Skip to main content

The Ecology of Touch: Are Prosimians Special?

  • Chapter
  • First Online:
Leaping Ahead

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

  • 837 Accesses

Abstract

The size of the infraorbital foramen (IOF), through which the infraorbital nerve (ION) passes, has been used to infer the number of vibrissae (whiskers) an animal has, which in turn has informed phylogenetic and ecological interpretations of extinct primates. The functional significance of IOF area, however, has not been tested. I present a comparison of relative IOF area among extant mammals. My results show that (1) relative IOF area is a good indicator of ION size and thus of touch sensitivity of the rostrum; (2) primates and other euarchontans have low IOF areas relative to most other mammals; (3) IOF area and vibrissal count correlate, but not strongly; and (4) among primates IOF area covaries with diet, such that frugivores have relatively larger IOFs than do folivores or insectivores. This dietary signal holds for prosimians and anthropoids, and prosimians do not have enlarged IOFs compared with anthropoids.

Resume

La taille du Foramen Infra-Orbital (FIO), au travers duquel passe le nerf infraorbital (NIO), est utilisée comme caractère indicateur du nombre de vibrisses (moustaches) qui peut aider à interpréter les espèces éteintes de Primates, en termes de phylogénie et d’écologie. Cependant, la signification fonctionnelle du FIO n’a jamais été testée. Je présente une comparaison de la taille relative du FIO chez les Mammifères actuels. L’analyse montre que (1) la surface relative du FIO est un bon indicateur de la taille du NIO, et donc de la sensibilité tactile du museau; (2) les Primates et les autres Euarchontes ont un relativement petit FIO comparés à la plupart des autres Mammifères; (3) la surface du FIO est faiblement mais significativement corrélée au nombre de vibrisses; (4) chez les Primates, la surface du FIO co-varie avec le régime alimentaire, les frugivores ayant de plus grands FIO que les folivores et les insectivores. Cet effet du régime s’applique aussi bien aux Prosimiens qu’aux Anthropoïdes, et les Prosimiens n’ont pas de plus grands FIO que les Anthropoïdes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are two types of mystacial vibrissae: macro- and microvibrissae. Macrovibrissae are long, laterally oriented hairs usually arranged in distinct rows on the muzzle. Microvibrissae are shorter, less organized, and confined to the area just above the upper lip. Most studies have focused on macrovibrissae, since they are considered to be of greater importance to mammalian environmental navigation. Brecht et al. (1997) have called this assumption into question by suggesting that the macrovibrissae appear to be critical for spatial tasks, while microvibrissae are involved in object recognition. I counted both macro- and microvibrissae to derive total vibrissal count.

References

  • Ahl AS (1987) Relationship of vibrissal length and habits in the Sciuridae. J Mammal 68:848–853

    Article  Google Scholar 

  • Anthony MRL, Kay RF (1993) Tooth form and diet in ateline and alouattine primates: reflections on the comparative method. Am J Sci 293A:356–382

    Article  Google Scholar 

  • Baron G, Stephan H, Frahm HD (1990) Comparison of brain structure volumes in Insectivora and primates IX. Trigeminal complex. J Hirnforsch 31:193–200

    PubMed  CAS  Google Scholar 

  • Beard CK, Wang J (2004) The eosimiid primates (Anthropoidea) of the Heti Formation, Yuanqu Basin, Shanxi and Henan provinces, People’s Republic of China. J Hum Evol 46:401–432

    Article  PubMed  Google Scholar 

  • Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84:81–97

    Article  PubMed  CAS  Google Scholar 

  • Crish SD, Rice FL, Park TJ, Comer CM (2003) Somatosensory organization and behavior in naked mole-rats I: vibrissae-like body hairs comprise a sensory array that mediates orientation to tactile stimuli. Brain Behav Evol 62:141–151

    Article  PubMed  Google Scholar 

  • Cull G, Cioffi GA, Dong J, Homer L, Wang L (2003) Estimating normal optic nerve axon numbers in non-human primate eyes. J Glaucoma 12:301–306

    Article  PubMed  Google Scholar 

  • Dominy NJ (2004) Fruits, fingers, and fermentation: the sensory cues available to foraging primates. Integr Comp Biol 44:295–303

    Article  PubMed  Google Scholar 

  • Dominy NJ, Lucas PW, Osorio D, Yamashita N (2001) The sensory ecology of primate food perception. Evol Anthropol 10:171–186

    Article  Google Scholar 

  • Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and difference in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119

    Article  PubMed  Google Scholar 

  • Gingerich PD (1981) Early Cenozoic Omomyidae and the evolutionary history of tarsiiform ­primates. J Hum Evol 10:345–348

    Article  Google Scholar 

  • Huber E (1930) Evolution of facial musculature and the cutaneous field of trigeminus. Part II. Q Rev Biol 5:389–437

    Article  Google Scholar 

  • Hylander WL (1975) Incisor size and diet in anthropoids with special reference to Cercopithecidae. Sci 189:1095–1098

    Article  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Kay RF, Cartmill M (1977) Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, ?Primates), with a description of a new genus and species. J Hum Evol 6:19–32

    Article  Google Scholar 

  • Klages M, Muyakshin S, Soltwedel T, Arntz WE (2002) Mechanoreception, a possible mechanism for food fall detection in deep-sea scavengers. Deep Sea Res I 49:143–155

    Article  Google Scholar 

  • le Clark WEG (1959) The antecedents of man. Harpers, New York

    Google Scholar 

  • Lucas PW (1994) Categorization of food items relevant to oral processing. In: Chivers DJ, Langer P (eds) The digestive system in mammals: food, form and function. Cambridge University Press, Cambridge, pp 197–219

    Chapter  Google Scholar 

  • Muchlinski MN (2008a) Ecological and morphological correlates of infraorbital foramen size and its implications for interpreting the fossil record. Unpublished PhD thesis, University of Texas at Austin

    Google Scholar 

  • Muchlinski MN (2008b) The relationship between the infraorbital foramen, infraorbital nerve, and maxillary mechanoreception: implications for interpreting the paleoecology of fossil mammals based on infraorbital foramen size. Anat Rec 291:1221–1226

    Article  Google Scholar 

  • Muchlinski MN (2010a) A comparative analysis of vibrissae count and infraorbital foramen area in primates and other mammals. J Hum Evol 58:447–473

    Article  PubMed  Google Scholar 

  • Muchlinski MN (2010b) Ecological correlates of infraorbital foramen area in primates. Am J Phys Anthropol 141:131–141

    PubMed  Google Scholar 

  • Ni X, Wang Y, Hu Y, Li C (2004) A euprimate skull from the early Eocene of China. Nature 427:65–68

    Article  PubMed  CAS  Google Scholar 

  • Simons EL (1987) New faces of Aegyptopithecus from the Oligocene of Egypt. J Hum Evol 16:273–289

    Article  Google Scholar 

  • Ungar P (1998) Dental allometry, morphology, and wear as evidence for diet in fossil primates. Evol Anthropol 6:205–217

    Article  Google Scholar 

  • Van Roosmalen M (1985) Subcategorizing foods in primates. In: Chivers DJ, Wood BA (eds) Food acquisition and processing in primates. Plenum, New York, pp 167–176

    Google Scholar 

Download references

Acknowledgments

I thank L. J. Shapiro, E. C. Kirk, N. J. Dominy, R. W. Sussman, O. Y. Martin, R. D. Martin, S. R. Tecot, L. J. Alport, and R. Lewis, the National Science Foundation grant 0622422, the Field Museum of Natural History, the University of Texas at Austin, and PEO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena N. Muchlinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muchlinski, M.N. (2012). The Ecology of Touch: Are Prosimians Special?. In: Masters, J., Gamba, M., Génin, F. (eds) Leaping Ahead. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4511-1_25

Download citation

Publish with us

Policies and ethics