Skip to main content

The Sensory Ecology of Foraging for Animal Prey

  • Chapter
  • First Online:
Leaping Ahead

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Many prosimians eat animal food, including arthropods and small vertebrates. This chapter explores the clues prosimians rely on to detect and identify animal prey, and their sensory adaptations for predation. Available observational and experimental datasets suggest that acoustic and visual (especially motion) cues, as well as olfactory and tactile ones, to a lesser degree, play a role. Different sensory channels are likely to operate in prey perception over different distances. It appears that acoustic cues first draw the animal’s attention to prey at a distance, while visual cues are used for precise localization at closer range, and olfactory cues operate at very close range to allow the animal to abandon attacks on unpalatable arthropods. Future work should address the role of sensory ecology in shaping prey selection and resource partitioning in prosimians.

Resume

De nombreux prosimiens se nourrissent de la nourriture animale comme les arthropodes et les petits vertébrés. Ce chapitre explore les indices des prosimiens sur la capacité de détecter et classifier les proies animales et les adaptations sensorielles à la prédation chez les prosimiens. L’ensemble des données expérimentales et celles observées suggèrent que les signaux acoustiques et visuels (spécialement les mouvements) et dans la moindre mesure, les signaux olfactifs et tactiles jouent un rôle. Ainsi différents canaux sensoriels fonctionneraient probablement pour la perception des proies sur des distances différentes. En théorie, les signaux acoustiques sont les premiers à attirer l’attention de l’animale sur une proie à grande distance, par contre les signaux visuels sont utilisés pour la localisation précise des proies qui se trouvent à une distance très proche alors que les signaux olfactifs sont potentiellement utilisées à de très courte distance pour abandonner les attaques sur les arthropodes désagréables. En perspectives, je suggère d’aborder le rôle de l’écologie sensorielle pour façonner la sélection des proies et l’allocation des ressources chez prosimiens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernays EA, Wcislo WT (1994) Sensory capabilities, information processing and resource ­specialization. Q Rev Biol 69:187–204

    Article  Google Scholar 

  • Cartmill M (1972) Arboreal adaptations and the origin of the order primates. In: Tuttle R (ed) The functional and evolutionary biology of the primates. Aldine Atherton, Chicago, pp 97–122

    Google Scholar 

  • Cartmill M (1974) Rethinking primate origins. Science 184:436–443

    Article  PubMed  CAS  Google Scholar 

  • Cartmill M (1992) New views on primate origins. Evol Anthropol 1:105–111

    Article  Google Scholar 

  • Charles-Dominique P, Martin RD (1972) Behaviour and ecology of nocturnal prosimians: field studies in Gabon and Madagascar. Parey, Berlin

    Google Scholar 

  • Churchfield S (1990) The natural history of shrews. Comstock, Ithaca

    Google Scholar 

  • Charles-Dominique P (1977) Ecology and behaviour of nocturnal primates. Columbia University Press, New York

    Google Scholar 

  • Cochran B, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408

    Article  PubMed  CAS  Google Scholar 

  • Coleman MN, Ross CF (2004) Primate auditory diversity and its influence on hearing performance. Anat Rec A Discov Mol Cell Evol Biol 281A:1123–1137

    Article  Google Scholar 

  • Crompton RH (1995) Visual predation, habitat structure and the ancestral primate niche. In: Alterman L, Doyle GA, Izard MK (eds) Creatures of the dark: the nocturnal prosimians. Plenum, New York, pp 11–30

    Google Scholar 

  • Dkhissi-Benyahya O, Szel A, Degrip WJ, Cooper HM (2001) Short and mid-wavelength cone distribution in a nocturnal strepsirhine primate (Microcebus murinus). J Comp Neurol 438:490–504

    Article  PubMed  CAS  Google Scholar 

  • Dominy NJ, Lucas PW, Osorio D, Yamashita N (2001) The sensory ecology of primate food perception. Evol Anthropol 10:171–186

    Article  Google Scholar 

  • Doyle GA (1974) Behavior of prosimians. In: Schrier AM, Stollnitz F (eds) Behavior of nonhuman primates. Academic, New York, pp 155–353

    Google Scholar 

  • von der Emde G, Bleckmann H (1998) Finding food: senses involved in foraging for insect larvae in the electric fish Gnathonemus petersii. J Exp Biol 201:969–980

    PubMed  Google Scholar 

  • Endler JA (1991) Interactions between predators and prey. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, 3rd edn. Blackwell, Oxford, pp 169–196

    Google Scholar 

  • Erickson CJ (1991) Percussive foraging in the aye-aye, Daubentonia madagascarensis. Anim Behav 41:793–801

    Article  Google Scholar 

  • Erickson CJ (1994) Tap-scanning and extractive foraging in aye-ayes, Daubentonia madagascarensis. Folia Primatol 62:125–135

    Article  PubMed  CAS  Google Scholar 

  • Erickson CJ, Nowicki S, Dollar L, Goehring N (1998) Percussive foraging: stimuli for prey location by aye-ayes (Daubentonia madagascarensis). Int J Primatol 19:111–122

    Article  Google Scholar 

  • Faure PA, Barclay RMR (1992) The sensory basis of prey detection by the long-eared bat, Myotis evotis, and the consequences for prey selection. Anim Behav 44:31–39

    Article  Google Scholar 

  • Goerlitz HR, Siemers BM (2007) Sensory ecology of prey rustling sounds: acoustical features and their classification by wild Grey Mouse Lemurs. Funct Ecol 21:143–153

    Article  Google Scholar 

  • Goerlitz HR, Greif S, Siemers BM (2008) Cues for acoustic detection of prey: insect rustling sounds and the influence of walking substrate. J Exp Biol 211:2799–2806

    Article  PubMed  Google Scholar 

  • Gursky-Doyen SL (2010) The function of scentmarking in spectral tarsiers. In: Gursky SL, Supriatna J (eds) Indonesian primates. Springer, New York, pp 359–369

    Chapter  Google Scholar 

  • Heesy CP, Kamilar JM, Willms J (2011) Retinogeniculostriate pathway components scale with orbit convergence only in primates and not in other mammals. Brain Behav Evol 77:105–115

    Article  PubMed  Google Scholar 

  • Hladik CM (1979) Diet and ecology of prosimians. In: Doyle GA, Martin RD (eds) The study of prosimian behavior. Academic, New York, pp 307–357

    Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228

    Article  Google Scholar 

  • Jones G, Webb PI, Sedgeley JA, O’Donnell CFJ (2003) Mysterious Mystacina: how the New Zealand short-tailed bat (Mystacina tuberculata) locates insect prey. J Exp Biol 206: 4209–4216

    Article  PubMed  Google Scholar 

  • Kirk CE (2004) Comparative morphology of the eye in primates. Anat Rec A Discov Mol Cell Evol Biol 281A:1095–1103

    Article  Google Scholar 

  • MacKinnon J, MacKinnon K (1980) The behaviour of wild spectral tarsiers. Int J Primatol 1:361–379

    Article  Google Scholar 

  • Martin RD (1972) A preliminary field-study of the lesser mouse lemur (Microcebus murinus J. F. Miller 1777). In: Charles-Dominique P, Martin RD (eds) Behaviour and ecology of ­nocturnal prosimians. Field studies in Gabon and Madagascar. Parey, Berlin, pp 43–85

    Google Scholar 

  • Muchlinski MN (2010) Ecological correlates of infraorbital foramen area in primates. Am J Phys Anthropol 141:131–141

    PubMed  Google Scholar 

  • Nekaris KAI (2005) Foraging behaviour of the slender loris (Loris lydekkerianus lydekkerianus): implications for theories of primate origins. J Hum Evol 49:289–300

    Article  PubMed  CAS  Google Scholar 

  • Niemitz C (1979) Outline of the behavior of Tarsius bancanus. In: Doyle GA, Martin R (eds) The study of prosimian behavior. Academic, New York

    Google Scholar 

  • Obrist MK, Fenton MB, Eger JL, Schlegel PA (1993) What ears do for bats: a comparative study of pinna sound pressure transformation in Chiroptera. J Exp Biol 180:119–152

    PubMed  CAS  Google Scholar 

  • Palagi E, Telara S, Tarli SMB (2004) Reproductive strategies in Lemur catta: balance among ­sending, receiving, and countermarking scent signals. Int J Primatol 25:1019–1031

    Article  Google Scholar 

  • Piep M, Radespiel U, Zimmermann E, Schmidt S, Siemers BM (2008) The sensory basis of prey detection in captive-born grey mouse lemurs (Microcebus murinus). Anim Behav 75:871–878

    Article  Google Scholar 

  • Ramsier MA, Dominy NJ (2010) A comparison of auditory brainstem responses and behavioral estimates of hearing sensitivity in Lemur catta and Nycticebus coucang. Am J Primatol 72:217–233

    Article  PubMed  Google Scholar 

  • Safi K, Siemers BM (2010) Implications of sensory ecology for species coexistence: biased perception links predator diversity to prey size distribution. Evol Ecol 24:703–713

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Ross CF (2000) Into the light: the origin of Anthropoidea. Annu Rev Anthropol 29:147–194

    Article  Google Scholar 

  • Siemers BM, Schnitzler HU (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661

    Article  PubMed  CAS  Google Scholar 

  • Siemers BM, Güttinger R (2006) Prey conspicuousness can explain apparent prey selectivity. Curr Biol 16:R157–R159

    Article  PubMed  CAS  Google Scholar 

  • Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59:373–380

    Article  Google Scholar 

  • Siemers BM, Goerlitz HR, Robsomanitrandrasana E, Piep M, Ramanamanjato JB, Rakotondravony D, Ramilijaona O, Ganzhorn JU (2007) Sensory basis of food detection in wild Microcebus murinus. Int J Primatol 28:291–304

    Article  Google Scholar 

  • Uetz GW, Roberts JA (2002) Multisensory cues and multimodal communication in spiders: insights from video/audio playback studies. Brain Behav Evol 59:222–230

    Article  PubMed  Google Scholar 

  • Williams BA, Kay RF, Kirk EC (2010) New perspectives on anthropoid origins. Proc Natl Acad Sci USA 107:4797–4804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the following colleagues for cooperation and support in researching the sensory ecology of mouse lemurs: Holger Goerlitz, Marcus Piep, Eric Robsomanitrandrasana, Jörg Ganzhorn, Ute Radespiel, Sabine Schmidt, Elke Zimmermann, Jean-Baptiste Ramanamanjato, Daniel Rakotondravony, Olga Ramilijaona, and Manon Vincelette. This work and associated discussions and reading provided the basis for this summary chapter. Thanks to Nathaniel Dominy for organizing the “sensory and cognitive ecology symposium” with me at Ithala and for many inspiring discussions. I am grateful to Judith Masters for making the splendid conference and this volume possible. Bakri Nadhurou provided the French translation of the summary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn M. Siemers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siemers, B.M. (2012). The Sensory Ecology of Foraging for Animal Prey. In: Masters, J., Gamba, M., Génin, F. (eds) Leaping Ahead. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4511-1_28

Download citation

Publish with us

Policies and ethics