Skip to main content

Sums of Matrix-Valued Random Variables

  • Chapter
  • First Online:

Abstract

This chapter gives an exhaustive treatment of the line of research for sums of matrix-valued random matrices. We will present eight different derivation methods in this context of matrix Laplace transform method. The emphasis is placed on the methods that will be hopefully useful to some engineering applications. Although powerful, the methods are elementary in nature. It is remarkable that some modern results on matrix completion can be simply derived, by using the framework of sums of matrix-valued random matrices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The assumption symmetric matrix is too strong for many applications. Since we often deal with complex entries, the assumption of Hermitian matrix is reasonable. This is the fatal flaw of this version. Otherwise, it is very useful.

  2. 2.

    The finite-dimensional operators and matrices are used interchangeably.

  3. 3.

    The idea of free probability is to make algebra (such as operator algebras C  ∗ -algebra, von Neumann algebras) the foundation of the theory, as opposed to other possible choices of foundations such as sets, measures, categories, etc.

  4. 4.

    In analysis the infimum or greatest lower bound of a subset S of real numbers is denoted by inf(S) and is defined to be the biggest real number that is smaller than or equal to every number in S. An important property of the real numbers is that every set of real numbers has an infimum (any bounded nonempty subset of the real numbers has an infimum in the non-extended real numbers). For example, \(\inf \left \{1, 2, 3\right \} = 1,\inf \left \{x \in \mathbb{R}, 0 < x < 1\right \} = 0\).

Bibliography

  1. R. Qiu, Z. Hu, H. Li, and M. Wicks, Cognitiv Communications and Networking: Theory and Practice. John Wiley and Sons, 2012.

    Google Scholar 

  2. G. Lugosi, “Concentration-of-measure inequalities,” 2009.

    Google Scholar 

  3. A. Leon-Garcia, Probability, Statistics, and Random Processing for Electrical Engineering. Pearson-Prentice Hall, third edition ed., 2008.

    Google Scholar 

  4. T. Tao, Topics in Random Matrix Thoery. American Mathematical Society, 2012.

    Google Scholar 

  5. F. Zhang, Matrix Theory. Springer Ver, 1999.

    Google Scholar 

  6. D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, 2009.

    Google Scholar 

  7. N. J. Higham, Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, 2008.

    Google Scholar 

  8. R. Bhatia, Positive Definite Matrices. Princeton University Press, 2007.

    Google Scholar 

  9. R. Bhatia, Matrix analysis. Springer, 1997.

    Google Scholar 

  10. R. Vershynin, “A note on sums of independent random matrices after ahlswede-winter.” http://www-personal.umich.edu/~romanv/teaching/reading-group/ahlswede-winter.pdf. Seminar Notes.

  11. R. Ahlswede and A. Winter, “Strong converse for identification via quantum channels,” Information Theory, IEEE Transactions on, vol. 48, no. 3, pp. 569–579, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Oliveira, “Sums of random hermitian matrices and an inequality by rudelson,” Elect. Comm. Probab, vol. 15, pp. 203–212, 2010.

    MATH  Google Scholar 

  13. J. Tropp, “From joint convexity of quantum relative entropy to a concavity theorem of lieb,” in Proc. Amer. Math. Soc, vol. 140, pp. 1757–1760, 2012.

    Google Scholar 

  14. J. Tropp, “Freedman’s inequality for matrix martingales,” Electron. Commun. Probab, vol. 16, pp. 262–270, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Lieb, “Convex trace functions and the wigner-yanase-dyson conjecture,” Advances in Mathematics, vol. 11, no. 3, pp. 267–288, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Tropp, “User-friendly tail bounds for sums of random matrices,” Foundations of Computational Mathematics, vol. 12, no. 4, pp. 389–434, 2011.

    Article  MathSciNet  Google Scholar 

  17. P. Hsu, “On the distribution of roots of certain determinantal equations,” Annals of Human Genetics, vol. 9, no. 3, pp. 250–258, 1939.

    Article  Google Scholar 

  18. U. Grenander, Probabilities on Algebraic Structures. New York: Wiley, 1963.

    MATH  Google Scholar 

  19. N. Harvey, “C&o 750: Randomized algorithms winter 2011 lecture 11 notes.” http://www.math.uwaterloo.ca/~harvey/W11/, Winter 2011.

  20. N. Harvey, “Lecture 12 concentration for sums of random matrices and lecture 13 the ahlswede-winter inequality.” http://www.cs.ubc.ca/~nickhar/W12/, Febuary 2012. Lecture Notes for UBC CPSC 536N: Randomized Algorithms.

  21. M. Rudelson, “Random vectors in the isotropic position,” Journal of Functional Analysis, vol. 164, no. 1, pp. 60–72, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Wigderson and D. Xiao, “Derandomizing the ahlswede-winter matrix-valued chernoff bound using pessimistic estimators, and applications,” Theory of Computing, vol. 4, no. 1, pp. 53–76, 2008.

    Article  MathSciNet  Google Scholar 

  23. D. Gross, Y. Liu, S. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Physical review letters, vol. 105, no. 15, p. 150401, 2010.

    Google Scholar 

  24. D. DUBHASHI and D. PANCONESI, Concentration of measure for the analysis of randomized algorithms. Cambridge Univ Press, 2009.

    Google Scholar 

  25. H. Ngo, “Cse 694: Probabilistic analysis and randomized algorithms.” http://www.cse.buffalo.edu/~hungngo/classes/2011/Spring-694/lectures/l4.pdf, Spring 2011. SUNY at Buffalo.

  26. O. Bratteli and D. W. Robinson, Operator Algebras amd Quantum Statistical Mechanics I. Springer-Verlag, 1979.

    Google Scholar 

  27. D. Voiculescu, K. Dykema, and A. Nica, Free Random Variables. American Mathematical Society, 1992.

    Google Scholar 

  28. P. J. Schreiner and L. L. Scharf, Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals. Ca, 2010.

    Google Scholar 

  29. J. Lawson and Y. Lim, “The geometric mean, matrices, metrics, and more,” The American Mathematical Monthly, vol. 108, no. 9, pp. 797–812, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Gross, “Recovering low-rank matrices from few coefficients in any basis,” Information Theory, IEEE Transactions on, vol. 57, no. 3, pp. 1548–1566, 2011.

    Article  Google Scholar 

  31. B. Recht, “A simpler approach to matrix completion,” Arxiv preprint arxiv:0910.0651, 2009.

    Google Scholar 

  32. B. Recht, “A simpler approach to matrix completion,” The Journal of Machine Learning Research, vol. 7777777, pp. 3413–3430, 2011.

    MathSciNet  Google Scholar 

  33. R. Ahlswede and A. Winter, “Addendum to strong converse for identification via quantum channels,” Information Theory, IEEE Transactions on, vol. 49, no. 1, p. 346, 2003.

    Google Scholar 

  34. R. Latala, “Some estimates of norms of random matrices,” AMERICAN MATHEMATICAL SOCIETY, vol. 133, no. 5, pp. 1273–1282, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Seginer, “The expected norm of random matrices,” Combinatorics Probability and Computing, vol. 9, no. 2, pp. 149–166, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Massart, Concentration Inequalities and Model Selection. Springer, 2007.

    Google Scholar 

  37. M. Ledoux and M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes. Springer, 1991.

    Google Scholar 

  38. R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge Univ Press, 1995.

    Google Scholar 

  39. A. Gittens and J. Tropp, “Tail bounds for all eigenvalues of a sum of random matrices,” Arxiv preprint arXiv:1104.4513, 2011.

    Google Scholar 

  40. E. Lieb and R. Seiringer, “Stronger subadditivity of entropy,” Physical Review A, vol. 71, no. 6, p. 062329, 2005.

    Google Scholar 

  41. D. Hsu, S. Kakade, and T. Zhang, “Tail inequalities for sums of random matrices that depend on the intrinsic dimension,” 2011.

    Google Scholar 

  42. B. Schoelkopf, A. Sola, and K. Mueller, Kernl principal compnent analysis, ch. Kernl principal compnent analysis, pp. 327–352. MIT Press, 1999.

    Google Scholar 

  43. A. Magen and A. Zouzias, “Low rank matrix-valued chernoff bounds and approximate matrix multiplication,” in Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1422–1436, SIAM, 2011.

    Google Scholar 

  44. S. Minsker, “On some extensions of bernstein’s inequality for self-adjoint operators,” Arxiv preprint arXiv:1112.5448, 2011.

    Google Scholar 

  45. G. Peshkir and A. Shiryaev, “The khintchine inequalities and martingale expanding sphere of their action,” Russian Mathematical Surveys, vol. 50, no. 5, pp. 849–904, 1995.

    Article  MathSciNet  Google Scholar 

  46. N. Tomczak-Jaegermann, “The moduli of smoothness and convexity and the rademacher averages of trace classes,” Sp (1 [p¡.) Studia Math, vol. 50, pp. 163–182, 1974.

    Google Scholar 

  47. F. Lust-Piquard, “Inégalités de khintchine dans c p (1¡ p¡),” CR Acad. Sci. Paris, vol. 303, pp. 289–292, 1986.

    MathSciNet  MATH  Google Scholar 

  48. G. Pisier, “Non-commutative vector valued lp-spaces and completely p-summing maps,” Astérisque, vol. 247, p. 131, 1998.

    MathSciNet  Google Scholar 

  49. A. Buchholz, “Operator khintchine inequality in non-commutative probability,” Mathematische Annalen, vol. 319, no. 1, pp. 1–16, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. So, “Moment inequalities for sums of random matrices and their applications in optimization,” Mathematical programming, vol. 130, no. 1, pp. 125–151, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  51. N. Nguyen, T. Do, and T. Tran, “A fast and efficient algorithm for low-rank approximation of a matrix,” in Proceedings of the 41st annual ACM symposium on Theory of computing, pp. 215–224, ACM, 2009.

    Google Scholar 

  52. N. Nguyen, P. Drineas, and T. Tran, “Matrix sparsification via the khintchine inequality,” 2009.

    Google Scholar 

  53. M. de Carli Silva, N. Harvey, and C. Sato, “Sparse sums of positive semidefinite matrices,” 2011.

    Google Scholar 

  54. L. Mackey, M. Jordan, R. Chen, B. Farrell, and J. Tropp, “Matrix concentration inequalities via the method of exchangeable pairs,” Arxiv preprint arXiv:1201.6002, 2012.

    Google Scholar 

  55. L. Rosasco, M. Belkin, and E. D. Vito, “On learning with integral operators,” The Journal of Machine Learning Research, vol. 11, pp. 905–934, 2010.

    MATH  Google Scholar 

  56. L. Rosasco, M. Belkin, and E. De Vito, “A note on learning with integral operators,”

    Google Scholar 

  57. P. Drineas and A. Zouzias, “A note on element-wise matrix sparsification via matrix-valued chernoff bounds,” Preprint, 2010.

    Google Scholar 

  58. R. CHEN, A. GITTENS, and J. TROPP, “The masked sample covariance estimator: An analysis via matrix concentration inequalities,” Information and Inference: A Journal of the IMA, pp. 1–19, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qiu, R., Wicks, M. (2014). Sums of Matrix-Valued Random Variables. In: Cognitive Networked Sensing and Big Data. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4544-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4544-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4543-2

  • Online ISBN: 978-1-4614-4544-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics