Skip to main content

Photoperiod-Related Changes in Thermoregulatory Capacity in Gray Mouse Lemurs (Microcebus murinus)

  • Chapter
  • First Online:
Leaping Ahead

Abstract

Seasonal endocrinal changes, such as modulation of insulin-like growth factor 1 (IGF-1) levels, may allow animals to cope with temperature variations. To test this hypothesis, we evaluated the effects of season on thermoregulatory capacities in a photoperiod-responsive species, the gray mouse lemur (Microcebus murinus). Adult male mouse lemurs were exposed to ambient temperatures (Tas) of 12, 25, and 34 °C, and we monitored changes in daily rhythms of body temperature (Tb) and IGF-1 blood levels. Additionally, we observed the exploration and choice of Ta in a thermal gradient over 24 h after animals had been acclimated to 25 °C. Under winter-like short photoperiod (SP) exposure, mouse lemurs in the thermal gradient showed marked behavioral adjustments and Tb fluctuations, in response to Ta fluctuations similar to those occurring in the Malagasy winter. In contrast, under summer-like long photoperiod (LP), behavioral responses and Tb changes were only moderate, corresponding to the lower Ta fluctuations observed in summer. Overall, IGF-1 levels remained higher under LP than under SP, whatever the Ta. Thermal challenges evoked different modulations of IGF-1 according to season, e.g., a slight increase under SP and a transient decrease under LP after heat challenge. Altogether, our results indicate that photoperiod exerts a major influence on thermoregulatory capacities, with IGF-1 playing an important role in mechanisms of thermogenesis/thermolysis.

Résumé

Les changements endocriniens saisonniers, telles que les modulations des niveaux d’IGF-1 (Insulin-like Growth Factor 1), pourraient permettre aux animaux de faire face aux variations de température. Pour tester cette hypothèse, nous avons évalué les effets de la saison sur les capacités thermorégulatrices chez une espèce sensible à la photopériode, le Microcèbe gris (Microcebus murinus). Des microcèbes mâles adultes ont été exposés à des températures ambiantes (Tas) de 12, 25 et 34°C. Nous avons suivi les changements de rythmes journaliers de la température corporelle (Tb) et des niveaux sanguins d’IGF-1. De plus, nous avons observé l’exploration et le choix de Ta dans un gradient thermique sur 24 h, après avoir acclimaté les animaux à 25°C. En photopériode courte (SP), les microcèbes placés dans un gradient thermique ont montré des ajustements comportementaux et des fluctuations de Tb marqués, suivant des fluctuations de Ta semblables à celles observées pendant l’hiver malgache. En photopériode longue, en revanche, les variations de Tb et la réponse comportementale sont plus modérées, correspondant à de plus petites fluctuations de Ta observées en été. Globalement, les niveaux d’IGF-1 sont plus élevés en LP qu’en SP, quelle que soit la Ta. Les challenges thermiques ont montré des modulations de l’IGF-1 différentes selon la saison, comme par exemple une légère augmentation en SP et une diminution progressive en LP lors de l’exposition à 34°C. Ensemble, ces résultats indiquent que la photopériode exerce un effet majeur sur les capacités thermorégulatrices, l’IGF-1 jouant un rôle important dans les mécanismes de thermogenèse et thermolyse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aujard F, Vasseur F (2001) Effect of ambient temperature on the body temperature rhythm of male gray mouse lemurs (Microcebus murinus). Int J Primatol 22:43–56

    Article  Google Scholar 

  • Aujard F, Perret M, Vannier G (1998) Thermoregulatory responses to variations of photoperiod and ambient temperature in the male lesser mouse lemur: a primitive or an advanced adaptive character? J Comp Physiol B 168:540–548

    Article  PubMed  CAS  Google Scholar 

  • Aujard F, Seguy M, Terrien J, Botalla R, Blanc S, Perret M (2006) Behavioral thermoregulation in a non human primate: effects of age and photoperiod on temperature selection. Exp Gerontol 41:784–792

    Article  PubMed  Google Scholar 

  • Carroll JA, Buonomo FC, Becker BA, Matteri RL (1999) Interactions between environmental temperature and porcine growth hormone (pGH) treatment in neonatal pigs. Domest Anim Endocrinol 16:103–113

    Article  PubMed  CAS  Google Scholar 

  • Duchamp C, Burton KA, Geloen A, Dauncey MJ (1997) Transient upregulation of IGF-I gene expression in brown adipose tissue of cold-exposed rats. Am J Physiol 272:E453–E460

    PubMed  CAS  Google Scholar 

  • Florez-Duquet M, Horwitz BA, McDonald RB (1998) Cellular proliferation and UCP content in brown adipose tissue of cold-exposed aging Fischer 344 rats. Am J Physiol 274:R196–R203

    PubMed  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Génin F & Perret M (2000) Photoperiod-induced changes in energy balance in gray mouse lemurs. Physiol Behav 71(3–4):315–321

    Google Scholar 

  • Génin F, Nibbelink M, Galand M, Perret M, Ambid L (2003) Brown fat and nonshivering thermogenesis in the gray mouse lemur (Microcebus murinus). Am J Physiol 284:R811–R818

    Google Scholar 

  • Hampl R, Starka L, Jansky L (2006) Steroids and thermogenesis. Physiol Res 55:123–131

    Google Scholar 

  • Kenney WL, Munce TA (2003) Aging and human temperature regulation. J Appl Physiol 95:2598–2603

    PubMed  Google Scholar 

  • Perret M (1992) Environmental and social determinants of sexual function in the male lesser mouse lemur (Microcebus murinus). Folia Primatol 59:1–25

    Article  PubMed  CAS  Google Scholar 

  • Perret M, Aujard F (2001) Regulation by photoperiod of seasonal changes in body mass and reproductive function in gray mouse lemurs (Microcebus murinus): differential responses by sex. Int J Primatol 22:5–24

    Article  Google Scholar 

  • Seguy M, Perret M (2005) Factors affecting the daily rhythm of body temperature of captive mouse lemurs (Microcebus murinus). J Comp Physiol B 175:107–115

    Article  PubMed  CAS  Google Scholar 

  • R Development Core T (2007) R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Terrien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terrien, J., Aujard, F. (2012). Photoperiod-Related Changes in Thermoregulatory Capacity in Gray Mouse Lemurs (Microcebus murinus) . In: Masters, J., Gamba, M., Génin, F. (eds) Leaping Ahead. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4511-1_22

Download citation

Publish with us

Policies and ethics