Advertisement

P-Band Distributed SAR

  • Giancarmine Fasano
  • Marco D’Errico
  • Giovanni Alberti
  • Stefano Cesare
  • Gianfranco Sechi
Chapter
Part of the Space Technology Library book series (SPTL, volume 31)

Abstract

This chapter discusses a spaceborne P-band synthetic aperture radar concept based on a distributed architecture and formation flying technologies. This approach can in principle allow overcoming physical constraints that limit the performance of monolithic SARs, leading in the P-band case to huge antennas and hard swath/resolution trade-offs. The proposed SAR is based on a larger transmitting satellite and a set of lightweight receiving-only platforms. This architecture also enables multi-mission capabilities. In particular, forests observation and biomass estimation based on side-looking SAR data can be in theory combined with near nadir interferometric ice sounding. Payload concept is clarified, and a preliminary performance analysis in terms of ambiguity and coverage is proposed. Then, mission analysis, preliminary spacecraft design, and formation control architecture are briefly described.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Pulse Repetition Frequency Biomass Estimation Star Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Le Toan T, Quegan S, Davidson MWJ, Balzter H, Paillou P, Papathanassiou K, Plummer S, Rocca F, Saatchi S, Shugart H, Ulander L (2011) The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115(11):2850–2860, ISSN 0034-4257, 10.1016/j.rse.2011.03.020CrossRefGoogle Scholar
  2. 2.
    Hélière F, Lin CC, Fois F, Davidson M, Thompson A, Bensi P (2009) BIOMASS: a P-band SAR earth explorer core mission candidate. In: Proceedings of the IEEE radar conference, Pasadena, CA, USA, pp 1–6, May 2009Google Scholar
  3. 3.
    Ramongassie S, Castiglioni SK, Lorenzo J, Labiole E, Baudasse Y, Svara C, Luigi C, Heliere F, Mangenot C, Klooster KV, Fonseca N, Diez H, Belot D (2010) Spaceborne P-band SAR for BIOMASS mission. In: Proceedings of the IEEE international geoscience and remote sensing symposium (IGARSS), pp 2880–2883, 25–30 Jul 2010, doi:  10.1109/IGARSS.2010.5653156
  4. 4.
    Dobson C et al (1992) Dependence of radar backscatter on coniferous forest biomass. IEEE Trans Geosci Remote Sens 30(2):412–415CrossRefGoogle Scholar
  5. 5.
    LeToan T et al (1992) Relating forest biomass to SAR data. IEEE Trans Geosci Remote Sens 30(2):403–411CrossRefGoogle Scholar
  6. 6.
    Beaudoin A, Le Toan T, Goze S, Nezry E, Lopes A, Mougin E, Hsu CC, Han HC, Kong JA, Shin RT (1994) Retrieval of forest biomass from SAR data. Int J Remote Sens 15:2777–2796CrossRefGoogle Scholar
  7. 7.
    Rignot E, Zimmermann R, van Zyl JJ (1995) Spaceborne applications of P band imaging radars for measuring forest biomass. IEEE Trans Geosci Remote Sens 33(5):1162–1169CrossRefGoogle Scholar
  8. 8.
    Santos JR, Freitas CC, Araujo LS, Dutra LV, Mura JC, Gama FF, Soler LS, Sant’Anna SJS (2003) Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest. Remote Sens Environ 87(4):482–493, ISSN 0034–4257, 10.1016/j.rse.2002.12.001CrossRefGoogle Scholar
  9. 9.
    Sandberg G, Ulander LMH, Fransson JES, Holmgren J, Le Toan T (2011) L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sens Environ 115(11):2874–2886, ISSN 0034–4257, 10.1016/j.rse.2010.03.018CrossRefGoogle Scholar
  10. 10.
    Saatchi S, Halligan K, Despain DG, Crabtree RL (2007) Estimation of forest fuel load from radar remote sensing. IEEE Trans Geosci Remote Sens 45(6):1726–1740CrossRefGoogle Scholar
  11. 11.
    Kramer HJ (2001) Observation of the earth and its environment: survey of missions and sensors, 4th edn. Springer-Verlag, BerlinGoogle Scholar
  12. 12.
    Herique A, Kofman W, Bauer P, Remy F, Phalippou L (1999) A spaceborne ground penetrating radar: MIMOSA. In: Proceedings of the geoscience and remote sensing symposium (IGARSS ’99), Hamburg, Germany, vol 1, 28 June–2 July 1999, pp 473–475Google Scholar
  13. 13.
    Bruniquel J, Houpeit A, Richard J, Phalippou L, Dechambre M, Guijarro J (2004) Spaceborne P-band radar for ice-sheet sounding: design and performances. In: Proceedings of the IEEE international geoscience and remote sensing symposium (IGARSS ’04), Anchorage, Alaska, USA, vol 5, 20–24 Sep 2004, pp 2834–2837Google Scholar
  14. 14.
    Rodriguez E, Freeman A, Jezek K, Wu X (2006) A new technique for interferometric sounding of ice sheets. In: Proceedings of the European conference on synthetic aperture radar (EUSAR), Dresden, GermanyGoogle Scholar
  15. 15.
    Jezek K, Rodríguez E, Gogineni P, Freeman A, Curlander J, Wu X, Paden J, Allen C (2006) Glaciers and ice sheets mapping orbiter concept. J Geophys Res 111(E6):E06S20. doi: 10.1029/2005JE002572 CrossRefGoogle Scholar
  16. 16.
    Jezek K, Gogineni P, Wu X, Rodriguez E, Rodriguez F, Sonntag J, Freeman A, Hoch A, Forster R (2008) Global ice sheet mapping orbiter concept: airborne experiments. In: Proceedings of the 7th European conference on synthetic aperture radar Friedrichshafen, Germany, 2008, vol 2, pp 99–102Google Scholar
  17. 17.
    Jezek KC, Gogineni S, Wu X, Rodriguez E, Rodriguez-Morales F, Hoch A, Freeman A, Sonntag JG (2011) Two-frequency radar experiments for sounding glacier ice and mapping the topography of the glacier bed. IEEE Trans Geosci Remote Sens 49(3):920–929CrossRefGoogle Scholar
  18. 18.
    Goodman NA, Sih Chung L, Rajakrishna D, Stiles JM (2002) Processing of multiple receiver spaceborne arrays for wide-area SAR. IEEE Trans Geosci Remote Sens 40(4):841–852CrossRefGoogle Scholar
  19. 19.
    Goodman NA, Stiles JM (2003) Resolution and synthetic aperture characterization of sparse radar arrays. IEEE Trans Aerosp Electron Syst 39(3):921–935CrossRefGoogle Scholar
  20. 20.
    Krieger G, Moreira A (2006) Spaceborne bi- and multistatic SAR: potential and challenges. IEE Proc Radar Sonar Navig 153(3):184–198CrossRefGoogle Scholar
  21. 21.
    Li Z, Bao Z, Wang H, Liao G (2006) Performance improvement for constellation SAR using signal processing techniques. IEEE Trans Aerosp Electron Syst 42(2):436–452CrossRefGoogle Scholar
  22. 22.
    Curlander JC, McDonough RN (1991) Synthetic aperture radar: systems and signal processing. Wiley, New York. ISBN 047185770X, 9780471857709MATHGoogle Scholar
  23. 23.
    Krieger G, Gebert N, Moreira A (2004) Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE Geosci Remote Sens Lett 1(4):260–264CrossRefGoogle Scholar
  24. 24.
    ESA (2006) SOW for the phase 0 study of the six candidate earth explorer core missions, issue 1 revision 0—EOP-SFP/2006-09-1240, 2006Google Scholar
  25. 25.
    Alberti G, Fasano G, D’Errico M, Cesare S, Sechi G, Cosmo M, Formaro R, Rioli Q (2008) Preliminary performance analysis and design of a distributed P-band synthetic aperture radar. In: Proceedings of IEEE 2008 radar conference, 26–30 May 2008, Rome. ISSN: 1097–5659, Print ISBN: 978-1-4244-1538-0. doi:  10.1109/RADAR.2008.4721015
  26. 26.
    Massonnet D (2001) Capabilities and limitations of the interferometric cartwheel. IEEE Trans Geosci Remote Sens 39(3):506–520CrossRefGoogle Scholar
  27. 27.
    Moccia A, Rufino G (2001) Spaceborne along-track SAR interferometry: performance analysis and mission scenarios. IEEE Trans Aerosp Electron Syst 37(1):199–213CrossRefGoogle Scholar
  28. 28.
    Ruimy A, Saugier B, Dedieu G (1995) TURC—a diagnostic model of terrestrial gross and net primary productivity based on remote sensing data. In: Guyot G (ed.) Proceedings of the international colloquium photosynthesis and remote sensing, Montpellier, France, pp 261–267, 1995Google Scholar
  29. 29.
    Clohessy WH, Wiltshire RS (1960) Terminal guidance for satellite rendezvous. J Aerosp Sci 27(9):653–658MATHGoogle Scholar
  30. 30.
    Fasano G, Alberti G, D’Errico M, Cesare S, Sechi G, Mazzini L, Pavia P, Torre A, Esposti M.L., Zin A, Matticari G, Bavaro M, Dionisio C, Cosmo M, Formaro R, Rioli Q (2008) An innovative spaceborne P-band mission based on small satellites and formation flying technologies. In: Proceedings of the 3rd international symposium on formation flying, missions and technologies, 23–25 Apr 2008, ESA/ESTEC Noordwijk. ISBN 978-92-9221-218-6, ISSN 1609-042XGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giancarmine Fasano
    • 1
  • Marco D’Errico
    • 2
  • Giovanni Alberti
    • 3
  • Stefano Cesare
    • 4
  • Gianfranco Sechi
    • 4
  1. 1.Department of Aerospace EngineeringUniversity of Naples “Federico II”NapoliItaly
  2. 2.Department of Aerospace and Mechanical EngineeringSecond University of NaplesAversa (CE)Italy
  3. 3.Consortium for the Research on Advanced Remote Sensing Systems (CORISTA)NapoliItaly
  4. 4.Thales Alenia Space ItaliaTorinoItaly

Personalised recommendations