieta JM, Carvalho AN, Langa JA, Rodríguez-Bernal A (2012a) Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations. J Dynam Differential Equations 24:427–481MathSciNetCrossRefGoogle Scholar
  3. Babin AV, Vishik MI (1992) Attractors of evolution equations. North Holland, AmsterdamMATHGoogle Scholar
  4. Bruschi SM, Carvalho AN, Cholewa JW, Dłotko T (2006) Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. J Dynam Differential Equations 18:767–814MathSciNetMATHCrossRefGoogle Scholar
  5. Caraballo T, Langa JA (2003) On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dyn Contin Discrete Impuls Syst Ser A Math Anal 10:491–513MathSciNetMATHGoogle Scholar
  6. Caraballo T, Langa JA, Robinson JC (1998) Upper semicontinuty of attractors for small random perturbations of dynamical systems. Comm Partial Differential Equations 23:1557–1581MathSciNetMATHCrossRefGoogle Scholar
  7. Carvalho AN, Piskarev S (2006) A general approximation scheme for attractors of abstract parabolic problems. Numer Funct Anal Optim 27:785–829MathSciNetMATHCrossRefGoogle Scholar
  8. Carvalho AN, Cholewa J, Dlotko T (2009a) Damped wave equations with fast growing dissipative nonlinearities. Discrete Contin Dyn Syst A 24:1137–165MathSciNetGoogle Scholar
  9. Hale JK (1988) Asymptotic behavior of dissipative systems. Mathematical surveys and monographs, American Mathematival Society, Providence, RIMATHGoogle Scholar
  10. Hale JK, Raugel G (1989) Lower semi-continuity of attractors of gradient systems and applications. Ann Mat Pura Appl 154:281–326MathSciNetMATHCrossRefGoogle Scholar
  11. Hale JK, Lin XB, Raugel G (1988) Upper semicontinuity of attractors for approximations of semigroups and partial differential equations. Math Comp 50:89–123MathSciNetMATHCrossRefGoogle Scholar
  12. Kloeden PE (2000a) Pullback attractors in nonautonomous difference equations. J Difference Equ Appl 6:33–52MathSciNetMATHCrossRefGoogle Scholar
  13. Kloeden PE, Piskarev S (2007) Discrete convergence and the equivalence of equi-attraction and the continuous convergence of attractors. Int J Dyn Syst Differ Equ 1:38–43MathSciNetMATHGoogle Scholar
  14. Kloeden PE, Stonier D (1998) Cocyle attractors of nonautonomously perturbed differential equations. Dynam Contin Discrete Impuls Systems 4:221–226MathSciNetGoogle Scholar
  15. Kostin IN (1995) Lower semicontinuity of a non-hyperbolic attractor. J Lond Math Soc 52:568–582MathSciNetMATHCrossRefGoogle Scholar
  16. Langa JA, Lukaszewicz G, Real J (2007a) Finite fractal dimension of pullback attractors for non-autonomous 2D Navier–Stokes equations in some unbounded domains. Nonlinear Anal 66:735–749MathSciNetMATHCrossRefGoogle Scholar
  17. Li D, Kloeden PE (2004a) Equi-attraction and the continuous dependence of attractors on parameters. Glasgow Math J 46:131–141MathSciNetMATHCrossRefGoogle Scholar
  18. Robinson JC (2002) Stability of random attractors under perturbation and approximation. J Differential Equations 186:652–669MathSciNetMATHCrossRefGoogle Scholar
  19. Stuart AM, Humphries AR (1996) Dynamical systems and numerical analysis. Cambridge University Press, CambridgeMATHGoogle Scholar
  20. Vishik MI (1992) Asymptotic behaviour of solutions of evolutionary equations. Cambridge University Press, CambridgeMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Alexandre N. Carvalho
    • 1
  • José A. Langa
    • 2
  • James C. Robinson
    • 3
  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  2. 2.Departamento de Ecuaciones Diferenciales y Análisis NuméricoFacultad de MatemáticasSevilleSpain
  3. 3.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations