Skip to main content

Non-asymptotic, Local Theory of Random Matrices

  • Chapter
  • First Online:
Cognitive Networked Sensing and Big Data
  • 2291 Accesses

Abstract

Chapters 4 and 5 are the core of this book. Chapter 6 is included to form the comparison with this chapter. The development of the theory in this chapter will culminate in the sense of random matrices. The point of viewing this chapter as a novel statistical tool will have far-reaching impact on applications such as covariance matrix estimation, detection, compressed sensing, low-rank matrix recovery, etc. Two primary examples are: (1) approximation of covariance matrix; (2) restricted isometry property (see Chap. 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let \(\mathcal{A}\) is a linear transformation from vector V to vector W. The subset in V

    $$\displaystyle{\ker (\mathcal{A}) = \left \{v \in V: \mathcal{A}(v) = 0 \in W\right \}}$$

    is a subspace of V, called the kernel or null space of A. 

  2. 2.

    More generally, in this section we estimate the second moment matrix \(\mathbb{E}\left (\mathbf{x} \otimes \mathbf{x}\right )\) of an arbitrary random vector x (not necessarily centered).

Bibliography

  1. V. Vu, “Concentration of non-lipschitz functions and applications,” Random Structures & Algorithms, vol. 20, no. 3, pp. 262–316, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Mayer-Sch\(\ddot{\ }o\)nberger and K. Cukier, Big Data: A Revolution that will transform how we live, work and think. Eamon Dolan Book and Houghton Mifflin Hardcourt, 2013.

    Google Scholar 

  3. A. Van Der Vaart and J. Wellner, Weak Convergence and Empirical Processes. Springer-Verlag, 1996.

    Google Scholar 

  4. F. Zhang, Matrix Theory. Springer Ver, 1999.

    Google Scholar 

  5. D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, 2009.

    Google Scholar 

  6. M. Ledoux and M. Talagrand, Probability in Banach spaces. Springer, 1991.

    Google Scholar 

  7. R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices,” Arxiv preprint arXiv:1011.3027v5, July 2011.

    Google Scholar 

  8. M. Rudelson, “Lecture notes on non-asymptotic theory of random matrices,” arXiv preprint arXiv:1301.2382, 2013.

    Google Scholar 

  9. R. Latala, P. Mankiewicz, K. Oleszkiewicz, and N. Tomczak-Jaegermann, “Banach-mazur distances and projections on random subgaussian polytopes,” Discrete & Computational Geometry, vol. 38, no. 1, pp. 29–50, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Chen, L. Goldstein, and Q. Shao, Normal Approximation by Stein’s Method. Springer, 2010.

    Google Scholar 

  11. A. Kirsch, An introduction to the mathematical theory of inverse problems, vol. 120. Springer Science+ Business Media, 2011.

    Google Scholar 

  12. D. Porter and D. S. Stirling, Integral equations: a practical treatment, from spectral theory to applications, vol. 5. Cambridge University Press, 1990.

    Google Scholar 

  13. M. Rudelson, “Random vectors in the isotropic position,” Journal of Functional Analysis, vol. 164, no. 1, pp. 60–72, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Seginer, “The expected norm of random matrices,” Combinatorics Probability and Computing, vol. 9, no. 2, pp. 149–166, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Tomczak-Jaegermann, “The moduli of smoothness and convexity and the rademacher averages of trace classes,” Sp (1 [p¡.) Studia Math, vol. 50, pp. 163–182, 1974.

    Google Scholar 

  16. L. Rosasco, M. Belkin, and E. D. Vito, “On learning with integral operators,” The Journal of Machine Learning Research, vol. 11, pp. 905–934, 2010.

    MATH  Google Scholar 

  17. L. Rosasco, M. Belkin, and E. De Vito, “A note on learning with integral operators,”

    Google Scholar 

  18. M. Ledoux, The concentration of measure phenomenon, vol. 89. Amer Mathematical Society, 2001.

    Google Scholar 

  19. M. Talagrand, “A new look at independence,” The Annals of probability, vol. 24, no. 1, pp. 1–34, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Davidson and S. Szarek, “Local operator theory, random matrices and banach spaces,” Handbook of the geometry of Banach spaces, vol. 1, pp. 317–366, 2001.

    Article  MathSciNet  Google Scholar 

  21. M. Talagrand, “Concentration of measure and isoperimetric inequalities in product spaces,” Publications Mathematiques de l’IHES, vol. 81, no. 1, pp. 73–205, 1995.

    Article  MATH  Google Scholar 

  22. M. Ledoux, “Deviation inequalities on largest eigenvalues,” Geometric aspects of functional analysis, pp. 167–219, 2007.

    Google Scholar 

  23. G. Pisier, The volume of convex bodies and Banach space geometry, vol. 94. Cambridge Univ Pr, 1999.

    Google Scholar 

  24. P. Zhang and R. Qiu, “Glrt-based spectrum sensing with blindly learned feature under rank-1 assumption,” IEEE Trans. Communications. to appear.

    Google Scholar 

  25. P. Zhang, R. Qiu, and N. Guo, “Demonstration of Spectrum Sensing with Blindly Learned Feature,” IEEE Communications Letters, vol. 15, pp. 548–550, May 2011.

    Google Scholar 

  26. V. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, vol. 1200. Springer Verlag, 1986.

    Google Scholar 

  27. R. Latala, “Some estimates of norms of random matrices,” Proceedings of the American Mathematical Society, pp. 1273–1282, 2005.

    Google Scholar 

  28. M. Talagrand, “New concentration inequalities in product spaces,” Inventiones Mathematicae, vol. 126, no. 3, pp. 505–563, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Rudelson and R. Vershynin, “Invertibility of random matrices: unitary and orthogonal perturbations,” arXiv preprint arXiv:1206.5180, June 2012. Version 1.

    Google Scholar 

  30. T. Tao and V. Vu, “Random matrices: The distribution of the smallest singular values,” Geometric And Functional Analysis, vol. 20, no. 1, pp. 260–297, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Tao and V. Vu, “On random ± 1 matrices: singularity and determinant,” Random Structures & Algorithms, vol. 28, no. 1, pp. 1–23, 2006.

    Google Scholar 

  32. N. Ross et al., “Fundamentals of stein’s method,” Probability Surveys, vol. 8, pp. 210–293, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Giannopoulos, “Notes on isotropic convex bodies,” Warsaw University Notes, 2003.

    Google Scholar 

  34. Y. D. Burago, V. A. Zalgaller, and A. Sossinsky, Geometric inequalities, vol. 1988. Springer Berlin, 1988.

    Google Scholar 

  35. R. Schneider, Convex bodies: the Brunn-Minkowski theory, vol. 44. Cambridge Univ Pr, 1993.

    Google Scholar 

  36. V. Milman and A. Pajor, “Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space,” Geometric aspects of functional analysis, pp. 64–104, 1989.

    Google Scholar 

  37. C. Borell, “The brunn-minkowski inequality in gauss space,” Inventiones Mathematicae, vol. 30, no. 2, pp. 207–216, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Kannan, L. Lovász, and M. Simonovits, “Random walks and an o*(n5) volume algorithm for convex bodies,” Random structures and algorithms, vol. 11, no. 1, pp. 1–50, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  39. O. Guédon and M. Rudelson, “Lp-moments of random vectors via majorizing measures,” Advances in Mathematics, vol. 208, no. 2, pp. 798–823, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  40. C. Borell, “Convex measures on locally convex spaces,” Arkiv för Matematik, vol. 12, no. 1, pp. 239–252, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Borell, “Convex set functions ind-space,” Periodica Mathematica Hungarica, vol. 6, no. 2, pp. 111–136, 1975.

    Article  MathSciNet  Google Scholar 

  42. A. Prékopa, “Logarithmic concave measures with application to stochastic programming,” Acta Sci. Math.(Szeged), vol. 32, no. 197, pp. 301–3, 1971.

    Google Scholar 

  43. S. Vempala, “Recent progress and open problems in algorithmic convex geometry,” in =IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010.

    Google Scholar 

  44. G. Paouris, “Concentration of mass on convex bodies,” Geometric and Functional Analysis, vol. 16, no. 5, pp. 1021–1049, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Bourgain, “Random points in isotropic convex sets,” Convex geometric analysis, Berkeley, CA, pp. 53–58, 1996.

    Google Scholar 

  46. S. Mendelson and A. Pajor, “On singular values of matrices with independent rows,” Bernoulli, vol. 12, no. 5, pp. 761–773, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Alesker, “Phi 2-estimate for the euclidean norm on a convex body in isotropic position,” Operator theory, vol. 77, pp. 1–4, 1995.

    MathSciNet  Google Scholar 

  48. F. Lust-Piquard and G. Pisier, “Non commutative khintchine and paley inequalities,” Arkiv för Matematik, vol. 29, no. 1, pp. 241–260, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  49. F. Cucker and D. X. Zhou, Learning theory: an approximation theory viewpoint, vol. 24. Cambridge University Press, 2007.

    Google Scholar 

  50. V. Koltchinskii and E. Giné, “Random matrix approximation of spectra of integral operators,” Bernoulli, vol. 6, no. 1, pp. 113–167, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Mendelson, “On the performance of kernel classes,” The Journal of Machine Learning Research, vol. 4, pp. 759–771, 2003.

    MathSciNet  Google Scholar 

  52. R. Kress, Linear Integral Equations. Berlin: Springer-Verlag, 1989.

    Book  MATH  Google Scholar 

  53. G. W. Hanson and A. B. Yakovlev, Operator theory for electromagnetics: an introduction. Springer Verlag, 2002.

    Google Scholar 

  54. R. C. Qiu, Z. Hu, M. Wicks, L. Li, S. J. Hou, and L. Gary, “Wireless Tomography, Part II: A System Engineering Approach,”, in 5th International Waveform Diversity & Design Conference, (Niagara Falls, Canada), August 2010.

    Google Scholar 

  55. R. C. Qiu, M. C. Wicks, L. Li, Z. Hu, and S. J. Hou, “Wireless Tomography, Part I: A NovelApproach to Remote Sensing,”, in 5th International Waveform Diversity & Design Conference, (Niagara Falls, Canada), August 2010.

    Google Scholar 

  56. E. De Vito, L. Rosasco, A. Caponnetto, U. De Giovannini, and F. Odone, “Learning from examples as an inverse problem,” Journal of Machine Learning Research, vol. 6, no. 1, p. 883, 2006.

    Google Scholar 

  57. E. De Vito, L. Rosasco, and A. Toigo, “A universally consistent spectral estimator for the support of a distribution,”

    Google Scholar 

  58. R. Latala, “Weak and strong moments of random vectors,” Marcinkiewicz Centenary Volume, Banach Center Publ., vol. 95, pp. 115–121, 2011.

    Google Scholar 

  59. R. Latala, “Order statistics and concentration of lr norms for log-concave vectors,” Journal of Functional Analysis, 2011.

    Google Scholar 

  60. R. Adamczak, R. Latala, A. E. Litvak, K. Oleszkiewicz, A. Pajor, and N. Tomczak-Jaegermann, “A short proof of paouris’ inequality,” arXiv preprint arXiv:1205.2515, 2012.

    Google Scholar 

  61. J. Bourgain, “On the distribution of polynomials on high dimensional convex sets,” Geometric aspects of functional analysis, pp. 127–137, 1991.

    Google Scholar 

  62. B. Klartag, “An isomorphic version of the slicing problem,” Journal of Functional Analysis, vol. 218, no. 2, pp. 372–394, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Bobkov and F. Nazarov, “On convex bodies and log-concave probability measures with unconditional basis,” Geometric aspects of functional analysis, pp. 53–69, 2003.

    Google Scholar 

  64. S. Bobkov and F. Nazarov, “Large deviations of typical linear functionals on a convex body with unconditional basis,” Progress in Probability, pp. 3–14, 2003.

    Google Scholar 

  65. A. Giannopoulos, M. Hartzoulaki, and A. Tsolomitis, “Random points in isotropic unconditional convex bodies,” Journal of the London Mathematical Society, vol. 72, no. 3, pp. 779–798, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  66. G. Aubrun, “Sampling convex bodies: a random matrix approach,” Proceedings of the American Mathematical Society, vol. 135, no. 5, pp. 1293–1304, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  67. R. Adamczak, “A tail inequality for suprema of unbounded empirical processes with applications to markov chains,” Electron. J. Probab, vol. 13, pp. 1000–1034, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Adamczak, A. Litvak, A. Pajor, and N. Tomczak-Jaegermann, “Sharp bounds on the rate of convergence of the empirical covariance matrix,” Comptes Rendus Mathematique, 2011.

    Google Scholar 

  69. R. Adamczak, R. Latala, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann, “Tail estimates for norms of sums of log-concave random vectors,” arXiv preprint arXiv:1107.4070, 2011.

    Google Scholar 

  70. R. Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann, “Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles,” Journal of the American Mathematical Society, vol. 23, no. 2, p. 535, 2010.

    Google Scholar 

  71. Z. Bai and Y. Yin, “Limit of the smallest eigenvalue of a large dimensional sample covariance matrix,” The annals of Probability, pp. 1275–1294, 1993.

    Google Scholar 

  72. R. Kannan, L. Lovász, and M. Simonovits, “Isoperimetric problems for convex bodies and a localization lemma,” Discrete & Computational Geometry, vol. 13, no. 1, pp. 541–559, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  73. G. Paouris, “Small ball probability estimates for log-concave measures,” Trans. Amer. Math. Soc, vol. 364, pp. 287–308, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  74. J. A. Clarkson, “Uniformly convex spaces,” Transactions of the American Mathematical Society, vol. 40, no. 3, pp. 396–414, 1936.

    Article  MathSciNet  Google Scholar 

  75. Y. Gordon, “Gaussian processes and almost spherical sections of convex bodies,” The Annals of Probability, pp. 180–188, 1988.

    Google Scholar 

  76. Y. Gordon, On Milman’s inequality and random subspaces which escape through a mesh in \({\mathbb{R}}^{n}\). Springer, 1988. Geometric aspects of functional analysis (1986/87), 84–106, Lecture Notes in Math., 1317.

    Google Scholar 

  77. R. Adamczak, O. Guedon, R. Latala, A. E. Litvak, K. Oleszkiewicz, A. Pajor, and N. Tomczak-Jaegermann, “Moment estimates for convex measures,” arXiv preprint arXiv:1207.6618, 2012.

    Google Scholar 

  78. A. Pajor and N. Tomczak-Jaegermann, “Chevet type inequality and norms of sub-matrices,”

    Google Scholar 

  79. N. Srivastava and R. Vershynin, “Covariance estimation for distributions with 2+\(\setminus \) epsilon moments,” Arxiv preprint arXiv:1106.2775, 2011.

    Google Scholar 

  80. M. Rudelson and R. Vershynin, “Sampling from large matrices: An approach through geometric functional analysis,” Journal of the ACM (JACM), vol. 54, no. 4, p. 21, 2007.

    Google Scholar 

  81. A. Frieze, R. Kannan, and S. Vempala, “Fast monte-carlo algorithms for finding low-rank approximations,” Journal of the ACM (JACM), vol. 51, no. 6, pp. 1025–1041, 2004.

    Google Scholar 

  82. P. Drineas, R. Kannan, and M. Mahoney, “Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix,” SIAM Journal on Computing, vol. 36, no. 1, p. 158, 2006.

    Google Scholar 

  83. P. Drineas, R. Kannan, M. Mahoney, et al., “Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition,” SIAM Journal on Computing, vol. 36, no. 1, p. 184, 2006.

    Google Scholar 

  84. P. Drineas and R. Kannan, “Pass efficient algorithms for approximating large matrices,” in Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 223–232, Society for Industrial and Applied Mathematics, 2003.

    Google Scholar 

  85. P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, “Clustering large graphs via the singular value decomposition,” Machine Learning, vol. 56, no. 1, pp. 9–33, 2004.

    Article  MATH  Google Scholar 

  86. V. Mil’man, “New proof of the theorem of a. dvoretzky on intersections of convex bodies,” Functional Analysis and its Applications, vol. 5, no. 4, pp. 288–295, 1971.

    Google Scholar 

  87. K. Ball, “An elementary introduction to modern convex geometry,” Flavors of geometry, vol. 31, pp. 1–58, 1997.

    Google Scholar 

  88. R. Vershynin, “Approximating the moments of marginals of high-dimensional distributions,” The Annals of Probability, vol. 39, no. 4, pp. 1591–1606, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  89. P. Youssef, “Estimating the covariance of random matrices,” arXiv preprint arXiv:1301.6607, 2013.

    Google Scholar 

  90. M. Rudelson and R. Vershynin, “Smallest singular value of a random rectangular matrix,” Communications on Pure and Applied Mathematics, vol. 62, no. 12, pp. 1707–1739, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  91. R. Vershynin, “Spectral norm of products of random and deterministic matrices,” Probability theory and related fields, vol. 150, no. 3, p. 471, 2011.

    Google Scholar 

  92. O. Feldheim and S. Sodin, “A universality result for the smallest eigenvalues of certain sample covariance matrices,” Geometric And Functional Analysis, vol. 20, no. 1, pp. 88–123, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  93. T. Tao and V. Vu, “Random matrices: The distribution of the smallest singular values,” Geometric And Functional Analysis, vol. 20, no. 1, pp. 260–297, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  94. S. Mendelson and G. Paouris, “On the singular values of random matrices,” Preprint, 2012.

    Google Scholar 

  95. J. Silverstein, “The smallest eigenvalue of a large dimensional wishart matrix,” The Annals of Probability, vol. 13, no. 4, pp. 1364–1368, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  96. M. Rudelson and R. Vershynin, “Non-asymptotic theory of random matrices: extreme singular values,” Arxiv preprint arXiv:1003.2990, 2010.

    Google Scholar 

  97. G. Aubrun, “A sharp small deviation inequality for the largest eigenvalue of a random matrix,” Séminaire de Probabilités XXXVIII, pp. 320–337, 2005.

    Google Scholar 

  98. G. Bennett, L. Dor, V. Goodman, W. Johnson, and C. Newman, “On uncomplemented subspaces of lp, 1¡ p¡ 2,” Israel Journal of Mathematics, vol. 26, no. 2, pp. 178–187, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  99. A. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann, “Smallest singular value of random matrices and geometry of random polytopes,” Advances in Mathematics, vol. 195, no. 2, pp. 491–523, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  100. S. Artstein-Avidan, O. Friedland, V. Milman, and S. Sodin, “Polynomial bounds for large bernoulli sections of l1 n,” Israel Journal of Mathematics, vol. 156, no. 1, pp. 141–155, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  101. M. Rudelson, “Lower estimates for the singular values of random matrices,” Comptes Rendus Mathematique, vol. 342, no. 4, pp. 247–252, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  102. M. Rudelson and R. Vershynin, “The littlewood–offord problem and invertibility of random matrices,” Advances in Mathematics, vol. 218, no. 2, pp. 600–633, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  103. R. Vershynin, “Some problems in asymptotic convex geometry and random matrices motivated by numerical algorithms,” Arxiv preprint cs/0703093, 2007.

    Google Scholar 

  104. M. Rudelson and O. Zeitouni, “Singular values of gaussian matrices and permanent estimators,” arXiv preprint arXiv:1301.6268, 2013.

    Google Scholar 

  105. Y. Yin, Z. Bai, and P. Krishnaiah, “On the limit of the largest eigenvalue of the large dimensional sample covariance matrix,” Probability Theory and Related Fields, vol. 78, no. 4, pp. 509–521, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  106. Z. Bai and J. Silverstein, “No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices,” The Annals of Probability, vol. 26, no. 1, pp. 316–345, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  107. Z. Bai and J. Silverstein, “Exact separation of eigenvalues of large dimensional sample covariance matrices,” The Annals of Probability, vol. 27, no. 3, pp. 1536–1555, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  108. H. Nguyen and V. Vu, “Random matrices: Law of the determinant,” Arxiv preprint arXiv:1112.0752, 2011.

    Google Scholar 

  109. A. Rouault, “Asymptotic behavior of random determinants in the laguerre, gram and jacobi ensembles,” Latin American Journal of Probability and Mathematical Statistics (ALEA),, vol. 3, pp. 181–230, 2007.

    Google Scholar 

  110. N. Goodman, “The distribution of the determinant of a complex wishart distributed matrix,” Annals of Mathematical Statistics, pp. 178–180, 1963.

    Google Scholar 

  111. O. Friedland and O. Giladi, “A simple observation on random matrices with continuous diagonal entries,” arXiv preprint arXiv:1302.0388, 2013.

    Google Scholar 

  112. J. Bourgain, V. H. Vu, and P. M. Wood, “On the singularity probability of discrete random matrices,” Journal of Functional Analysis, vol. 258, no. 2, pp. 559–603, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  113. T. Tao and V. Vu, “From the littlewood-offord problem to the circular law: universality of the spectral distribution of random matrices,” Bulletin of the American Mathematical Society, vol. 46, no. 3, p. 377, 2009.

    Google Scholar 

  114. R. Adamczak, O. Guédon, A. Litvak, A. Pajor, and N. Tomczak-Jaegermann, “Smallest singular value of random matrices with independent columns,” Comptes Rendus Mathematique, vol. 346, no. 15, pp. 853 856, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  115. R. law Adamczak, O. Guédon, A. Litvak, A. Pajor, and N. Tomczak-Jaegermann, “Condition number of a square matrix with iid columns drawn from a convex body,” Proc. Amer. Math. Soc., vol. 140, pp. 987–998, 2012.

    Google Scholar 

  116. L. Erdős, B. Schlein, and H.-T. Yau, “Wegner estimate and level repulsion for wigner random matrices,” International Mathematics Research Notices, vol. 2010, no. 3, pp. 436–479, 2010.

    Google Scholar 

  117. B. Farrell and R. Vershynin, “Smoothed analysis of symmetric random matrices with continuous distributions,” arXiv preprint arXiv:1212.3531, 2012.

    Google Scholar 

  118. H. H. Nguyen, “Inverse littlewood–offord problems and the singularity of random symmetric matrices,” Duke Mathematical Journal, vol. 161, no. 4, pp. 545–586, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  119. H. H. Nguyen, “On the least singular value of random symmetric matrices,” Electron. J. Probab., vol. 17, pp. 1–19, 2012.

    Article  MathSciNet  Google Scholar 

  120. R. Vershynin, “Invertibility of symmetric random matrices,” Random Structures & Algorithms, 2012.

    Google Scholar 

  121. A. Sankar, D. Spielman, and S. Teng, “Smoothed analysis of the condition numbers and growth factors of matrices,” SIAM J. Matrix Anal. Appl., vol. 2, pp. 446–476, 2006.

    Article  MathSciNet  Google Scholar 

  122. T. Tao and V. Vu, “Smooth analysis of the condition number and the least singular value,” Mathematics of Computation, vol. 79, no. 272, pp. 2333–2352, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  123. K. P. Costello and V. Vu, “Concentration of random determinants and permanent estimators,” SIAM Journal on Discrete Mathematics, vol. 23, no. 3, pp. 1356–1371, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  124. T. Tao and V. Vu, “On the permanent of random bernoulli matrices,” Advances in Mathematics, vol. 220, no. 3, pp. 657–669, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  125. A. H. Taub, “John von neumann: Collected works, volume v: Design of computers, theory of automata and numerical analysis,” 1963.

    Google Scholar 

  126. S. Smale, “On the efficiency of algorithms of analysis,” Bull. Amer. Math. Soc.(NS), vol. 13, 1985.

    Google Scholar 

  127. A. Edelman, “Eigenvalues and condition numbers of random matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 9, no. 4, pp. 543–560, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  128. S. J. Szarek, “Condition numbers of random matrices,” J. Complexity, vol. 7, no. 2, pp. 131–149, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  129. D. Spielman and S. Teng, “Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time,” Journal of the ACM (JACM), vol. 51, no. 3, pp. 385–463, 2004.

    Google Scholar 

  130. L. Erdos, “Universality for random matrices and log-gases,” arXiv preprint arXiv:1212.0839, 2012.

    Google Scholar 

  131. J Von Neumann and H. Goldstine, “Numerical inverting of matrices of high order,” Bull. Amer. Math. Soc, vol. 53, no. 11, pp. 1021–1099, 1947.

    Article  MathSciNet  MATH  Google Scholar 

  132. A. Edelman, Eigenvalues and condition numbers of random matrices. PhD thesis, Massachusetts Institute of Technology, 1989.

    Google Scholar 

  133. P. Forrester, “The spectrum edge of random matrix ensembles,” Nuclear Physics B, vol. 402, no. 3, pp. 709–728, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  134. M. Rudelson and R. Vershynin, “The least singular value of a random square matrix is \(o({n}^{-1/2})\),” Comptes Rendus Mathematique, vol. 346, no. 15, pp. 893–896, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  135. V. Vu and T. Tao, “The condition number of a randomly perturbed matrix,” in Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 248–255, ACM, 2007.

    Google Scholar 

  136. J. Lindeberg, “Eine neue herleitung des exponentialgesetzes in der wahrscheinlichkeitsrechnung,” Mathematische Zeitschrift, vol. 15, no. 1, pp. 211–225, 1922.

    Article  MathSciNet  MATH  Google Scholar 

  137. A. Edelman and B. Sutton, “Tails of condition number distributions,” simulation, vol. 1, p. 2, 2008.

    Google Scholar 

  138. T. Sarlos, “Improved approximation algorithms for large matrices via random projections,” in Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pp. 143–152, IEEE, 2006.

    Google Scholar 

  139. T. Tao and V. Vu, “Random matrices: the circular law,” Arxiv preprint arXiv:0708.2895, 2007.

    Google Scholar 

  140. N. Pillai and J. Yin, “Edge universality of correlation matrices,” arXiv preprint arXiv:1112.2381, 2011.

    Google Scholar 

  141. N. Pillai and J. Yin, “Universality of covariance matrices,” arXiv preprint arXiv:1110.2501, 2011.

    Google Scholar 

  142. Z. Bao, G. Pan, and W. Zhou, “Tracy-widom law for the extreme eigenvalues of sample correlation matrices,” 2011.

    Google Scholar 

  143. I. Johnstone, “On the distribution of the largest eigenvalue in principal components analysis,” The Annals of statistics, vol. 29, no. 2, pp. 295–327, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  144. S. Hou, R. C. Qiu, J. P. Browning, and M. C. Wicks, “Spectrum Sensing in Cognitive Radio with Subspace Matching,” in IEEE Waveform Diversity and Design Conference, January 2012.

    Google Scholar 

  145. S. Hou and R. C. Qiu, “Spectrum sensing for cognitive radio using kernel-based learning,” arXiv preprint arXiv:1105.2978, 2011.

    Google Scholar 

  146. S. Dallaporta, “Eigenvalue variance bounds for wigner and covariance random matrices,” Random Matrices: Theory and Applications, vol. 1, no. 03, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qiu, R., Wicks, M. (2014). Non-asymptotic, Local Theory of Random Matrices. In: Cognitive Networked Sensing and Big Data. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4544-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4544-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4543-2

  • Online ISBN: 978-1-4614-4544-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics