Skip to main content

Challenges in Controlling and Eliminating Schistosomiasis

  • Chapter
  • First Online:
Challenges in Infectious Diseases

Abstract

Schistosomiasis, a common intravascular infection caused by parasitic Schistosoma trematode worms, is one of the most prevalent of the tropical infectious diseases, with more than 200 million people infected globally and close to 800 million at risk. Mature, patent, schistosome infections are associated with chronic tissue inflammation due to immunopathological reactions against schistosome eggs, penetrating the vessel wall and getting trapped in the tissues. Depending on the site, this eventually leads to obstructive disease in the urinary system (Schistosoma haematobium) or lesions associated with the liver and spleen (S. mansoni, S. intercalatum, S. japonicum and S. mekongi). The current disease burden due to schistosomiasis may exceed 70 million disability-adjusted life years (DALYs). Here, we introduce the schistosome parasites and describe the pathophysiology and the clinical disease they cause. We discuss the diagnosis and treatment of schistosomiasis and review anti-schistosome vaccine development. We also appraise current strategies for control, emphasising the value of spatial and mathematical modelling approaches, and outline our vision for the future involving multi-component, integrated efforts that can lead to the sustainable control, even elimination of schistosomiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:411–425

    PubMed  Google Scholar 

  2. Ross AG, Bartley PB, Sleigh AC et al (2002) Schistosomiasis. N Engl J Med 346:1212–1219

    PubMed  Google Scholar 

  3. Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis. Lancet 368:1106–1118

    PubMed  Google Scholar 

  4. Gray DJ, Ross AG, Li YS, McManus DP (2011) Diagnosis and management of schistosomiasis. BMJ 342:d2651

    PubMed  Google Scholar 

  5. King CH, Dickman K, Tisch DJ (2005) Reassessment of the cost of chronic helminthic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365:561–569

    Google Scholar 

  6. King CH, Dangerfield-Cha M (2008) The unacknowledged impact of chronic schistosomiasis. Chronic Illn 4:65–79

    PubMed  Google Scholar 

  7. Leshem E, Meltzer E, Marva E, Schwartz E (2009) Travel-related schistosomiasis acquired in Laos. Emerg Infect Dis 15:1823–1826

    PubMed  Google Scholar 

  8. Mas-Coma S, Valero MA, Bargues MD (2009) Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet Parasitol 163:264–280

    PubMed  Google Scholar 

  9. Zhu HM, Xiang S, Yang K, Wu XH, Zhou XN (2008) Three Gorges Dam and its impact on the potential transmission of schistosomiasis in regions along the Yangtze River. Ecohealth 5:137–148

    PubMed  Google Scholar 

  10. Ross AG, Vickers D, Olds GR, Shah SM, McManus DP (2007) Katayama syndrome. Lancet Infect Dis 7:218–224

    PubMed  Google Scholar 

  11. Bottieau E, Clerinx J, De Vega MR et al (2006) Imported Katayama fever: clinical and biological features at presentation and during treatment. J Infect 52:339–345

    PubMed  Google Scholar 

  12. Lambertucci JR (1993) Acute schistosomiasis: clinical, diagnostic and therapeutic features. Rev Inst Med Trop Sao Paulo 35:399–404

    PubMed  CAS  Google Scholar 

  13. Rocha MO, Pedroso ER, Lambertucci JR et al (1995) Gastro-intestinal manifestations of the initial phase of schistosomiasis mansoni. Ann Trop Med Parasitol 89:271–278

    PubMed  CAS  Google Scholar 

  14. Rocha MO, Rocha RL, Pedroso ER et al (1995) Pulmonary manifestations in the initial phase of schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 37:311–318

    PubMed  CAS  Google Scholar 

  15. Wynn TA, Thompson RW, Cheever AW, Mentink-Kane MM (2004) Immunopathogenesis of schistosomiasis. Immunol Rev 201:156–167

    PubMed  CAS  Google Scholar 

  16. Burke ML, Jones MK, Gobert GN, Li YS, Ellis MK, McManus DP (2009) Immunopathogenesis of human schistosomiasis. Parasite Immunol 31:163–176

    PubMed  CAS  Google Scholar 

  17. Chen MG (1993) Schistosoma japonicum and S japonicum-like infections: epidemiology, clinical and pathological aspects. In: Jordan P, Webbe G, Sturrock FS (eds) Human schistosomiasis. CAB International, Wallingford, pp 237–270

    Google Scholar 

  18. Cheever AW, Hoffmann KF, Wynn TA (2000) Immunopathology of schistosomiasis mansoni in mice and men. Immunol Today 21:465–466

    PubMed  CAS  Google Scholar 

  19. Abath FGC, Morais CNL, Montenegro CEL, Wynn TA, Montenegro SML (2006) Immunopathogenic mechanisms in schistosomiasis: what can be learnt from human studies? Trends Parasitol 22:85–91

    PubMed  CAS  Google Scholar 

  20. Doenhoff MJ (1997) A role for granulomatous inflammation in the transmission of infectious disease: schistosomiasis and tuberculosis. Parasitology 115:S113–S125

    PubMed  Google Scholar 

  21. Burke ML, McManus DP, Ramm GA et al (2010) Temporal expression of chemokines dictates the hepatic inflammatory infiltrate in a murine model of schistosomiasis. PLoS Negl Trop Dis 4:e598

    PubMed  Google Scholar 

  22. Perry CR, Burke ML, Stenzel DJ, McManus DP, Ramm GA, Gobert GN (2011) Differential expression of chemokine and matrix re-modelling genes is associated with contrasting schistosome-induced hepatopathology in murine models. PLoS Negl Trop Dis 5:e1178

    PubMed  CAS  Google Scholar 

  23. Ajanga A, Lwambo NJ, Blair L, Nyandindi U, Fenwick A, Brooker S (2006) Schistosoma mansoni in pregnancy and associations with anaemia in northwest Tanzania. Trans R Soc Trop Med Hyg 100:59–63

    PubMed  Google Scholar 

  24. Cheever AW (1968) A quantitative post-mortem study of schistosomiasis mansoni in man. Am J Trop Med Hyg 17:38–64

    PubMed  CAS  Google Scholar 

  25. Gryseels B, Polderman AM (1987) The morbidity of schistosomiasis mansoni in Maniema (Zaire). Trans R Soc Trop Med Hyg 81:202–209

    PubMed  CAS  Google Scholar 

  26. Homeida M, Ahmed S, Dafalla A et al (1988) Morbidity associated with Schistosoma mansoni infection as determined by ultrasound: a study in Gezira, Sudan. Am J Trop Med Hyg 39:196–201

    PubMed  CAS  Google Scholar 

  27. Kloetzel K (1967) Mortality in chronic splenomegaly due to schistosomiasis mansoni: follow-up study in a Brazilian population. Trans R Soc Trop Med Hyg 61:803–805

    PubMed  CAS  Google Scholar 

  28. Ongom VL, Owor R, Grundy R, Bradley DJ (1972) The epidemiology and consequences of Schistosoma mansoni infection in West Nile, Uganda, II: hospital investigation of a sample from the Panyagoro community. Trans R Soc Trop Med Hyg 66:852–863

    PubMed  CAS  Google Scholar 

  29. Hatz CF, Vennervald BJ, Nkulila T et al (1998) Evolution of Schistosoma haematobium- related pathology over 24 months after treatment with praziquantel among school children in southeastern Tanzania. Am J Trop Med Hyg 59:775–781

    PubMed  CAS  Google Scholar 

  30. Elsebai I (1977) Parasites in the etiology of cancer – bilharziasis and bladder cancer. CA Cancer J Clin 27:100–106

    PubMed  CAS  Google Scholar 

  31. Bedwani R, Renganathan E, El Kwhsky F et al (1998) Schistosomiasis and the risk of bladder cancer in Alexandria, Egypt. Br J Cancer 77:1186–1189

    PubMed  CAS  Google Scholar 

  32. Cheever AW (1978) Schistosomiasis and neoplasia. J Natl Cancer Inst 61:13–18

    PubMed  CAS  Google Scholar 

  33. Poggensee G, Feldmeier H (2001) Female genital schistosomiasis: facts and hypotheses. Acta Trop 79:193–210

    PubMed  CAS  Google Scholar 

  34. IARC (1994) IARC Working Group on the evaluation of carcinogenic risks to humans. Schistosomes, liver flukes and Helicobacter pylori. In: IARC Monographs on the evaluation of carcinogenic risks to humans, vol 61. World Health Organisation, Geneva, pp 45–119

    Google Scholar 

  35. Koraitim MM, Metwalli NE, Atta MA, el Sadr AA (1995) Changing age incidence and pathological types of schistosoma-associated bladder carcinoma. J Urol 154:1714–1716

    PubMed  CAS  Google Scholar 

  36. Nair SS, Bommana A, Bethony JM et al (2011) The metastasis-associated gene 1 encodes a host permissive factor for schistosomiasis, a leading global cause of inflammation and cancer. Hepatology 54:285–295. doi:10.1002/hep.24354

    PubMed  CAS  Google Scholar 

  37. Goldsmith PC, Leslie TA, Sams V, Bryceson AD, Allason-Jones E, Dowd PM (1993) Lesions of schistosomiasis mimicking warts on the vulva. BMJ 307:556–557

    PubMed  CAS  Google Scholar 

  38. Feldmeier H, Krantz I, Poggensee G (1995) Female genital schistosomiasis: a neglected risk factor for the transmission of HIV? Trans R Soc Trop Med Hyg 89:237

    PubMed  CAS  Google Scholar 

  39. Carod-Artal FJ (2008) Neurological complications of Schistosoma infection. Trans R Soc Trop Med Hyg 102:107–116

    PubMed  Google Scholar 

  40. Ferrari TC (2004) Involvement of the central nervous system in the schistosomiasis. Mem Inst Oswaldo Cruz 99:59–62

    PubMed  Google Scholar 

  41. Lv S, Zhang Y, Steinmann P, Zhou XN, Utzinger J (2010) Helminth infections of the central nervous system occurring in Southeast Asia and the Far East. Adv Parasitol 72:351–408

    PubMed  Google Scholar 

  42. McManus DP, Gray DJ, Li YS et al (2010) Schistosomiasis in the Peoples’ Republic of China: the era of the Three Gorges Dam. Clin Microbiol Rev 23:442–466

    PubMed  Google Scholar 

  43. Olds GR, Olveda R, Wu G, Weist P, McGarvey S, Aligui G et al (1996) Immunity and morbidity in schistosomiasis japonica infection. Am J Trop Med Hyg 55:S121–S126

    Google Scholar 

  44. McGarvey ST, Aligui G, Graham KK, Peters P, Olds GR, Olveda R (1996) Schistosomiasis japonica and childhood nutritional status in northeastern Leyte, the Philippines: a randomized trial of praziquantel versus placebo. Am J Trop Med Hyg 54:498–502

    PubMed  CAS  Google Scholar 

  45. McGarvey ST, Wu G, Zhang S et al (1993) Child growth, nutritional status, and Schistosomiasis japonica in Jiangxi, People’s Republic of China. Am J Trop Med Hyg 48:547–553

    PubMed  CAS  Google Scholar 

  46. Nokes C, McGarvey ST, Shiue L et al (1999) Evidence for an improvement in cognitive function following treatment of Schistosoma japonicum infection in Chinese primary schoolchildren. Am J Trop Med Hyg 60:556–565

    PubMed  CAS  Google Scholar 

  47. Lambertucci RL (1993) Schistosoma mansoni: pathological and clinical aspects. In: Jordan P, Webbe G, Sturrock FS (eds) Human schistosomiasis. CAB International, Wallingford, pp 195–235

    Google Scholar 

  48. Barsoum R (2004) The changing face of schistosomal glomerulopathy. Kidney Int 66:2472–2484

    PubMed  Google Scholar 

  49. Jordan P, von Lichtenberg F, Goatly KD (1967) Experimental schistosomiasis in primates in Tanzania. Preliminary observations on the susceptibility of the baboon Papio anubis to Schistosoma haematobium and Schistosoma mansoni. Bull World Health Organ 37:393–403

    PubMed  CAS  Google Scholar 

  50. Loker ES (1983) A comparative study of the life-histories of mammalian schistosomes. Parasitology 87:343–369

    PubMed  Google Scholar 

  51. Sadun EH, Von Lichtenberg F, Cheever AW, Erickson DG, Hickman RL (1970) Experimental infection with Schistosoma haematobium in chimpanzees. Am J Trop Med Hyg 19:427–458

    PubMed  CAS  Google Scholar 

  52. Standen OD (1949) Experimental schistosomiasis. II. Maintenance of Schistosoma mansoni in the laboratory, with some notes on experimental infection with S. haematobium. Ann Trop Med Parasitol 43:268–283

    PubMed  CAS  Google Scholar 

  53. Taylor MG, Nelson GS, Smith M, Andrews BJ (1973) Comparison of the infectivity and pathogenicity of six species of African schistosomes and their hybrids. 2. Baboons. J Helminthol 47:455–485

    PubMed  CAS  Google Scholar 

  54. Botros S, Pica-Mattoccia L, William S, El-Lakkani N, Cioli D (2005) Effect of praziquantel on the immature stages of Schistosoma haematobium. Int J Parasitol 35:1453–1457

    PubMed  CAS  Google Scholar 

  55. Katz N, Chaves A, Pellegrino J (1972) A simple device for quantitative stool thick-smear technique for schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14:397–400

    PubMed  CAS  Google Scholar 

  56. Clerinx J, Van Gompel A (2011) Schistosomiasis in travellers and migrants. Travel Med Infect Dis 9:6–24

    PubMed  Google Scholar 

  57. Rabello A (1999) Diagnosing schistosomiasis. Mem Inst Oswaldo Cruz 92:669–676

    Google Scholar 

  58. Ebrahim A, El-Morshedy H, Omer E, El-Daly S, Barakat R (1997) Evaluation of the kato-katz thick smear and formol ether sedimentation techniques for quantitative diagnosis of Schistosoma mansoni infection. Am J Trop Med Hyg 32:210–211

    Google Scholar 

  59. Ross AGP, Li Y, Sleigh AS et al (1997) Epidemiologic features of Schistosoma japonicum among fishermen and other occupational groups in the Dongting Lake region (Hunan Province) of China. Am J Trop Med Hyg 57:302–308

    PubMed  CAS  Google Scholar 

  60. Kardorff R, Gabone RM, Mugashe C et al (1997) Schistosoma mansoni related morbidity on Ukerewe Island, Tanzania: clinical, ultrasonographical and biochemical parameters. Trop Med Int Health 2:230–239

    PubMed  CAS  Google Scholar 

  61. Koukounari A, Webster JP, Donnelly CA et al (2009) Sensitivities and specificities of diagnostic tests and infection prevalence of Schistosoma haematobium estimated from data on adults in villages northwest of Accra, Ghana. Am J Trop Med Hyg 80:435–441

    PubMed  Google Scholar 

  62. Lengeler C, Utzinger J, Tanner M (2002) Questionnaires for rapid screening of schistosomiasis in sub-Saharan Africa. Bull World Health Organ 80:235–242

    PubMed  Google Scholar 

  63. Lengeler C, Utzinger J, Tanner M (2002) Screening for schistosomiasis with questionnaires. Trends Parasitol 18:375–377

    PubMed  Google Scholar 

  64. Fagundes Teixeira C, Neuhauss E, Ben R, Romanzini J, Graeff-Teixeira C (2007) Detection of Schistosoma mansoni eggs in feces through their interaction with paramagnetic beads in a magnetic field. PLoS Negl Trop Dis 1:e73

    PubMed  Google Scholar 

  65. Oliveira LM, Santos HL, Gonçalves MM, Barreto MG, Peralta JM (2010) Evaluation of polymerase chain reaction as an additional tool for the diagnosis of low-intensity Schistosoma mansoni infection. Diagn Microbiol Infect Dis 68:416–421

    PubMed  CAS  Google Scholar 

  66. Wichmann D, Panning M, Quack T, Kramme S, Burchard GD, Grevelding C et al (2009) Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma. PLoS Negl Trop Dis 3:e422

    PubMed  Google Scholar 

  67. Gomes LI, Dos Santos Marques LH, Enk MJ, de Oliveira MC, Coelho PM, Rabello A (2010) Development and evaluation of a sensitive PCR-ELISA system for detection of Schistosoma infection in feces. PLoS Negl Trop Dis 4:e664

    PubMed  Google Scholar 

  68. Ibironke OA, Phillips AE, Garba A, Lamine SM, Shiff C (2011) Diagnosis of Schistosoma haematobium by detection of specific DNA fragments from filtered urine samples. Am J Trop Med Hyg 84:998–1001

    PubMed  Google Scholar 

  69. Xu J, Rong R, Zhang HQ, Shi CJ, Zhu XQ, Xia CM (2010) Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP). Int J Parasitol 40:327–331

    PubMed  CAS  Google Scholar 

  70. Wyler DJ, Talebian P (1997) A quantitative assay to detect circulating fibrosin and its application in experimental schistosomiasis. Am J Trop Med Hyg 56:66–70

    PubMed  CAS  Google Scholar 

  71. Ellis MK, Li Y, Hou X, Chen H, McManus DP (2008) sTNFR-II and sICAM-1 are associated with acute disease and hepatic inflammation in schistosomiasis japonica. Int J Parasitol 38:717–723

    PubMed  CAS  Google Scholar 

  72. Manivannan B, Rawson P, Jordan TW, Karanja DM, Mwinzi PN, Secor WE, La Flamme AC (2011) Identification of cytokeratin 18 as a biomarker of mouse and human hepatosplenic schistosomiasis. Infect Immun 79:2051–2058

    PubMed  CAS  Google Scholar 

  73. Fabre V, Wu H, PondTor S et al (2011) Tissue inhibitor of matrix-metalloprotease-1 predicts risk of hepatic fibrosis in human Schistosoma japonicum infection. J Infect Dis 203:707–714

    PubMed  CAS  Google Scholar 

  74. Hou XY, Ellis MK, McManus DP et al (2011) Diagnostic value of non-invasive bio-markers for stage-specific diagnosis of hepatic fibrosis in patients with advanced schistosomiasis japonica. Int J Parasitol 41:325–332

    PubMed  Google Scholar 

  75. Bergquist R, Johansen MV, Utzinger J (2009) Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol 25:151–156

    PubMed  Google Scholar 

  76. Tsang VC, Wilkins PP (1997) Immunodiagnosis of schistosomiasis. Immunol Invest 26:175–188

    PubMed  CAS  Google Scholar 

  77. Al-Sherbiny MM, Osman A, Hancock K, Deelder AM, Tsang VC (1999) Application of immunodiagnostic assays: detection of antibodies and circulating antigens in human schistosomiasis and correlation with clinical findings. Am J Trop Med Hyg 60:960–966

    PubMed  CAS  Google Scholar 

  78. Xu J, Peeling RW, Chen JX et al (2011) Evaluation of immunoassays for the diagnosis of Schistosoma japonicum infection using archived sera. PLoS Negl Trop Dis 5:e949

    PubMed  Google Scholar 

  79. Chand MA, Chiodini PL, Doenhoff MJ (2010) Development of a new assay for the diagnosis of schistosomiasis, using cercarial antigens. Trans R Soc Trop Med Hyg 104:255–258

    PubMed  CAS  Google Scholar 

  80. Deelder AM, Qian ZL, Kremsner PG et al (1994) Quantitative diagnosis of Schistosoma infections by measurement of circulating antigens in serum and urine. Trop Geogr Med 46:233–238

    PubMed  CAS  Google Scholar 

  81. Shane HL, Verani JR, Abudho B et al (2011) Evaluation of urine CCA assays for detection of Schistosoma mansoni infection in Western Kenya. PLoS Negl Trop Dis 5:e951

    PubMed  Google Scholar 

  82. van Dam GJ, Wichers JH, Ferreira TM et al (2004) Diagnosis of schistosomiasis by reagent strip test for detection of circulating cathodic antigen. J Clin Microbiol 42:5458–5461

    PubMed  Google Scholar 

  83. Midzi N, Butterworth AE, Mduluza T, Munyati S, Deelder AM, van Dam GJ (2009) Use of circulating cathodic antigen strips for the diagnosis of urinary schistosomiasis. Trans R Soc Trop Med Hyg 103:45–51

    PubMed  CAS  Google Scholar 

  84. Standley CJ, Lwambo NJS, Lange CN et al (2010) Performance of circulating cathodic antigen (CCA) urine-dipsticks for rapid detection of intestinal schistosomiasis in schoolchildren from shoreline communities of Lake Victoria. Parasit Vectors 3:7

    PubMed  Google Scholar 

  85. Cioli D, Pica-Mattoccia L (2003) Praziquantel. Parasitol Res 90:S3–S9

    PubMed  Google Scholar 

  86. Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21:659–667

    PubMed  CAS  Google Scholar 

  87. Mutapi F, Rujeni N, Bourke C et al (2011) Schistosoma haematobium treatment in 1–5 year old children: safety and efficacy of the antihelminthic drug praziquantel. PLoS Negl Trop Dis 5:e1143

    PubMed  Google Scholar 

  88. Gönnert R, Andrews P (1977) Praziquantel, a new broad-spectrum antischistosomal agent. Z Parasitenkd 52:129–150

    PubMed  Google Scholar 

  89. Kasinathan RS, Greenberg RM (2011) Pharmacology and potential physiological significance of schistosome multidrug resistance transporters. Exp Parasitol 8:548–558

    Google Scholar 

  90. Ismail M, Botros S, Metwally A et al (1999) Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am J Trop Med Hyg 60:932–935

    PubMed  CAS  Google Scholar 

  91. Doenhoff MJ, Hagan P, Cioli D et al (2009) Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs. Parasitology 136:1825–1835

    PubMed  CAS  Google Scholar 

  92. Sayed AA, Simeonov A, Thomas CJ, Inglese J, Austin CP, Williams DL (2008) Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nat Med 14:407–412

    PubMed  CAS  Google Scholar 

  93. Ray D, Williams DL (2011) Characterization of the phytochelatin synthase of Schistosoma mansoni. PLoS Negl Trop Dis 5:e1168

    PubMed  CAS  Google Scholar 

  94. Dissous C, Grevelding CG (2011) Piggy-backing the concept of cancer drugs for schistosomiasis treatment: a tangible perspective? Trends Parasitol 27:59–66

    PubMed  CAS  Google Scholar 

  95. Eissa MM, El-Azzouni MZ, Amer EI, Baddour NM (2011) Miltefosine, a promising novel agent for schistosomiasis mansoni. Int J Parasitol 41:235–242

    PubMed  CAS  Google Scholar 

  96. Keiser J, Manneck T, Vargas M (2011) Interactions of mefloquine with praziquantel in the Schistosoma mansoni mouse model and in vitro. J Antimicrob Chemother 66:1791–1797

    PubMed  CAS  Google Scholar 

  97. Li Y, Ross AG, Hou X, Lou Z, McManus DP (2011) Oriental schistosomiasis with neurological complications: case report. Ann Clin Microbiol Antimicrob 10:5

    PubMed  Google Scholar 

  98. Utzinger J, Xiao SH, Tanner M, Keiser J (2007) Artemisinins for schistosomiasis and beyond. Curr Opin Investig Drugs 8:105–116

    PubMed  CAS  Google Scholar 

  99. Xiao SH (2005) Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop 96:153–167

    PubMed  CAS  Google Scholar 

  100. Hou XY, McManus DP, Gray DJ et al (2008) A randomized, double-blind, placebo-controlled trial of safety and efficacy of combined praziquantel and artemether treatment for acute schistosomiasis japonica in China. Bull World Health Organ 86:788–795

    PubMed  Google Scholar 

  101. Obonyo CO, Muok EM, Mwinzi PN (2010) Efficacy of artesunate with sulfalene plus pyrimethamine versus praziquantel for treatment of Schistosoma mansoni in Kenyan children: an open-label randomised controlled trial. Lancet Infect Dis 10:603–611

    PubMed  CAS  Google Scholar 

  102. Keiser J, N’Guessan NA, Adoubryn KD et al (2010) Efficacy and safety of mefloquine, artesunate, mefloquine-artesunate, and praziquantel against Schistosoma haematobium: randomized, exploratory open-label trial. Clin Infect Dis 50:1205–1213

    PubMed  CAS  Google Scholar 

  103. Utzinger J, Tanner M, Keiser J (2010) ACTs for schistosomiasis: do they act? Lancet Infect Dis 10:579–581

    PubMed  Google Scholar 

  104. Fenwick A, Webster JP, Bosque-Oliva E et al (2009) The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology 136:1719–1730

    PubMed  CAS  Google Scholar 

  105. Lamb EW, Walls CD, Pesce JT et al (2010) Blood fluke exploitation of non-cognate CD4+ T cell help to facilitate parasite development. PLoS Pathog 6:e1000892

    PubMed  Google Scholar 

  106. Maizels RM, Pearce EJ, Artis D, Yazdanbakhsh M, Wynn TA (2009) Regulation of pathogenesis and immunity in helminth infections. J Exp Med 206:2059–2066

    PubMed  CAS  Google Scholar 

  107. Dewals B, Hoving JC, Horsnell WG, Brombacher F (2010) Control of Schistosoma mansoni egg- induced inflammation by IL-4-responsive CD4(+)CD25(−)CD103(+)Foxp3(−) cells is IL-10- dependent. Eur J Immunol 40:2837–2847

    PubMed  CAS  Google Scholar 

  108. Phythian-Adams AT, Cook PC, Lundie RJ et al (2010) CD11c depletion severely disrupts Th2 induction and development in vivo. J Exp Med 207:2089–2096

    PubMed  CAS  Google Scholar 

  109. Schramm G, Haas H (2010) Th2 immune response against Schistosoma mansoni infection. Microbes Infect 12:881–888

    PubMed  CAS  Google Scholar 

  110. Anthony B, Allen JT, Li YS, McManus DP (2010) Hepatic stellate cells and parasite-induced liver fibrosis. Parasit Vectors 3:60

    PubMed  Google Scholar 

  111. de Oliveira Fraga LA, Lamb EW et al (2010) Rapid induction of IgE responses to a worm cysteine protease during murine pre-patent schistosome infection. BMC Immunol 11:56

    PubMed  Google Scholar 

  112. Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11:375–388

    PubMed  CAS  Google Scholar 

  113. McManus DP, Loukas A (2008) Current status of vaccines for schistosomiasis. Clin Microbiol Rev 21:225–242

    PubMed  CAS  Google Scholar 

  114. Black CL, Mwinzi PN, Muok EM et al (2010) Influence of exposure history on the immunology and development of resistance to human schistosomiasis mansoni. PLoS Negl Trop Dis 4:e637

    PubMed  Google Scholar 

  115. Black CL, Muok EM, Mwinzi PN, Carter JM, Karanja DM, Secor WE et al (2010) Increases in levels of schistosome-specific immunoglobulin E and CD23(+) B cells in a cohort of Kenyan children undergoing repeated treatment and reinfection with Schistosoma mansoni. J Infect Dis 202:399–405

    PubMed  CAS  Google Scholar 

  116. Mutapi F, Bourke C, Harcus Y et al (2011) Differential recognition patterns of Schistosoma haematobium adult worm antigens by the human antibodies IgA, IgE, IgG1 and IgG4. Parasite Immunol 33:181–192

    PubMed  CAS  Google Scholar 

  117. Nausch N, Midzi N, Mduluza T, Maizels RM, Mutapi F (2011) Regulatory and activated T cells in human Schistosoma haematobium infections. PLoS One 6:e16860

    PubMed  CAS  Google Scholar 

  118. Pinot de Moira A, Fulford AJ, Kabatereine NB, Ouma JH, Booth M, Dunne DW (2010) Analysis of complex patterns of human exposure and immunity to schistosomiasis mansoni: the influence of age, sex, ethnicity and IgE. PLoS Negl Trop Dis 4:e820

    PubMed  Google Scholar 

  119. McManus DP, Li Y, Gray DJ, Ross AG (2009) Conquering ‘snail fever’: schistosomiasis and its control in China. Expert Rev Anti Infect Ther 7:473–485

    PubMed  Google Scholar 

  120. Hotez PJ, Bethony JM, Diemert DJ, Pearson M, Loukas A (2010) Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nat Rev Microbiol 8:814–826

    PubMed  CAS  Google Scholar 

  121. Bethony JM, Cole RN, Guo X et al (2011) Vaccines to combat the neglected tropical diseases. Immunol Rev 239:237–270

    PubMed  CAS  Google Scholar 

  122. Capron A, Riveau G, Capron M, Trottein F (2005) Schistosomes: the road from host–parasite interactions to vaccines in clinical trials. Trends Parasitol 21:143–149

    PubMed  CAS  Google Scholar 

  123. Tendler M, Simpson AJ (2008) The biotechnology-value chain: development of Sm14 as a schistosomiasis vaccine. Acta Trop 108:263–266

    PubMed  CAS  Google Scholar 

  124. Ramos CR, Spisni A, Oyama S Jr et al (2009) Stability improvement of the fatty acid binding protein Sm14 from S. mansoni by Cys replacement: structural and functional characterization of a vaccine candidate. Biochim Biophys Acta 1794:655–662

    PubMed  CAS  Google Scholar 

  125. Ahmad G, Torben W, Zhang W, Wyatt M, Siddiqui AA (2009) Sm-p80-based DNA vaccine formulation induces potent protective immunity against Schistosoma mansoni. Parasite Immunol 31:156–161

    PubMed  CAS  Google Scholar 

  126. Zhang W, Ahmad G, Torben W et al (2010) Sm-p80-based DNA vaccine provides baboons with levels of protection against Schistosoma mansoni infection comparable to those achieved by the irradiated cercarial vaccine. J Infect Dis 201:1105–1112

    PubMed  CAS  Google Scholar 

  127. Zhang W, Ahmad G, Torben W, Siddiqui AA (2011) Schistosoma mansoni antigen Sm-p80: Prophylactic efficacy of a vaccine formulated in human approved plasmid vector and adjuvant (VR 1020 and alum). Acta Trop 118:142–151

    PubMed  CAS  Google Scholar 

  128. Torben W, Ahmad G, Zhang W, Siddiqui AA (2011) Role of antibodies in Sm-p80-mediated protection against Schistosoma mansoni challenge infection in murine and nonhuman primate models. Vaccine 29:2262–2271

    PubMed  CAS  Google Scholar 

  129. Tran MH, Pearson MS, Bethony JM et al (2006) Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat Med 12:835–840

    PubMed  CAS  Google Scholar 

  130. Tran MH, Freitas TC, Cooper L, Gaze S, Gatton ML, Jones MK et al (2010) Suppression of mRNAs encoding tegument tetraspanins from Schistosoma mansoni results in impaired tegument turnover. PLoS Pathog 6:e1000840

    PubMed  Google Scholar 

  131. Don TA, Bethony JM, Loukas A (2008) Saposin-like proteins are expressed in the gastrodermis of Schistosoma mansoni and are immunogenic in natural infections. Int J Infect Dis 12:e39–e47

    PubMed  Google Scholar 

  132. Marques HH, Zouain CS, Torres CB, Oliveira JS, Alves JB, Goes AM (2008) Protective effect and granuloma down-modulation promoted by RP44 antigen a fructose 1,6 bisphosphate aldolase of Schistosoma mansoni. Immunobiology 213:437–446

    PubMed  CAS  Google Scholar 

  133. Cardoso FC, Macedo GC, Gava E et al (2008) Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Negl Trop Dis 2:e308

    PubMed  Google Scholar 

  134. Githui EK, Damian RT, Aman RA, Ali MA, Kamau JM (2009) Schistosoma spp.: isolation of microtubule associated proteins in the tegument and the definition of dynein light chains components. Exp Parasitol 121:96–104

    PubMed  CAS  Google Scholar 

  135. Lopes DO, Paiva LF, Martins MA et al (2009) Sm21.6 a novel EF-hand family protein member located on the surface of Schistosoma mansoni adult worm that failed to induce protection against challenge infection but reduced liver pathology. Vaccine 27:4127–4135

    PubMed  CAS  Google Scholar 

  136. Pinho JM, Cardoso FC, Lopes DO et al (2010) Immunization with SmIg, a novel tegument protein from Schistosoma mansoni, fails to induce protection in mice but reduces liver pathology. Parasitology 137:1079–1088

    PubMed  CAS  Google Scholar 

  137. Tararam CA, Farias LP, Wilson RA, Leite LC (2010) Schistosoma mansoni Annexin 2: molecular characterization and immunolocalization. Exp Parasitol 126:146–155

    PubMed  CAS  Google Scholar 

  138. Hofmann A, Osman A, Leow CY, Driguez P, McManus DP, Jones MK (2010) Parasite annexins– new molecules with potential for drug and vaccine development. Bioessays 32:967–976

    PubMed  CAS  Google Scholar 

  139. Farias LP, Cardoso FC, Miyasato PA et al (2010) Schistosoma mansoni stomatin like protein-2 is located in the tegument and induces partial protection against challenge infection. PLoS Negl Trop Dis 4:e597

    PubMed  Google Scholar 

  140. Peng J, Han H, Hong Y, Fu Z, Liu J, Lin J (2010) Molecular cloning and characterization of a gene encoding methionine aminopeptidase 2 of Schistosoma japonicum. Parasitol Res 107:939–946

    PubMed  Google Scholar 

  141. Hong Y, Han H, Peng J, Li Y, Shi Y, Fu Z et al (2010) Schistosoma japonicum: cloning, expression and characterization of a gene encoding the α5-subunit of the proteasome. Exp Parasitol 126:517–525

    PubMed  CAS  Google Scholar 

  142. Kumagai T, Osada Y, Ohta N, Kanazawa T (2009) Peroxiredoxin-1 from Schistosoma japonicum functions as a scavenger against hydrogen peroxide but not nitric oxide. Mol Biochem Parasitol 164:26–31

    PubMed  CAS  Google Scholar 

  143. Lv ZY, Yang LL, Hu SM et al (2009) Expression profile, localization of an 8-kDa calcium- binding protein from Schistosoma japonicum (SjCa8), and vaccine potential of recombinant SjCa8 (rSjCa8) against infections in mice. Parasitol Res 104:733–743

    PubMed  Google Scholar 

  144. You H, Zhang W, Jones MK et al (2010) Cloning and characterisation of Schistosoma japonicum insulin receptors. PLoS One 5:e9868

    PubMed  Google Scholar 

  145. You H, Gobert GN, Jones MK, Zhang W, McManus DP (2011) Signalling pathways and the host- parasite relationship: putative targets for control interventions against schistosomiasis: signalling pathways and future anti-schistosome therapies. Bioessays 33:203–214

    PubMed  CAS  Google Scholar 

  146. Cai P, Bu L, Wang J, Wang Z, Zhong X, Wang H (2008) Molecular characterization of Schistosoma japonicum tegument protein tetraspanin-2: sequence variation and possible implications for immune evasion. Biochem Biophys Res Commun 372:197–202

    PubMed  CAS  Google Scholar 

  147. Yuan C, Fu YJ, Li J et al (2010) Schistosoma japonicum: efficient and rapid purification of the tetraspanin extracellular loop 2, a potential protective antigen against schistosomiasis in mammalian. Exp Parasitol 126:456–461

    PubMed  CAS  Google Scholar 

  148. Zhang W, Li J, Duke M et al (2011) Inconsistent protective efficacy and marked polymorphism limits the value of Schistosoma japonicum tetraspanin-2 as a vaccine target. PLoS Negl Trop Dis 5:e1166

    PubMed  CAS  Google Scholar 

  149. Wu W, Cai P, Chen Q, Wang H (2011) Identification of novel antigens within the Schistosoma japonicum tetraspanin family based on molecular characterization. Acta Trop 117:216–224

    PubMed  CAS  Google Scholar 

  150. Wu XH, Wang XH, Utzinger J et al (2007) Spatio-temporal correlation between human and bovine schistosomiasis in China: insight from three nationwide surveys. Geospat Health 2:75–84

    PubMed  Google Scholar 

  151. Da’dara AA, Li YS, Xiong T et al (2008) DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo. Vaccine 26:3617–3625

    PubMed  Google Scholar 

  152. Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460:345–351

    Google Scholar 

  153. Berriman M, Haas BJ, LoVerde PT et al (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460:352–358

    PubMed  CAS  Google Scholar 

  154. Han ZG, Brindley PJ, Wang SY, Chen Z (2009) Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annu Rev Genomics Hum Genet 10:211–240

    PubMed  CAS  Google Scholar 

  155. Fitzpatrick JM, Peak E, Perally S et al (2009) Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses. PLoS Negl Trop Dis 3:e543

    PubMed  Google Scholar 

  156. Farias LP, Tararam CA, Miyasato PA et al (2011) Screening the Schistosoma mansoni transcriptome for genes differentially expressed in the schistosomulum stage in search for vaccine candidates. Parasitol Res 108:123–135

    PubMed  Google Scholar 

  157. Chuan J, Feng Z, Brindley PJ et al (2010) Our wormy world genomics, proteomics and transcriptomics in East and southeast Asia. Adv Parasitol 73:327–371

    PubMed  Google Scholar 

  158. Gobert GN (2010) Better understanding of anti-schistosomal strategies through microarray analysis. Infect Disord Drug Targets 10:251–257

    PubMed  CAS  Google Scholar 

  159. Gobert GN, McManus DP, Nawaratna S, Moertel L, Mulvenna J, Jones MK (2009) Tissue specific profiling of females of Schistosoma japonicum by integrated laser microdissection microscopy and microarray analysis. PLoS Negl Trop Dis 3:e469

    PubMed  Google Scholar 

  160. Gobert GN, Moertel L, Brindley PJ, McManus DP (2009) Developmental gene expression profiles of the human pathogen Schistosoma japonicum. BMC Genomics 10:128

    PubMed  Google Scholar 

  161. Nawaratna SS, McManus DP, Moertel L, Gobert GN, Jones MK (2011) Gene atlasing of digestive and reproductive tissues in Schistosoma mansoni. PLoS Negl Trop Dis 5:e1043

    PubMed  CAS  Google Scholar 

  162. DeMarco R, Verjovski-Almeida S (2009) Schistosomes–proteomics studies for potential novel vaccines and drug targets. Drug Discov Today 14:472–478

    PubMed  CAS  Google Scholar 

  163. Mulvenna J, Moertel L, Jones MK et al (2010) Exposed proteins of the Schistosoma japonicum tegument. Int J Parasitol 40:543–554

    PubMed  CAS  Google Scholar 

  164. Liu F, Cui SJ, Hu W, Feng Z, Wang ZQ, Han ZG (2009) Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Mol Cell Proteomics 8:1236–1251

    PubMed  CAS  Google Scholar 

  165. Yang LL, Lv ZY, Hu SM et al (2009) Schistosoma japonicum: proteomics analysis of differentially expressed proteins from ultraviolet-attenuated cercariae compared to normal cercariae. Parasitol Res 105:237–248

    PubMed  Google Scholar 

  166. Abdel-Hafeez EH, Kikuchi M, Watanabe KI et al (2009) Proteome approach for identification of schistosomiasis japonica vaccine candidate antigen. Parasitol Int 58:36–44

    PubMed  CAS  Google Scholar 

  167. Castro-Borges W, Dowle A, Curwen RS, Thomas-Oates J, Wilson RA (2011) Enzymatic shaving of the tegument surface of live schistosomes for proteomic analysis: a rational approach to select vaccine candidates. PLoS Negl Trop Dis 5:e993

    PubMed  CAS  Google Scholar 

  168. Hokke CH, Deelder AM, Hoffmann KF, Wuhrer M (2007) Glycomics-driven discoveries in schistosome research. Exp Parasitol 117:275–283

    PubMed  CAS  Google Scholar 

  169. de Boer AR, Hokke CH, Deelder AM, Wuhrer M (2008) Serum antibody screening by surface plasmon resonance using a natural glycan microarray. Glycoconj J 25:75–84

    PubMed  Google Scholar 

  170. Wang Y, Li JV, Saric J, Keiser J, Wu J, Utzinger J, Holmes E (2010) Advances in metabolic profiling of experimental nematode and trematode infections. Adv Parasitol 73:373–404

    PubMed  Google Scholar 

  171. Driguez P, Doolan DL, Loukas A, Felgner PL, McManus DP (2010) Schistosomiasis vaccine discovery using immunomics. Parasit Vectors 3:4

    PubMed  Google Scholar 

  172. Cogswell AA, Collins JJ 3rd, Newmark PA, Williams DL (2011) Whole mount in situ hybridization methodology for Schistosoma mansoni. Mol Biochem Parasitol 178:46–50

    PubMed  CAS  Google Scholar 

  173. Tchoubrieva E, Kalinna B (2010) Advances in mRNA silencing and transgene expression: a gateway to functional genomics in schistosomes. Biotechnol Genet Eng Rev 26:261–280

    PubMed  CAS  Google Scholar 

  174. Mann VH, Morales ME, Rinaldi G, Brindley PJ (2010) Culture for genetic manipulation of developmental stages of Schistosoma mansoni. Parasitology 137:451–462

    PubMed  CAS  Google Scholar 

  175. Yang S, Brindley PJ, Zeng Q et al (2010) Transduction of Schistosoma japonicum schistosomules with vesicular stomatitis virus glycoprotein pseudotyped murine leukemia retrovirus and expression of reporter human telomerase reverse transcriptase in the transgenic schistosomes. Mol Biochem Parasitol 174:109–116

    PubMed  CAS  Google Scholar 

  176. Xu X, Zhang D, Sun W et al (2009) A Schistosoma japonicum chimeric protein with a novel adjuvant induced a polarized Th1 immune response and protection against liver egg burdens. BMC Infect Dis 9:54

    PubMed  Google Scholar 

  177. Wei F, Zhai Y, Jin H et al (2010) Development and immunogenicity of a recombinant pseudorabies virus expressing Sj26GST and SjFABP from Schistosoma japonicum. Vaccine 28:5161–5166

    PubMed  CAS  Google Scholar 

  178. Wei F, Liu Q, Zhai Y et al (2009) IL-18 enhances protective effect in mice immunized with a Schistosoma japonicum FABP DNA vaccine. Acta Trop 111:284–288

    PubMed  CAS  Google Scholar 

  179. Li L, Hu X, Wu Z et al (2009) Immunogenicity of self-adjuvanticity oral vaccine candidate based on use of Bacillus subtilis spore displaying Schistosoma japonicum 26 KDa GST protein. Parasitol Res 105:1643–1651

    PubMed  Google Scholar 

  180. Zhu Y, Lu F, Dai Y et al (2010) Synergistic enhancement of immunogenicity and protection in mice against Schistosoma japonicum with codon optimization and electroporation delivery of SjTPI DNA vaccines. Vaccine 28:5347–5355

    PubMed  CAS  Google Scholar 

  181. Tao FF, Yang YF, Wang H et al (2009) Th1-type epitopes-based cocktail PDDV attenuates hepatic fibrosis in C57BL/6 mice with chronic Schistosoma japonicum infection. Vaccine 27:4110–4117

    PubMed  CAS  Google Scholar 

  182. Dai Y, Zhu Y, Harn DA et al (2009) DNA vaccination by electroporation and boosting with recombinant proteins enhances the efficacy of DNA vaccines for schistosomiasis japonica. Clin Vaccine Immunol 16:1796–1803

    PubMed  CAS  Google Scholar 

  183. Zhu L, Liu HF, Lu MB, Long QK, Shi YE, Yu LJ (2011) Construction, purification, and evaluation of multivalent DNA vaccine against Schistosoma japonicum. Parasitol Res 108:115–121

    PubMed  Google Scholar 

  184. Gray DJ, McManus DP, Li YS, Williams GM, Bergquist R, Ross AG (2010) Schistosomiasis elimination: lessons from the past guide the future. Lancet Infect Dis 10:733–736

    PubMed  Google Scholar 

  185. Gray DJ, Williams GM, Li YS, McManus DP (2008) Transmission dynamics of Schistosoma japonicum in the Lake and Marshlands region of China. PLoS One 3:e4058

    PubMed  Google Scholar 

  186. Gray DJ, Williams GM, Li Y et al (2009) A cluster-randomised intervention trial against Schistosoma japonicum in the Peoples’ Republic of China: bovine and human transmission. PLoS One 4:e5900

    PubMed  Google Scholar 

  187. Urbani C, Sinoun M, Socheat D et al (2002) Epidemiology and control of mekongi schistosomiasis. Acta Trop 82:157–168

    PubMed  CAS  Google Scholar 

  188. WHO (2006) Preventive chemotherapy in human helminthiasis – coordinated use of anthelmintic drugs in control interventions: a manual for health professionals and program managers. WHO, Geneva

    Google Scholar 

  189. Utzinger J, Raso G, Brooker S et al (2009) Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution. Parasitology 136:1859–1874

    PubMed  CAS  Google Scholar 

  190. Utzinger J, Bergquist R, Shu-Hua X et al (2003) Sustainable schistosomiasis control - the way forward. Lancet 362:1932–1934

    PubMed  Google Scholar 

  191. WHO (2011) Schistosomiasis: number of people treated, 2009. WHO – Weekly Epidemiological Record 86:73–80

    Google Scholar 

  192. Brooker S, Clements A (2009) Spatial heterogeneity of parasite co-infection: Determinants and geostatistical prediction at regional scales. Int J Parasitol 39:591–597

    PubMed  Google Scholar 

  193. Raso G, Matthys B, N’Goran EK, Tanner M, Vounatsou P, Utzinger J (2005) Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Côte d’Ivoire. Parasitology 131:97–108

    PubMed  CAS  Google Scholar 

  194. Guo J, Vounatsou P, Cao CL et al (2005) A geographic information and remote sensing-based model for prediction of Oncomelania hupensis habitats in the Poyang Lake area, China. Acta Trop 96:213–222

    PubMed  Google Scholar 

  195. Clements A, Lwambo N, Blair L et al (2006) Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Trop Med Int Health 11:490–503

    PubMed  Google Scholar 

  196. Clements ACA, Firth S, Dembelé R et al (2009) Use of Bayesian geostatistical prediction to estimate local variations in Schistosoma haematobium infection in West Africa. Bull World Health Organ 87:921–929

    PubMed  Google Scholar 

  197. Yang K, Zhou XN, Wu XH et al (2009) Landscape pattern analysis and Bayesian modeling for predicting Oncomelania hupensis distribution in Eryuan County, People’s Republic of China. Am J Trop Med Hyg 81:416–423

    PubMed  Google Scholar 

  198. Clements A, Garba A, Sacko M et al (2008) Mapping the probability of schistosomiasis and associated uncertainty, West Africa. Emerg Infect Dis 14:1629–1632

    PubMed  Google Scholar 

  199. Yang GJ, Vounatsou P, Tanner M, Zhou XN, Utzinger J (2006) Remote sensing for predicting potential habitats of Oncomelania hupensis in Hongze, Baima and Gaoyou lakes in Jiangsu province, China. Geospat Health 1:85–92

    PubMed  Google Scholar 

  200. Hairston NG (1962) On the mathematical analysis of schistosome populations. Bull World Health Organ 33:45–62

    Google Scholar 

  201. Macdonald G (1965) The dynamics of helminth infections, with special reference to schistosomes. Trans R Soc Trop Med Hyg 59:489–506

    PubMed  CAS  Google Scholar 

  202. Carabin H, Guyatt HL, Engels D (2000) A comparative analysis of the cost-effectiveness of treatment based on parasitological and symptomatic screening for Schistosoma mansoni in Burundi. Trop Med Int Health 5:192–202

    PubMed  CAS  Google Scholar 

  203. Carabin H, Chan MS, Guyatt HL (2000) A population dynamic approach to evaluating the impact of school attendance on the unit cost and effectiveness of school based schistosomiasis chemotherapy programmes. Parasitology 121:171–183

    PubMed  Google Scholar 

  204. Chan MS, Bundy DAP (1997) Modelling the dynamic effects of community chemotherapy on the patterns of morbidity due to Schistosoma mansoni. Trans R Soc Trop Med Hyg 91:216–220

    PubMed  CAS  Google Scholar 

  205. Guyatt HL, Tanner M (1996) Different approaches to modeling the cost-effectiveness of schistosomiasis control. Am J Trop Med Hyg 55:159–164

    PubMed  CAS  Google Scholar 

  206. Medley GF, Bundy DAP (1996) Dynamic modeling of epidemiologic patterns of schistosomiasis morbidity. Am J Trop Med Hyg 55:149–158

    PubMed  CAS  Google Scholar 

  207. Woolhouse MEJ (1991) On the application of mathematical models of schistosome transmission dynamics I. Natural transmission. Acta Trop 49:241–270

    PubMed  CAS  Google Scholar 

  208. Woolhouse MEJ (1992) On the application of mathematical models of schistosome transmission dynamics II. Control. Acta Trop 50:189–204

    PubMed  CAS  Google Scholar 

  209. Woolhouse MEJ (1996) Mathematical models of transmission dynamics and control of schistosomiasis. Am J Trop Med Hyg 55:144–148

    PubMed  CAS  Google Scholar 

  210. Liang S, Seto E, Remais JV et al (2007) Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc Nat Acad Sci U S A 104:7110–7115

    CAS  Google Scholar 

  211. Liang S, Spear RC, Seto E, Hubbard A, Qiu D (2005) A multi-group model of Schistosoma japonicum transmission dynamics and control: model calibration and control prediction. Trop Med Int Health 10:263–278

    PubMed  Google Scholar 

  212. Spear RC, Hubbard A, Liang S, Seto E (2002) Disease transmission models for public health decision making: toward an approach for designing intervention strategies for schistosomiasis japonica. Environ Health Perspect 110:907–915

    PubMed  Google Scholar 

  213. Riley S, Carabin H, Belisle P et al (2008) Multi-host transmission dynamics of Schistosoma japonicum in Samar Province, the Philippines. PLoS Med 5:e18

    PubMed  Google Scholar 

  214. Williams GM, Sleigh AC, Li Y et al (2002) Mathematical modelling of schistosomiasis japonica: comparison of control strategies in the Peoples’ Republic of China. Acta Trop 82:253–262

    PubMed  Google Scholar 

  215. Barbour AD (1996) Modeling the transmission of schistosomiasis: an introductory view. Am J Trop Med Hyg 55:135–143

    PubMed  CAS  Google Scholar 

  216. Guo J, Li Y, Gray DJ et al (2006) A drug-based intervention study on the importance of buffaloes for human Schistosoma japonicum infection around Poyang Lake, People’s Republic of China. Am J Trop Med Hyg 74:335–341

    PubMed  Google Scholar 

  217. Clements AC, Bosqué-Oliva E, Sacko M et al (2009) A comparative study of the spatial distribution of schistosomiasis in Mali in 1984–1989 and 2004–2006. PLoS Negl Trop Dis 3:e431

    PubMed  Google Scholar 

  218. Tallo VL, Carabin H, Alday PP et al (2008) Is mass treatment the appropriate schistosomiasis elimination strategy? Bull World Health Organ 86:765–771

    PubMed  Google Scholar 

  219. Parker M, Allen T (2011) Does mass drug administration for the integrated treatment of neglected tropical diseases really work? Assessing evidence for the control of schistosomiasis and soil-transmitted helminths in Uganda. Health Res Policy Syst 9:3

    PubMed  Google Scholar 

  220. Olveda RM, Daniel BL, Ramirez BD et al (1996) Schistosomiasis japonica in the Philippines: the long-term impact of population-based chemotherapy on infection, transmission, and ­morbidity. J Infect Dis 174:163–172

    PubMed  CAS  Google Scholar 

  221. Reimert CM, Tukahebwa EM, Kabatereine NB, Dunne DW, Vennervald BJ (2008) Assessment of Schistosoma mansoni induced intestinal inflammation by means of eosinophil cationic protein, eosinophil protein X and myeloperoxidase before and after treatment with praziquantel. Acta Trop 105:253–259

    PubMed  CAS  Google Scholar 

  222. Garba A, Touré S, Dembelé R, Bosque-Oliva E, Fenwick A (2006) Implementation of national schistosomiasis control programmes in West Africa. Trends Parasitol 22:322–326

    PubMed  Google Scholar 

  223. Garba A, Touré S, Dembelé R et al (2009) Present and future schistosomiasis control activities with support from the Schistosomiasis Control Initiative in West Africa. Parasitology 136:1731–1737

    PubMed  CAS  Google Scholar 

  224. Wang LD, Chen HG, Guo JG et al (2009) A strategy to control transmission of Schistosoma japonicum in China. N Eng J Med 360:121–128

    CAS  Google Scholar 

  225. Bergquist R, Utzinger J, McManus DP (2008) Trick or treat: the role of vaccines in integrated schistosomiasis control. PLoS Negl Trop Dis 2:e244

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ studies on schistosomiasis have received financial support from various sources including the UNICEF/UNDP/World Bank/WHO Special Program for Research and Training in Tropical Diseases (TDR), the National Health and Medical Research Council of Australia, the Wellcome Trust (UK), the Sandler Foundation (USA), the Dana Foundation (USA) and the National Institute of Allergy and Infectious Diseases (NIAID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald P. McManus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McManus, D.P., Li, Y., Williams, G.M., Bergquist, R., Gray, D.J. (2013). Challenges in Controlling and Eliminating Schistosomiasis. In: Fong, I. (eds) Challenges in Infectious Diseases. Emerging Infectious Diseases of the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4496-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4496-1_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4495-4

  • Online ISBN: 978-1-4614-4496-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics