Delaminated Film Buckling Microchannels



This chapter describes the method of manufacturing microfluidic microchannels formed by delaminated buckled thin films. Thin films under compression tend to delaminate and buckle. Microchannel geometry can be controlled by tailoring film residual stress and placing patterned adhesion-weakening layers utilizing photolithographic techniques. Results based on the photoresist as the adhesion weakening layer and compressed tungsten thin films are described along with the corresponding thin film mechanics.


Residual Stress Compressive Residual Stress Strain Energy Release Rate Spin Speed Film Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nguyen NT, Werely ST (2002) Fundamentals and applications of microfluidics,Artech House,Norwood, MA,1–19:285–286Google Scholar
  2. 2.
    Spence A, Retterer S, Isaacson M (2002) Microfabricated model silicon probes with microfluidic, channels for drug delivery. NNUN Abstracts 2002/Biology & Chemistry, p 13Google Scholar
  3. 3.
    Li Y, Gulari MN, Wise KD (2003) High-yield buried microchannel formation for drug delivery at the cellular level, In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of mTAS 2003 seventh international conference on micro total analysis systems, vol 2, October 5–9, Squaw Valley, CA, pp 931–934Google Scholar
  4. 4.
    Volinsky AA (2003) Experiments with in-situ thin film phone cord delamination propagation. Mat Res Soc Symp Proc 749:W10.7CrossRefGoogle Scholar
  5. 5.
    Volinsky AA, Meyer DC, Leisegang T, Paufler P (2003) Fracture patterns in thin films and multilayers. Mat Res Soc Symp Proc 795:U3.8CrossRefGoogle Scholar
  6. 6.
    Volinsky AA, Waters P, Kiely JD, Johns EC (2005) Sub-critical telephone cord delamination propagation and adhesion measurements. Mat Res Soc Symp Proc 854E:U9.5Google Scholar
  7. 7.
    Volinsky AA, Waters P, Wright G (2004) Micro-fluidics applications of telephone cord delamination blisters. Mat Res Soc Symp Proc 855E:W3.16CrossRefGoogle Scholar
  8. 8.
    Galambos P (1998) Two-phase dispersion in micro-channels. Ph.D. Thesis, Mechanical Engineering, University of Washington, SeattleGoogle Scholar
  9. 9.
    Macounova K, Cabrera CR, Holl MR, Yager P (2000) Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. Anal Chem 72:3745–3751CrossRefGoogle Scholar
  10. 10.
    Ohring M (1992) The materials science of thin films. Academic, LondonGoogle Scholar
  11. 11.
    Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc Roy Soc Lond A82:72Google Scholar
  12. 12.
    Volinsky AA, Moody NR, Gerberich WW (2002) Interfacial toughness measurements for thin films on substrates. Acta Mater 50(3):441CrossRefGoogle Scholar
  13. 13.
    Volinsky AA, Moody NR, Kottke ML, Gerberich WW (2002) Fiducial mark and nanocrack zone formation during thin film delamination. Philos Mag A 82:3383–3391Google Scholar
  14. 14.
    Volinsky AA, Moody NR, Gerberich WW (2003) Fiducial mark and CTOA estimates of thin film adhesion. Int J Fract 119(4):431–439CrossRefGoogle Scholar
  15. 15.
    Matuda N, Baba S, Kinbara A (1981) Internal stress, Young’s modulus and adhesion energy of carbon films on glass substrates. Thin Solid Films 81:301CrossRefGoogle Scholar
  16. 16.
    Gille G, Rau B (1984) Buckling instability and adhesion of carbon layers. Thin Solid Films 120:109CrossRefGoogle Scholar
  17. 17.
    Seth J, Raghunath R, Babu SV (1992) Influence of the deposition gas mixture on the structure and failure modes of diamondlike carbon films. J Vac Sci Technol A 10(2):284–289CrossRefGoogle Scholar
  18. 18.
    Moon M-W, Jensen HM, Hutchinson JW, Oh KH, Evans AG (2002) The characterization of telephone cord buckling of compressed thin films on substrates. J Mech Phys Solids 50(11):2355CrossRefGoogle Scholar
  19. 19.
    Thouless MD (1990) Crack spacing in brittle films on elastic substrates. J Am Ceram Soc 73:2144CrossRefGoogle Scholar
  20. 20.
    Bai T, Pollard DD, Gao H (2000) Explanation for fracture spacing in layered materials. Nature 403:753CrossRefGoogle Scholar
  21. 21.
    Huang R, Prevost JH, Huang ZY, Suo Z (2003) Channel-cracking of thin films with the extended finite element method. Eng Fract Mech 70(2513)Google Scholar
  22. 22.
    Hutchinson JW, Suo Z (1992) Mixed-mode cracking in layered materials. Adv Appl Mech 29:63–191MATHCrossRefGoogle Scholar
  23. 23.
    Prinz VY (2000) Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E 6(1–4):828–831CrossRefGoogle Scholar
  24. 24.
    Prinz VY (2004) Precise semiconductor nanotubes and nanoshells fabricated on (110) and (111) Si and GaAs. Physica E 23:260–268CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Burolla VP (1980) Deterioration of the silver/glass interface in second surface solar mirrors. Sol Energy Mater 3/1–2:117–126CrossRefGoogle Scholar
  27. 27.
    Moon MW, Lee KR, Oh KH, Hutchinson JW (2004) Buckle delamination on patterned substrates. Acta Mater 52/10:3151–3159CrossRefGoogle Scholar
  28. 28.
    Volinsky AA, Vella JB, Gerberich WW (2002) Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429(1–2):201–210Google Scholar
  29. 29.
    Franssila S (2004) Introduction to micro fabrication. Wiley, West Sussex, EnglandGoogle Scholar
  30. 30.
    Kriese MD, Gerberich WW, Moddy NR (1999) Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W. J Mater Res 14(7):3019CrossRefGoogle Scholar
  31. 31.
    Waters P, Volinsky AA (2006) Stress and moisture effects on thin film buckling delamination. Exp Mech 47(1):163–170CrossRefGoogle Scholar
  32. 32.
    Weigl BH, Hedine K (2002) Lab-on-a-chip-based separation and detection technology for life science applications. Am Biotechnol Lab 20(1):28–30Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations