Skip to main content

Effect of the Oral Environment on the Tribological Behavior of Human Teeth

  • Chapter
  • First Online:
Dental Biotribology

Abstract

Tooth wear is a complex multifactorial phenomenon involving chemical, physical, and mechanical processes [1]. The oral environment plays an extremely important role in the tribological behavior of both human teeth and artificial teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou ZR, Zheng J (2008) Tribology of dental materials: a review. J Phys D Appl Phys 41(11):113001, 22pp

    Article  Google Scholar 

  2. Hannig M (2002) The protective nature of the salivary pellicle. Int Dent J 52:417–423

    Article  Google Scholar 

  3. Berg ICH, Rutland MW, Arnebrant T (2003) Lubricating properties of the initial salivary pellicle–an AFM study. Biofouling 19(6):365–369

    Article  Google Scholar 

  4. Lewis R, Dwyer-Joyce RS (2005) Wear of human teeth: a tribological perspective. J Eng Tribol 219:1–18

    Article  Google Scholar 

  5. Hannig M, Fiebiger M, Güntzer M, Döbert A, Zimehl R, Nekrashevych Y (2004) Protective effect of the in situ formed short-term salivary pellicle. Arch Oral Biol 49:903–910

    Article  Google Scholar 

  6. Amerongen AV, Bolscher JGM, Veerman ECI (2004) Salivary proteins: protective and diagnostic value in cariology? Caries Res 38:247–253

    Article  Google Scholar 

  7. Mass M (1994) A scanning electron-microscope study of in vitro abrasion of mammalian tooth enamel under compressive loads. Arch Oral Biol 39(1):1–11

    Article  Google Scholar 

  8. Eisenburger M, Addy M (2002) Erosion and attrition of human enamel in vitro, Part II: influence of time and loading. J Dent 30:349–352

    Article  Google Scholar 

  9. Hooper S, Newcombe RG, Faller R, Eversole R, Addy M, West NX (2007) The protective effects of toothpaste against erosion by orange juice: studies in situ and in vitro. J Dent 35:476–481

    Article  Google Scholar 

  10. Gwinnett AJ (1992) Structure and composition of enamel. Oper Dent 5(Suppl):10–17

    Google Scholar 

  11. Mair LH, Stolarski TA, Vowles RW, Lloyd CH (1996) Wear: mechanisms, manifestations and measurement. Report of a workshop. J Dent 24:141–148

    Article  Google Scholar 

  12. Imfeld T (1996) Dental erosion, definition, classification and links. Eur J Oral Sci 104:151–155

    Article  Google Scholar 

  13. Eisenburger M, Addy M (2002) Erosion and attrition of human enamel in vitro. Part I: interaction effects. J Dent 20:341–347

    Article  Google Scholar 

  14. Bartlett DW, Blunt L, Smith BGN (1997) Measurement of tooth wear in patients with palatal erosion. Br Dent J 182:179–184

    Article  Google Scholar 

  15. Barbour ME, Rees JS (2004) The laboratory assessment of enamel erosion: a review. J Dent 32:591–602

    Article  Google Scholar 

  16. Amaechi BT, Higham SM (2005) Dental erosion: possible approaches to prevention and control. J Dent 33:243–252

    Article  Google Scholar 

  17. West NX, Hughes JA, Addy M (2001) The effect of pH on the erosion of dentine and enamel by dietary acids in vitro. J Oral Rehabil 28:860–864

    Article  Google Scholar 

  18. Grippo JO, Masi JV (1991) Role of biodental engineering factors (BEF) in the etiology of root caries. J Esthet Restor Dent 3:71–76

    Article  Google Scholar 

  19. Palamara D, Palamara JEA, Tyas MJ, Pintado M, Messer HH (2001) Effect of stress on acid dissolution of enamel. Dent Mater 17:109–115

    Article  Google Scholar 

  20. Eisenburger M, Shellis RP, Addy M (2003) Comparative study of wear of enamel induced by alternating and simultaneous combinations of abrasion and erosion in vitro. Caries Res 37:450–455

    Article  Google Scholar 

  21. Hughes JA, West NX, Parker DM, van den Braak MH, Addy M (2000) Effects of pH and concentration of citric, malic and lactic acids on enamel, in vitro. J Dent 28:147–152

    Article  Google Scholar 

  22. Holbrook WP, Árnadóttir IB, Kay EJ (2003) Prevention. Part 3: prevention of tooth wear. Br Dent J 195(2):75–81

    Article  Google Scholar 

  23. Garcia-Godoy F, Hicks MJ (2008) Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J Am Dent Assoc 139(Suppl 2):25S–34S

    Google Scholar 

  24. Zero DT, Lussi A (2005) Erosion-chemical and biological factor of importance to the dental practitioner. Int Dent J 55:285–290

    Google Scholar 

  25. Selwitz RH, Ismail AL, Pitts NB (2007) Dental caries. Lancet 369:51–59

    Article  Google Scholar 

  26. ten Cate JM, Arends J (1978) Remineralization of artificial enamel lesions in vitro. Caries Res 12:213–222

    Article  Google Scholar 

  27. Devlin H, Bassiouny MA, Boston D (2006) Hardness of enamel exposed to Coca-Cola and artificial saliva. J Oral Rehabil 33:26–30

    Article  Google Scholar 

  28. Li H, Zhou ZR (2002) Wear behavior of human teeth in dry and artificial saliva conditions. Wear 249:980–984

    Article  Google Scholar 

  29. Godet M (1986) Third body in tribology. Wear 136:29–45

    Article  Google Scholar 

  30. Zheng J, Zhou ZR (2007) Friction and wear behavior of human teeth under various wear conditions. Tribol Int 40:278–284

    Article  Google Scholar 

  31. Hu X, Shortall AC, Marquis PM (2002) Wear of three dental composites under different testing condition. J Oral Rehabil 29:756–764

    Article  Google Scholar 

  32. Habelitz S, Marshall SJ, Marshall GW, Balooch M (2001) Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 39:173–183

    Article  Google Scholar 

  33. Shabanian M, Richards LC (2002) In vitro wear rates of materials under different loads and varying pH. J Prosthet Dent 87(6):650–656

    Article  Google Scholar 

  34. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  35. Kaidonis JA, Richards LC, Townsend GC, Tansley GD (1998) Wear of human enamel: a quantitative in vitro assessment. J Dent Res 77:1983–1990

    Article  Google Scholar 

  36. Burak N, Kaidonis JA, Richards LC, Townsend GC (1999) Experimental studies of human dentine wear. Arch Oral Biol 44:885–887

    Article  Google Scholar 

  37. Sturdevant CM (1995) The art and science of operative dentistry, 3rd edn. Mosby, St. Louis, 189, 190, 298

    Google Scholar 

  38. Zheng J, Huang H, Shi MY, Zheng L, Qian LM, Zhou ZR (2011) In vitro study on the wear behaviour of human tooth enamel in citric acid solution. Wear 271:2313–2321

    Article  Google Scholar 

  39. Bashir E, Ekberg O, Lagerlof F (1995) Salivary clearance of citric acid after an oral rinse. J Dent 23:209–212

    Article  Google Scholar 

  40. Barbour ME, Parker DM, Allen GC, Jandt KD (2003) Enamel dissolution in citric acid as a function of calcium and phosphate concentrations and degree of saturation with respect to hydroxyapatite. Eur J Oral Sci 111:428–433

    Article  Google Scholar 

  41. West NX, Hughes JA, Addy M (2000) Erosion of dentine and enamel in vitro by dietary acids: effect of temperature, acid character, concentration and exposure time. J Oral Rehabil 27:875–880

    Article  Google Scholar 

  42. Hannig C, Hamkens A, Becker K, Attin R, Attin T (2005) Erosive effects of different acids on bovine enamel: release of calcium an phosphate in vitro. Arch Oral Biol 50:541–552

    Article  Google Scholar 

  43. Meurman JH, Harkonen M, Naveri H, Koskinen J, Torkko H, Rytomaa I, Jarvinen V, Turunen R (1990) Experimental sports drinks with minimal erosive effect. Scand J Dent Res 98:120–128

    Google Scholar 

  44. Sato S, Hotta TH, Pedrazzi V (2000) Removable occlusal overlay splint in the management of tooth wear: a clinical report. J Prosthet Dent 83:392–395

    Article  Google Scholar 

  45. Sajewicz E (2007) Tribological behaviour of human enamel in red wine and apple juice environments. Wear 262:308–315

    Article  Google Scholar 

  46. Cheng ZJ, Wang XM, Cui FZ, Ge J, Yan JX (2009) The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation. Biomed Mater 4(1):015020, 7pp

    Article  Google Scholar 

  47. Dowson D (1998) History of tribology. Professional Engineering Publishing, London, p 577

    Google Scholar 

  48. Yan YD, Sun T, Dong S (2007) Study on effects of tip geometry on AFM nanoscratching tests. Wear 262:477–483

    Article  Google Scholar 

  49. Zheng J, Xiao F, Qian LM, Zhou ZR (2009) Erosion behavior of human tooth enamel in citric acid solution. Tribol Int 42:1558–1564

    Article  Google Scholar 

  50. Lippert F, Parker DM, Jandt KD (2004) In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J Colloid Interface Sci 280:442–448

    Article  Google Scholar 

  51. Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP (2002) Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol 47:281–291

    Article  Google Scholar 

  52. Zheng J, Zhou ZR, Zhang J, Li H, Yu HY (2003) On the friction and wear behavior of human enamel and dentin. Wear 255:967–974

    Article  Google Scholar 

  53. Barbour ME, Parker DM, Allen GC, Jandt KD (2003) Human enamel dissolution in citric acid as a function of pH in the range 2.3≤pH≤6.30 – a nanoindentation study. Eur J Oral Sci 111:258–262

    Article  Google Scholar 

  54. Lupi-Pegurier L, Muller M, Leforestier E, Bertrand MF, Bolla M (2003) In vitro action of Bordeaux red wine on the microhardness of human dental enamel. Arch Oral Biol 48:141–145

    Article  Google Scholar 

  55. Lussi A, Jaeggi T, Gerber C, Megert B (2004) Effect of amine/sodium fluoride rinsing on toothbrush abrasion of softened enamel in situ. Caries Res 38:567–571

    Article  Google Scholar 

  56. Zheng J, Xiao F, Zheng L, Qian LM, Zhou ZR (2010) Erosion behaviors of human tooth enamel at different depth. Tribol Int 43:1262–1267

    Article  Google Scholar 

  57. Shore RC, Robinson C, Kirkham J, Brookes SJ (1995) Structure of mature enamel. In: Robinson C, Kirkham J, Shore RC (eds) Dental enamel: formation to destruction. CRC Press, Boca Raton, pp 151–166

    Google Scholar 

  58. Taher SM (2000) A specimen preparation technique to study the organic phase of tooth enamel under scanning electron microscopy. Mater Res Bull 35:1725–1735

    Article  Google Scholar 

  59. Wang LJ, Tang RK, Bonstein T, Orme CA, Bush PJ, Nancollas GH (2005) A new model for nanoscale enamel dissolution. J Phys Chem 109:999–1005

    Article  Google Scholar 

  60. Anderson P, Elliott JC (2000) Rates of mineral loss in human enamel during in vitro demineralization perpendicular and parallel to the natural surface. Caries Res 34:33–40

    Article  Google Scholar 

  61. Dowker SEP, Elliott JC, Davis GR, Wassif HS (2003) Longitudinal study of the three-dimensional development of subsurface enamel lesions during in vitro demineralization. Caries Res 37:237–245

    Article  Google Scholar 

  62. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine, vol 15, Monographs in oral science. Karger, Basel

    Google Scholar 

  63. Zheng L, Zheng J, Weng LQ, Qian LM, Zhou ZR (2011) Effect of remineralization on the nanomechanical properties and microtribological behaviour of acid-eroded human tooth enamel. Wear 271:2297–2304

    Article  Google Scholar 

  64. Wongkhantee S, Patanapiradej V, Maneenut C, Tantbirojn D (2006) Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J Dent 34:214–220

    Article  Google Scholar 

  65. Whittaker DK (1982) Structural variations in the surface zone of human tooth enamel observed by scanning electron microscopy. Arch Oral Biol 27:383–392

    Article  Google Scholar 

  66. Peter T, Zandim LD, Sampaio ECJ, Kielbassa MA (2010) Saliva substitute in combination with high-concentrated fluoride toothpaste: effects on demineralised dentin in vitro. J Dent 38:207–213

    Article  Google Scholar 

  67. Preston KP, Smith PW, Higham SM (2008) The influence of varying fluoride concentrations on in vitro remineralization of artificial dentinal lesions with differing lesion morphologies. Arch Oral Biol 53:20–26

    Article  Google Scholar 

  68. Lippert F, Parker DM, Jandt KD (2004) In situ remineralization of surface softened human enamel studied with AFM nanoindentation. Surf Sci 553:105–114

    Article  Google Scholar 

  69. Amaechi BT, Higham SM (2001) In vitro remineralization of acid-eroded enamel lesions by saliva. J Dent 29:371–376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, ZR., Yu, HY., Zheng, J., Qian, LM., Yan, Y. (2013). Effect of the Oral Environment on the Tribological Behavior of Human Teeth. In: Dental Biotribology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4550-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4550-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4549-4

  • Online ISBN: 978-1-4614-4550-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics