Skip to main content

Formation Establishment, Maintenance, and Control

  • Chapter
  • First Online:
Distributed Space Missions for Earth System Monitoring

Part of the book series: Space Technology Library ((SPTL,volume 31))

Abstract

This chapter presents continuous and impulsive control methods for formation initialization, maintenance, and reconfiguration. For two-body, circular reference orbits, elementary impulsive control schemes are developed based on the available state transition matrix for relative motion. Formation propagation and control models are presented in the space of differential orbital elements and Cartesian/curvilinear coordinate systems. The J 2-perturbation effects are conveniently modeled with the mean elements and their secular drift rates. Methods for accommodating the disturbance due to the J 2 by modification of the relative orbit initial conditions are discussed. Examples provided include multi-impulse optimal formation initialization maneuvers and a novel inter-satellite fuel balancing concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfriend KT, Vadali SR, Gurfil P, How JP, Breger LS (2010) Spacecraft formation flying: dynamics, control, and navigation. Elsevier astrodynamics series. Elsevier, Amsterdam/Boston/London

    Google Scholar 

  2. Breger L, How J (2005) J2-modified GVE-based MPC for formation flying spacecraft. In: Proceedings of the AIAA GNC conference, AIAA, San Francisco, CA. AIAA–2005–5833

    Google Scholar 

  3. Brouwer D (1959) Solution of the problem of artificial satellite theory without drag. Astron J 64:378–397

    Article  MathSciNet  Google Scholar 

  4. Clohessy WH, Wiltshire RS (1960) Terminal guidance system for satellite rendezvous. J Aerosp Sci 27:653–658, 674

    Google Scholar 

  5. Garrison JL, Gardner TG, Axelrad P (1995) Relative motion in highly elliptical orbits. Adv Astron Sci 89(2):1359–1376. Also Paper AAS 95-194 of the AAS/AIAA Space Flight Mechanics Meeting

    Google Scholar 

  6. Gill PE, Murray W, Saunders MA (2008) User’s guide to SNOPT version 7: software for large-scale nonlinear programming. Department of Mathematics/University of California, San Diego/La Jolla, CA, pp 92093–920112

    Google Scholar 

  7. Gim DW, Alfriend KT (2003) State transition matrix of relative motion for the perturbed noncircular reference orbit. J Guidance Control Dyn 26(6):956–971

    Article  Google Scholar 

  8. How JP, Tillerson M (2001) Analysis of the impact of sensing noise on formation control. In: American control conference (ACC), Arlington, VA

    Google Scholar 

  9. Kumar R, Seywald H (1995) Fuel-optimal station keeping via differential inclusions. J Guidance Control Dyn 18(5):1156–1162

    Article  MATH  Google Scholar 

  10. Lawden DF (1963) Optimal trajectories for space navigation. Butterworths, London

    MATH  Google Scholar 

  11. McLaughlin CA, Alfriend KT, Lovell TA (2002) Analysis of reconfiguration algorithms for formation flying experiments. In: International symposium on formation flying missions and technologies, Toulouse

    Google Scholar 

  12. Montenbruck O, D’Amico S, Ardaens JS, Wermuth M (2011) Carrier phase differential gps for leo formation flying – the prisma and tandem-x flight experience. In: Paper AAS 11–489,AAS astrodynamics specialist conference, Girdwood, AK

    Google Scholar 

  13. Sabatini M, Izzo D, Bevilacqua R (2008) Special inclinations allowing minimal drift orbits for formation flying satellites. J Guidance Control Dyn 31(1):94–100

    Article  Google Scholar 

  14. Schaub H, Alfriend KT (2001) J 2 invariant relative orbits for formation flying. Celest Mech Dyn Astron 79(2):77–95

    Article  MATH  Google Scholar 

  15. Schaub H, Junkins JL (2003) Analytical mechanics of space systems. AIAA education series. American Institute of Aeronautics and Astronautics, Reston

    Book  Google Scholar 

  16. Schaub H, Vadali SR, Junkins JL, Alfriend KT (2000) Spacecraft formation flying using mean orbital elements. J Astron Sci 48(1):69–87

    Google Scholar 

  17. Sengupta P, Vadali SR, Alfriend KT (2008) Averaged relative motion and applications to formation flight near perturbed orbits. J Guidance Control Dyn 31(2):258–272

    Article  Google Scholar 

  18. Tillerson M, Breger L, How JP (2003) Distributed coordination and control of formation flying spacecraft. In: Proceedings of the IEEE American control conference, Denver, CO, pp 1740–1745

    Google Scholar 

  19. Tschauner JFA, Hempel PR (1965) Rendezvous zu einemin elliptischer bahn umlaufenden ziel. Astronautica Acta 11(2):104–109

    MATH  Google Scholar 

  20. Vadali SR (2002) An analytical solution for relative motion of satellites. In: Proceeding of the 5th dynamics and control of systems and structures in space conference, Cranfield University, Cranfield

    Google Scholar 

  21. Vadali SR, Schaub H, Alfriend KT (1999) Initial conditions and fuel-optimal control for formation flying of satellites. In: Proceedings of the AIAA GNC conference, AIAA, Portland, OR. AIAA 99–4265

    Google Scholar 

  22. Vadali SR, Alfriend KT, Vaddi SS (2000) Hill’s equations, mean orbital elements, and formation flying of satellites. Adv Astron Sci 106:187–204. Also Paper AAS 00–258 of the Richard H. Battin Astrodynamics Symposium

    Google Scholar 

  23. Vadali SR, Vaddi SS, Alfriend KT (2002) An intelligent control concept for formation flying satellite constellations. Int J Nonlinear Robust Control 12:97–115

    Article  MATH  Google Scholar 

  24. Vadali SR, Sengupta P, Yan H, Alfriend KT (2008) Fundamental frequencies of satellite relative motion and control of formations. J Guidance Control Dyn 31(5):1239–1248

    Article  Google Scholar 

  25. Vadali SR, Yan H, Alfriend KT (2008) Formation maintenance and reconfiguration using impulsive control. In: AIAA/AAS astrodynamics specialists meeting, Honolulu, HI. Paper No. AIAA-08-7359

    Google Scholar 

  26. Vaddi SS, Alfriend KT, Vadali SR, Sengupta P (2005) Formation establishment and reconfiguration using impulsive control. J Guidance Control Dyn 28(2):262–268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas R. Vadali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vadali, S.R., Alfriend, K.T. (2013). Formation Establishment, Maintenance, and Control. In: D'Errico, M. (eds) Distributed Space Missions for Earth System Monitoring. Space Technology Library, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4541-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4541-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4540-1

  • Online ISBN: 978-1-4614-4541-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics