Leaping Ahead pp 237-245 | Cite as

The Importance of Olfaction for Predator Detection in Spectral Tarsiers

Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


A limitation of many experimental studies in predation is that they assume primates only use visual and auditory cues to discern the presence of predators and ignore the importance of olfactory cues. This is an obvious gap in predation research, given the importance of chemical information, particularly for nocturnal species. I conducted a study of the role of olfactory signals in predator detection by spectral tarsiers, Tarsius spectrum, at Tangkoko Nature Reserve in Sulawesi, Indonesia. For 80 nights, 20 adult tarsiers were exposed to a wooden civet model covered in civet urine, a wooden civet without urine, a stick covered in civet urine, and a stick without urine. Antipredator responses were overwhelmingly more frequent and more intense in the presence of civet urine, indicating that olfactory cues play an important role for spectral tarsiers in detecting terrestrial predators.


Alarm Call Olfactory Signal Antipredator Response Terrestrial Predator Predator Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Une limite de nombreuses études expérimentales portant sur la prédation est qu’elles se fondent sur l’idée que seules la vision et l’audition sont utilisées pour détecter un prédateurs, et ignorent l’importance de l’olfaction. C’est une faille évidente de la recherche sur la prédation, dans la mesure où l’olfaction est particulièrement importante pour la détection des prédateurs, surtout pour les animaux nocturnes. J’ai mené cette étude dans la Réserve Naturelle de Tangkoko, à Sulawesi, en Indonésie. Au cours de 80 nuits, 20 tarsiers adultes ont été exposés à un modèle de civette en bois, et à un bâton de bois tous deux imbibés ou non d’odeur de civette. Les réponses anti-prédatrices ont été considérablement plus fréquentes et plus intenses en présence d’urine de civette, ce qui indique que les indices olfactifs jouent un rôle important dans la détection des prédateurs par les tarsiers spectraux.



Funding for this research was provided by Primate Conservation, Inc., the Margot Marsh Biodiversity Fund, and Texas A&M University. I thank the Indonesian Institute of Sciences (LIPI), the Directorate General for Nature Preservation and Forest Protection (PHPA) in Manado, Bitung, Tangkoko, and Jakarta, SOSPOL, POLRI, the University of Indonesia, Jatna Supriatna and Noviar Andayani for their sponsorship while in Indonesia. Special thanks to my field assistants (Ben and Felik) for their help with data collection. The protocol for this research was reviewed and approved by the Texas A&M University IACUC committee.


  1. Apfelbach F, Brinkerhoff R, Haddad N, Orrock J (2005) Corridors and olfactory predator cues affect small mammal behavior. J Mammal 86:662–669CrossRefGoogle Scholar
  2. Baldellou M, Henzi S (1992) Vigilance, predator detection and the presence of supernumerary males in vervet monkey troops. Anim Behav 43:451–461CrossRefGoogle Scholar
  3. Bearder SK, Nekaris KAI, Buzzell CA (2002) Dangers in the dark: are some nocturnal primates afraid of the dark? In: Miller LE (ed) Eat or be eaten: predator sensitive foraging among ­primates. Cambridge University Press, Cambridge, pp 21–40CrossRefGoogle Scholar
  4. Bshary R, Noe R (1997) Anti-predation behavior of red colobus monkeys in the presence of ­chimpanzees. Behav Ecol Sociobiol 41:321–333CrossRefGoogle Scholar
  5. Caine N (1984) Visual scanning by tamarins. Folia Primatol 43:59–67CrossRefGoogle Scholar
  6. Chapman CA, Chapman LJ (1996) Interdemic variation in mixed-species association patterns: common diurnal primates of Kibale National Park, Uganda. Behav Ecol Sociobiol 47:129–139CrossRefGoogle Scholar
  7. Cheney DL, Seyfarth RM (1981) Selective forces affecting the predator alarm calls of vervet monkeys. Behaviour 76:25–61CrossRefGoogle Scholar
  8. Cheney DL, Wrangham RW (1986) Predation. In: Smuts B, Cheney D, Seyfarth R, Wrangham RW, Struhsaker T (eds) Primate societies. Chicago University Press, Chicago, pp 227–239Google Scholar
  9. Clark R (2004) Timber rattlesnakes (Crotalus horridus) use chemical cues to select ambush sites. J Chem Ecol 30:607–617PubMedCrossRefGoogle Scholar
  10. Cords M (1990) Vigilance and mixed-species association of some East African forest monkeys. Behav Ecol Sociobiol 26:297–300CrossRefGoogle Scholar
  11. Cowlishaw G (1994) Trade-offs between foraging and predation risk determine habitat use in a desert baboon population. Anim Behav 53:667–686CrossRefGoogle Scholar
  12. Cushing B (1985) Estrous mice and vulnerability to weasel predation. Ecology 66:1976–1978CrossRefGoogle Scholar
  13. Dickman CR (1992) Predation and habitat shift in the house mouse, Mus domesticus. Ecology 73:313–322CrossRefGoogle Scholar
  14. Ferrari S, Ferrari M (1990) Predator avoidance behavior in the buffy headed marmoset Callithrix falviceps. Primates 31:323–338CrossRefGoogle Scholar
  15. Fichtel C, van Schaik CP (2006) Semantic differences in sifaka (Propithecus verreauxi) alarm calls: a reflection of genetic or cultural variants? Ethology 112:839–849CrossRefGoogle Scholar
  16. Fleagle JG (1999) Primate adaptation and evolution. Academic, New YorkGoogle Scholar
  17. Gould L (1996) Vigilance behavior during the birth and lactation season in naturally occurring ring-tailed lemurs (Lemur catta) at the Beza-Mahafaly Reserve, Madagascar. Int J Primatol 17:331–347CrossRefGoogle Scholar
  18. Gursky S (1997) Modeling maternal time budgets: the impact of lactation and gestation on the behavior of the spectral tarsier, Tarsius spectrum. Unpublished PhD thesis, SUNY-Stony BrookGoogle Scholar
  19. Gursky S (2003) Predation experiments on infant spectral tarsiers, Tarsius spectrum. Folia Primatol 74:272–284PubMedCrossRefGoogle Scholar
  20. Gursky S (2005) Predator mobbing in spectral tarsiers. Int J Primatol 26:207–221CrossRefGoogle Scholar
  21. Gursky S, Nekaris KAI (2006) Primate anti-predator strategies. Springer, New YorkGoogle Scholar
  22. Hill WCO (1955) Primates: comparative anatomy and taxonomy. II. Haplorrhini: Tarsiodea. Edinburgh University Press, EdinburghGoogle Scholar
  23. Hill R, Dunbar RIM (1998) An evaluation of the roles of predation rate and predation risk as selective pressures on primate grouping behaviour. Behaviour 135:411–430CrossRefGoogle Scholar
  24. Isbell LA (1994) Predation on primates: ecological patterns and evolutionary consequences. Evol Anthropol 3:61–71CrossRefGoogle Scholar
  25. Iwamoto T, Mori A, Kawai M, Bekele A (1996) Anti-predator behavior of gelada baboons. Primates 37:389–397CrossRefGoogle Scholar
  26. Janson C (1998) Testing the predation hypothesis for vertebrate sociality: prospects and pitfalls. Behaviour 135:389–410CrossRefGoogle Scholar
  27. Jones M, Dayan T (2000) Foraging behavior and microhabitat use by spiny mice, Acomys cahirinus and A. russatus, in the presence of Blanford’s fox (Vulpes cana) odor. J Chem Ecol 26:455–469CrossRefGoogle Scholar
  28. Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394Google Scholar
  29. Koivula M, Korpimäki E (2001) Do scent marks increase predation risk of microtine rodents? Oikos 95:275–281CrossRefGoogle Scholar
  30. Lima SL (1995) Back to the basics of anti-predatory vigilance: the group size effect. Anim Behav 49:11–20CrossRefGoogle Scholar
  31. Macedonia J, Evans C (1993) Variation among mammalian alarm call systems and the problem of meaning in animal signals. Ethology 93:177–197CrossRefGoogle Scholar
  32. MacKinnon J, MacKinnon K (1980) The behavior of wild spectral tarsiers. Int J Primatol 1:361–379CrossRefGoogle Scholar
  33. Martin RD (1990) Primate origins and evolution. Princeton University Press, PrincetonGoogle Scholar
  34. Müller AE, Thalmann U (2000) Origin and evolution of primate social organisation: a reconstruction. Biol Rev 75:405–435PubMedCrossRefGoogle Scholar
  35. Niemitz C (1984) Biology of tarsiers. Gustav Fischer, StuttgartGoogle Scholar
  36. Nolte DL, Mason JR, Epple G, Aronov E, Campbell DL (1994) Why are predator urines aversive to prey? J Chem Ecol 20:1505–1516CrossRefGoogle Scholar
  37. Roberts SC, Gosling LM, Thornton EA, McClung J (2001) Scent-marking by male mice under the risk of predation. Behav Ecol 12:698–705CrossRefGoogle Scholar
  38. Rozhnov V, Rozhnov Y (2003) Roles of different types of excretions in mediated communication by scent marks of the common palm civet, Paradoxurus hermaphroditus Pallas, 1777 (Mammalia, Carnivora). Biol Bull 30:584–590CrossRefGoogle Scholar
  39. Stanford CB (1998) Predation and male bonds in primate societies. Behaviour 135:513–533CrossRefGoogle Scholar
  40. Whitten AJ, Mustafa M, Henderson GS (1987) The ecology of sulawesi. Gadjah Mada University Press, YogyakartaGoogle Scholar
  41. Wright PC (1998) Impact of predation risk on the behavior of Propithecus diadema edwardsi in the rain forest of Madagascar. Behaviour 135:483–512CrossRefGoogle Scholar
  42. Wright PC, Simons EL, Gursky S (2003) Tarsiers: past, present and future. Rutgers University Press, Piscataway, NJGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of AnthropologyTexas A&M UniversityCollege StationUSA

Personalised recommendations