Skip to main content

Part of the book series: Space Technology Library ((SPTL,volume 31))

Abstract

SABRINA mission was conceived as a dual satellite mission based on COSMO/SkyMed constellation to perform and exploit bistatic Synthetic Aperture Radar in both interferometric and large baseline modes. Analysis of identified application and techniques are presented along with the relative trajectory selection, pointing strategies and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moccia A, Rufino G, D’Errico M et al (2001) BISSAT: a bistatic SAR for earth observation. Phase A study – final Report, ASI research contract I/R/213/00

    Google Scholar 

  2. Sabatini P, Aceti R, Lupi T, Annoni G, Della Vedova F, De Cosmo V, Viola F (2001) MITA: in-orbit results of the Italian small platform and the first earth observation mission, Hyseo. In: Proceedings of the 3rd international symposium of the IAA on small satellites for earth observation, Berlin, Germany, pp 71–74

    Google Scholar 

  3. Renga A, Moccia A, D’Errico M et al (2008) From the expected scientific applications to the functional specifications, products and performance of the SABRINA mission. In: IEEE radar conference, Rome, Italy, pp 1117–1122

    Google Scholar 

  4. [Online] available: http://rsdo.gsfc.nasa.gov/images/catalog2010/prima.pdf

  5. Moccia A, Renga A (2011) Spatial resolution of bistatic synthetic aperture radar: impact of acquisition geometry on imaging performance. IEEE Trans Geosci Remote Sens 49(10):3487–3503

    Article  Google Scholar 

  6. Willis NJ (1991) Bistatic radar. Artech House, Boston

    Google Scholar 

  7. Renga A, Moccia A (2009) Effects of orbit and pointing geometry of a spaceborne formation for monostatic-bistatic radargrammetry on terrain elevation measurement accuracy. Sensors 9:175–195

    Article  Google Scholar 

  8. Italian Space Agency (2007) COSMO-SkyMed system description & user guide. ASI-CSM-ENG-RS-093-A, 47pp

    Google Scholar 

  9. [Online] Available: http://earth-info.nga.mil/publications/specs

  10. Moccia A, Chiacchio N, Capone A (2000) Spaceborne bistatic synthetic aperture radar for remote sensing applications. Int J Remote Sens 21(18):3395–3414

    Article  Google Scholar 

  11. Moccia A (2008) Fundamentals of bistatic synthetic aperture radar. In: Cherniakov M (ed) Bistatic radar: emerging technology. Wiley, Chichester

    Google Scholar 

  12. Khenchaf A (2001) Bistatic scattering and depolarization by randomly rough surfaces: application to the natural rough surfaces in X-band. Waves Random Media 11(2):61–89

    Article  MATH  Google Scholar 

  13. Rufino G, Moccia A (1997) A procedure for attitude determination of a bistatic SAR by using raw data. 48th international astronautical federation conference. Paper IAF-97-B.2.04, pp 1–8

    Google Scholar 

  14. Moccia A, Rufino G (2001) Spaceborne along-track SAR interferometry performance analysis and mission scenarios. IEEE Trans Aerosp Electron Syst 37(1):199–213

    Article  Google Scholar 

  15. Breit H, Eineder M, Holzner J, Runge H, Bamler R (2003) Traffic monitoring using SRTM along-track interferometry. In: Proceedings of the IGARSS03, vol 2, Toulouse, France, 21–25 July 2003, pp 1187–1189

    Google Scholar 

  16. Meyer F, Hinz S, Laika A, Bamler R (2005) A-priori information driven detection of moving objects for traffic monitoring by spaceborne SAR. Int Arch Photogram Remote Sens Spat Inf Sci 36:89–94

    Google Scholar 

  17. Palubinskas G, Runge H (2008) Detection of traffic congestion in SAR imagery. In: Proceedings of Eusar 2008, Friedrichshafen, Germany, 4pp

    Google Scholar 

  18. D’Errico M, Moccia A, Vetrella S (1994) Attitude requirements of a twin satellite system for the global topography mission. In: 45th Congress of the international astronautical federation, Jerusalem, Israel, 9–14 Oct 1994, p 10

    Google Scholar 

  19. Zebker HA, Farr TG, Salazar RP, Dixon TH (1994) Mapping the world’s topography using radar interferometry: the TOPSAT mission. Proceedings of the IEEE 82:1774–1786

    Google Scholar 

  20. Massonnet D (2001) Capabilities and limitations of the interferometric cartwheel. IEEE Trans Geosci Remote Sens 39:506–520

    Article  Google Scholar 

  21. Massonnet D (2001) The interferometric cartwheel, a constellation of low cost receiving satellites to produce radar images that can be coherently combines. Int J Remote Sens 22:2413–2430

    Article  Google Scholar 

  22. Krieger G, Fiedler H, Mittermayer J, Papathanassiou K, Moreira A (2003) Analysis of multistatic configurations for spaceborne SAR interferometry. IEE Proc 150:87–96

    Google Scholar 

  23. Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. Trans Geosci Remote Sens 45(11):3317–3341

    Article  Google Scholar 

  24. Moccia A, Fasano G (2005) Analysis of spaceborne tandem configurations for complementing COSMO with SAR interferometry. EURASIP J Appl Signal Process 2005(20):3304–3315

    Article  MATH  Google Scholar 

  25. Fasano G, D’Errico M (2006) Relative motion model accounting for J2 effects: derivation and application to the design of formation-based INSAR missions. In: Proceedings of the 27th IEEE aerospace conference, Big Sky, Montana, 4–11 Mar 2006, p 12

    Google Scholar 

  26. Fasano G, D’Errico M (2006) Design of formation missions for Earth observation: relative motion model, validation, and application. In: Proceedings of the 57th international astronautical congress. Paper IAC-06-C1.P.8.1, Valencia, Spain, 2–6 Oct 2006

    Google Scholar 

  27. Fasano G, D’Errico M (2009) Modeling orbital relative motion to enable formation design from application requirements. Celest Mech Dyn Astron 105(1–3):113–139

    Article  MathSciNet  MATH  Google Scholar 

  28. D’Errico M, Fasano G (2008) Design of interferometric and bistatic mission phases of COSMO/SkyMed constellation. Acta Astronaut 62(2–3):97–111, ISSN 0094–5765

    Article  Google Scholar 

  29. Moccia A, D’Errico M (2008) Spaceborne bistatic synthetic aperture radar, Chap 2. In: Cherniakov M (ed) Bistatic radars: emerging technology. Wiley, Chichester, pp 27–66. ISBN 978-0-470-02631-1

    Chapter  Google Scholar 

  30. Moccia A, D’Errico M (2008) Bistatic SAR for earth observation, Chap 3. In: Cherniakov M (ed) Bistatic radars: emerging technology. Wiley, Chichester, pp 67–94. ISBN 978-0-470-02631-1

    Chapter  Google Scholar 

  31. D’Errico M, Fasano G (2010) Relative trajectory design for bistatic SAR missions. In: Sandau R, Roeser H-P, Valenzuela A (eds) Small satellite missions for Earth observation. Springer, Berlin-Heidelberg, pp 145–154

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Moccia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moccia, A., D’Errico, M., Renga, A., Fasano, G. (2013). Sabrina. In: D'Errico, M. (eds) Distributed Space Missions for Earth System Monitoring. Space Technology Library, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4541-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4541-8_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4540-1

  • Online ISBN: 978-1-4614-4541-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics