Skip to main content

The Path to Λ-Bounded variation

  • Conference paper
  • First Online:
Recent Advances in Harmonic Analysis and Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 25))

  • 1151 Accesses

Abstract

This is a personal account describing the evolution of the concept of Λ-bounded variation. Earlier generalizations of bounded variation are described. A test for the convergence of Fourier series due to Salem was pivotal, leading to a condition for preservation of convergence of Fourier series under change of variable and, finally, to a new notion of bounded variation. Some applications and generalizations to higher dimensions are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avdispahić, M.: Concepts of generalized bounded variation and the theory of Fourier series. Internat. J. Math. Math. Sci. 9, 223–244 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baernstein, A. II: On the Fourier series of functions of bounded Φ-variation. Studia Math. 42, 243–248 (1972)

    MathSciNet  MATH  Google Scholar 

  3. Baernstein, A. II, and Waterman, D.: Functions whose Fourier series converge uniformly for every change of variable. Indiana Univ. Math. J. 22, 569–576 (1972/73)

    Google Scholar 

  4. Berezhnoi, E.I.: Spaces of functions of generalized bounded variation. II. Problems of the uniform convergence of Fourier series. Sibirsk. Mat. ZH. 42, 515–532 (2001), Siberian Math. J. 43, 435–449 (2001)

    Google Scholar 

  5. Birnbaum, Z., Orlicz, W.: Ūber die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Sudia Math. 3, 1–67 (1931)

    Google Scholar 

  6. Chanturiya, Z.A.: On Uniform Convergence of Fourier Series. Math. Sb. I00, 534–554 (1976), Math. USSR Sb. 29, 475–495 (1976)

    Google Scholar 

  7. Dyachenko, M.I.: Waterman classes and spherical partial sums of double Fourier series. Anal. Math. 21(1), 321 (1995)

    Article  MathSciNet  Google Scholar 

  8. Dyachenko, M.I., Waterman, D.: Convergence of double Fourier series and W-classes. Trans. Amer. Math. Soc. 357, 397–407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dyachenko, M.I.: Multidimensional alternative Waterman classes,Vestnik Moskov. Univ. Ser. I Mat. Mekh. 71, 18–25 (2006); translation in Moscow Univ. Math. Bull. 61, 18–24 (2006)

    Google Scholar 

  10. Garsia, A.M., Sawyer, S.: On some classes of continuous functions with convergent Fourier series. J. Math. Mech. 13, 589–601 (1964)

    MathSciNet  MATH  Google Scholar 

  11. Goffman, C., Waterman, D.: Functions whose Fourier series converge for every change of variable. Proc. Amer. Math. Soc. 19, 80–86 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goffman, C., Waterman, D.: Some aspects of Fourier series. Amer. Math. Monthly 77, 119–133 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goffman, C.: Everywhere convergence of Fourier series. Indiana Univ. Math. J. 20, 107–112 (1970/1971)

    Google Scholar 

  14. Goffman, C.: The localization principle for double Fourier series. Studia Math. 69, 41–57 (1980)

    MathSciNet  MATH  Google Scholar 

  15. Goffman, C., Nishiura, T., Waterman, D.: Homeomorphisms in analysis. In: Mathematical Surveys and Monographs, vol. 54. Amer. Math. Soc., Providence, RI (1997)

    Google Scholar 

  16. Love, E.R., Young, L.C.: Sur une classe de functionelles linéaires. Fund. Math. 28, 243–257 (1937)

    MATH  Google Scholar 

  17. Musielak, J., Orlicz, W.: On generalized variations (I). Studia Math. 18, 11–41 (1959)

    MathSciNet  MATH  Google Scholar 

  18. Oskolkov, K.I.: Generalized variation, the Banach indicatrix and the uniform convergence of Fourier series. Mat. Zametki 12, 313–324 (1972), also, Math. Notes 12, 619–625 (1972/1973)

    Google Scholar 

  19. Pierce, P., Waterman, D.: Regulated functions whose Fourier series converge for every change of variable. J. Math. Anal. Appl. 214, 264–282 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pierce, P., Waterman, D.: AΔ 2-equivalent condition. Real Anal. Exchange 26 (2000/01), no. 2

    Google Scholar 

  21. Prus-Wiśniowski, F.: Functions of bounded Λ-variation. In: Topics in Classical Analysis and Applications in Honor of Daniel Waterman, pp. 173–190, World Sci. Publ., Hackensack (2008)

    Google Scholar 

  22. Saakyan, A.A.: On the convergence of double Fourier series of functions of bounded harmonic variation. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 21(6), 517–529 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Sablin, A.I.: Λ-variation and Fourier series. Soviet Math. (Iz. VUZ) 31, 87–90 (1987)

    Google Scholar 

  24. Salem, R.: Essais sur les séries trigonométrique, Chap.VI, Actualities Sci. Ind. No.862, Hermann, Paris (1940)

    Google Scholar 

  25. Salem, R.: Œuvres mathématiques. Hermann, Paris (1967)

    MATH  Google Scholar 

  26. Waterman, D.: On convergence of Fourier series of functions of generalized bounded variation. Studia Math. 44, 107–117 (1972)

    MathSciNet  MATH  Google Scholar 

  27. Waterman, D.: On Λ-bounded variation. Studia Math. 57, 33–45 (1976)

    MathSciNet  MATH  Google Scholar 

  28. Waterman, D.: Fourier series of functions ofΛ-bounded variation. Proc. Amer. Math. Soc. 74, 119–123 (1979)

    MathSciNet  MATH  Google Scholar 

  29. Waterman, D.: Change-of-variable invariant classes of functions and convergence of Fourier series. In: Classical Real Analysis (Madison, Wis., 1982), vol. 42, pp. 203–211, Contemp. Math., Amer. Math. Soc., Providence, RI (1985)

    Google Scholar 

  30. Waterman, D.: A generalization of the Salem test. Proc. Amer. Math. Soc. 105, 129–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Waterman, D., Xing, H.: The convergence of partial sums of interpolating polynomials. J. Math. Anal. Appl. 333, 543–555 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wiener, N.: The quadratic variation of a function and its Fourier coefficients. J. Mass. Inst. Tech. 3, 73–94 (1924)

    Google Scholar 

  33. Young, L.C.: An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    Article  MathSciNet  Google Scholar 

  34. Young, L.C.: Sur une généralization de la notion de variation de puissance p-ième bornée au sens de M. Wiener, et sur la convergence des séries de Fourier, C. R. Acad. Sci. Paris 204, 470–472 (1937)

    Google Scholar 

  35. Young, L.C.: General inequalities for Stieltjes integrals and the convergence of Fourier series. Math. Ann. 115, 581–612 (1938)

    Article  MathSciNet  Google Scholar 

  36. Zygmund, A.: Trigonometric Series, 2nd edn. Cambridge Univ. Press, New York (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Waterman .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Casper Goffman, my friend, colleague, and coworker

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Waterman, D. (2012). The Path to Λ-Bounded variation. In: Bilyk, D., De Carli, L., Petukhov, A., Stokolos, A., Wick, B. (eds) Recent Advances in Harmonic Analysis and Applications. Springer Proceedings in Mathematics & Statistics, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4565-4_29

Download citation

Publish with us

Policies and ethics