Skip to main content

Maximal Operators Associated to Sets of Directions of Hausdorff and Minkowski Dimension Zero

  • Conference paper
  • First Online:
Recent Advances in Harmonic Analysis and Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 25))

Abstract

For any set Ω⊂[0,π∕2) we let R Ω be the set of rectangles in ℝ 2 oriented in one of the directions of Ω. The geometric maximal operator associated to Ω is given by

$$\begin{array}{rcl}{ M}_{\Omega }f(x) =\sup\limits_{x\in R\in {R}_{\Omega }} \frac{1} {\left \vert R\right \vert }{\int \nolimits \nolimits }_{R}\left \vert f(y)\right \vert \;dy\;.& & \\ \end{array}$$

In this chapter we show that if M Ω is bounded on L p(ℝ 2) for 1<p, then Ω must be countable and of Hausdorff and Minkowski dimension zero. We shall see that the converse does not hold, however, by exhibiting an example of a countable set Ω of Hausdorff and Minkowski dimension zero for which the associated maximal operator M Ω is unbounded on L p(ℝ 2) for 1≤p< . All of these results will be seen to be consequences of a recent theorem of Bateman (Duke Math. J. 147:55–77, 2009) regarding geometric maximal operators and N-lacunary sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bateman, M.: Kakeya sets and directional maximal operators in the plane. Duke Math. J. 147, 55–77 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bateman, M., Katz, N.H.: Kakeya sets in Cantor directions. Math. Res. Lett. 15, 73–81 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Busemann, H., Feller, W.: Zur Differentiation des Lebesguesche Integrale. Fund. Math. 22, 226–256 (1934)

    Google Scholar 

  4. Córdoba, A., Fefferman, R.: On differentiation of integrals. Proc. Nat. Acad. Sci. U.S.A. 74, 2211–2213 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Guzmán, M.: Real Variable Methods in Fourier Analysis. North Holland, Amsterdam (1981)

    MATH  Google Scholar 

  6. Hare, K.E.: Maximal operators and Cantor sets. Canad. Math. Bull. 43, 330–342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hare, K.E., Rönning, J.-O.: The size of Max(p) sets and density bases. J. Fourier Anal. Appl. 8, 259–268 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jessen, B., Marcinkiewicz, J., Zygmund, A.: Note on the differentiability of multiple integrals. Fund. Math. 25, 217–234 (1935)

    Google Scholar 

  9. Karagulyan, G.A., Lacey, M.T.: An estimate for maximal operators associated with generalized lacunary sets (Russian. English, Russian summary). Izv. Nats. Akad. Nauk Armenii Mat. 39, 73–82 (2004); translation in J. Contemp. Math. Anal. 39 (2004), 50–59 (2005)

    Google Scholar 

  10. Katz, N.H.: A counterexample for maximal operators over a Cantor set of directions. Math. Res. Lett. 3, 527–536 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Nagel, A., Stein, E.M., Wainger, S.: Differentiation in lacunary directions. Proc. Nat. Acad. Sci. U.S.A. 75, 1060–1062 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nikodym, O.: Sur les ensembles accessibles. Fund. Math. 10, 116–168 (1927)

    MATH  Google Scholar 

  13. Sjögren, P., Sjölin, P.: Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets. Ann. Inst. Fourier (Grenoble) 31, 157–175 (1981)

    Google Scholar 

  14. Strömberg, J.-O.: Weak estimates on maximal functions with rectangles in certain directions. Ark. Mat. 15, 229–240 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a grant from the Simons Foundation (#208831 to Paul Hagelstein). The author also wishes to thank Alex Iosevich and the referee for helpful comments and suggestions regarding this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Hagelstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Hagelstein, P. (2012). Maximal Operators Associated to Sets of Directions of Hausdorff and Minkowski Dimension Zero. In: Bilyk, D., De Carli, L., Petukhov, A., Stokolos, A., Wick, B. (eds) Recent Advances in Harmonic Analysis and Applications. Springer Proceedings in Mathematics & Statistics, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4565-4_13

Download citation

Publish with us

Policies and ethics