Advertisement

Lymphatic Filariasis: Progress and Challenges in the Move Toward Elimination

  • Thomas B. Nutman
Chapter
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

Among the eight filarial species of humans (Table 7.1), three closely related parasitic nematodes (Wuchereria bancrofti, Brugia malayi, and Brugia timori) cause lymphatic filariasis (LF). Unlike most other helminthiases, the burden of infection and disease in lymphatic filariasis occurs primarily during adulthood where the cumulative effects of chronicity and infection intensity manifest themselves.

Keywords

Lymphatic Filariasis Mass Drug Administration Spermatic Cord Filarial Parasite Male Worm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mathers CD, Ezzati M, Lopez AD (2007) Measuring the burden of neglected tropical diseases: the global burden of disease framework. PLoS Negl Trop Dis 1(2):e114PubMedCrossRefGoogle Scholar
  2. 2.
    Haddix AC, Kestler A (2000) Lymphatic filariasis: economic aspects of the disease and programmes for its elimination. Trans R Soc Trop Med Hyg 94(6):592–593PubMedCrossRefGoogle Scholar
  3. 3.
    Ottesen EA (2006) Lymphatic filariasis: treatment, control and elimination. Adv Parasitol 61:395–441PubMedCrossRefGoogle Scholar
  4. 4.
    WHO (2011) Meeting of the international task force for disease eradication – October 2010. Wkly Epidemiol Rec 86(7):53–59Google Scholar
  5. 5.
    Bockarie M et al (1996) Transmission dynamics of Wuchereria bancrofti in East Sepik Province, Papua New Guinea. Am J Trop Med Hyg 54(6):577–581PubMedGoogle Scholar
  6. 6.
    Sasa M (1976) Human filariasis. University Park Press, Baltimore, pp 1–819Google Scholar
  7. 7.
    Kazura JW et al (1997) Transmission intensity and its relationship to infection and disease due to Wuchereria bancrofti in Papua New Guinea. J Infect Dis 176(1):242–246PubMedCrossRefGoogle Scholar
  8. 8.
    Routh HB, Bhowmik KR (1993) History of elephantiasis. Int J Dermatol 32(12):913–916PubMedCrossRefGoogle Scholar
  9. 9.
    Rajan TV (2000) Lymphatic filariasis: a historical perspective. In: Nutman TB (ed) Lymphatic filariasis, vol 1. Imperial College Press, London, pp 1–4CrossRefGoogle Scholar
  10. 10.
    Demarquay J-N (1863) Helminthologie. Gazette Medicale de Paris 18:665–667Google Scholar
  11. 11.
    Wucherer OEH (1868) Noticia preliminar sobrevermes de uma especie ainda nao descripta, encontrados na urina de donentes de hematuria intertropical no Brazil. Gazetas Medica de Bahia 3:97–99Google Scholar
  12. 12.
    Lewis TR (1872) On a hematozoan inhabiting human blood, its relation to chyluria and other diseases. In: Microscopic organisms found in the blood of man an animals and its relationship to disease. Office of the Superintendent of the Sanitary Commissioner with the Government of India, Calcutta, pp 75–79Google Scholar
  13. 13.
    Manson P (1899) On filarial periodicity. Br Med J 2:644–646Google Scholar
  14. 14.
    Manson P (1884) Further observations on filaria sanguinis hominis in an epitome of the reports of the medical officers to the China imperial maritime customs, from 1871–1882. Balliere, Tindall and Cox., London, pp 203–206Google Scholar
  15. 15.
    Cobbold TS (1877) Discovery of the adult representative of a microscopic Filariae. Lancet 2:70–71Google Scholar
  16. 16.
    Bourne AG (1888) A note on filaria Filaria Sanguinis Hominis (with description of a male specimen). Br Med J 1:1050–1051PubMedCrossRefGoogle Scholar
  17. 17.
    Bancroft TL (1899) On the metamorphosis of the young form of Filaria bancrofti Cobbold (Filaria sanguinis hominis Lewis; Filaria nocturna Manson) in the body of Culex ciliaris, the house mosquito of Australia. J Trop Med 2:91–94Google Scholar
  18. 18.
    Low GC (1900) A recent observation on Filaria nocturna in Culex; probable mode of infection of man. Br Med J 1:1456–1457PubMedCrossRefGoogle Scholar
  19. 19.
    Buckley JJ (1960) On Brugia gen. nov. for Wuchereria spp. of the inverted question markmalayl’ group, i.e., W. malayi (Brug, 1927), W. pahangi Buckley and Edeson, 1956, and W. patei Buckley, Nelson and Heisch, 1958. Ann Trop Med Parasitol 54:75–77PubMedGoogle Scholar
  20. 20.
    O’Connor FW (1931) Filarial periodicity with observations and on the mechanisms of migration of the microfilariae and from parent worm to the blood stream. PR Public Health Trop Med 6:263Google Scholar
  21. 21.
    Kozek WJ, Marroquin HF (1977) Intracytoplasmic bacteria in Onchocerca volvulus. Am J Trop Med Hyg 26(4):663–678PubMedGoogle Scholar
  22. 22.
    McLaren DJ et al (1975) Micro-organisms in filarial larvae (Nematoda). Trans R Soc Trop Med Hyg 69(5–6):509–514PubMedCrossRefGoogle Scholar
  23. 23.
    Sironi M et al (1995) Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol 74(2):223–227PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor MJ, Hoerauf A (1999) Wolbachia bacteria of filarial nematodes. Parasitol Today 15(11):437–442PubMedCrossRefGoogle Scholar
  25. 25.
    Hise AG, Gillette-Ferguson I, Pearlman E (2004) The role of endosymbiotic Wolbachia bacteria in filarial disease. Cell Microbiol 6(2):97–104PubMedCrossRefGoogle Scholar
  26. 26.
    Rajan TV (2004) Relationship of anti-microbial activity of tetracyclines to their ability to block the l3 to L4 molt of the human filarial parasite Brugia malayi. Am J Trop Med Hyg 71(1):24–28PubMedGoogle Scholar
  27. 27.
    Mand S et al (2009) Macrofilaricidal activity and amelioration of lymphatic pathology in bancroftian filariasis after 3 weeks of doxycycline followed by single-dose diethylcarbamazine. Am J Trop Med Hyg 81(4):702–711PubMedCrossRefGoogle Scholar
  28. 28.
    Taylor MJ et al (2005) Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet 365(9477):2116–2121PubMedCrossRefGoogle Scholar
  29. 29.
    Supali T et al (2008) Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin Infect Dis 46(9):1385–1393PubMedCrossRefGoogle Scholar
  30. 30.
    Ottesen EA (1992) Infection and disease in lymphatic filariasis – an immunological perspective. Parasitology 104:571CrossRefGoogle Scholar
  31. 31.
    Dreyer G et al (1992) Renal abnormalities in microfilaremic patients with Bancroftian filariasis. Am J Trop Med Hyg 46(6):745–751PubMedGoogle Scholar
  32. 32.
    Freedman DO et al (1994) Lymphoscintigraphic analysis of lymphatic abnormalities in symptomatic and asymptomatic human filariasis. J Infect Dis 170(4):927–933PubMedCrossRefGoogle Scholar
  33. 33.
    Case T et al (1991) Vascular abnormalities in experimental and human lymphatic filariasis. Lymphology 24(4):174–183PubMedGoogle Scholar
  34. 34.
    Witte MH et al (1993) Lymphatic abnormalities in human filariasis as depicted by lymphangioscintigraphy. Arch Intern Med 153(6):737–744PubMedCrossRefGoogle Scholar
  35. 35.
    Mand S et al (2003) Animated documentation of the filaria dance sign (FDS) in bancroftian filariasis. Filaria J 2(1):3PubMedCrossRefGoogle Scholar
  36. 36.
    Noroes J et al (1996) Ultrasonographic evidence of abnormal lymphatic vessels in young men with adult Wuchereria bancrofti infection in the scrotal area. J Urol 156(2 Pt 1):409–412PubMedGoogle Scholar
  37. 37.
    Noroes J et al (1996) Occurrence of living adult Wuchereria bancrofti in the scrotal area of men with microfilaraemia. Trans R Soc Trop Med Hyg 90(1):55–56PubMedCrossRefGoogle Scholar
  38. 38.
    Dreyer G et al (2000) Pathogenesis of lymphatic disease in bancroftian filariasis: a clinical perspective. Parasitol Today 16(12):544–548PubMedCrossRefGoogle Scholar
  39. 39.
    Aguiar-Santos AM et al (2009) Lymph scrotum: an unusual urological presentation of lymphatic filariasis. A case series study. Rev Inst Med Trop Sao Paulo 51(4):179–183PubMedGoogle Scholar
  40. 40.
    Addiss DG, Brady MA (2007) Morbidity management in the Global Programme to Eliminate Lymphatic Filariasis: a review of the scientific literature. Filaria J 6:2PubMedCrossRefGoogle Scholar
  41. 41.
    Dreyer G et al (1999) Acute attacks in the extremities of persons living in an area endemic for bancroftian filariasis: differentiation of two syndromes. Trans R Soc Trop Med Hyg 93(4):413–417PubMedCrossRefGoogle Scholar
  42. 42.
    WHO (1984) Lymphatic filariasis. Fourth report of the WHO Expert Committee on Filariasis. World Health Organ Tech Rep Ser 702:3–112Google Scholar
  43. 43.
    Dreyer G et al (2002) Basic lymphoedema management: treatment and prevention of problems associated with lymphatic filariasis. Hollis Publishing Co, Hollis, p 112Google Scholar
  44. 44.
    Dreyer G, Mattos D, Noroes J (2007) Chyluria. Rev Assoc Med Bras 53(5):460–464PubMedCrossRefGoogle Scholar
  45. 45.
    Ottesen EA, Nutman TB (1992) Tropical pulmonary eosinophilia. Annu Rev Med 43:417–424PubMedCrossRefGoogle Scholar
  46. 46.
    Coutinho AD et al (1998) Tropical filarial pulmonary eosinophilia and its differential diagnosis. Rev Hosp Clin Fac Med Sao Paulo 53(1):42–51PubMedGoogle Scholar
  47. 47.
    Rom WN et al (1990) Persistent lower respiratory tract inflammation associated with interstitial lung disease in patients with tropical pulmonary eosinophilia following conventional treatment with diethylcarbamazine. Am Rev Respir Dis 142(5):1088–1092PubMedGoogle Scholar
  48. 48.
    El Setouhy M et al (2004) A randomized clinical trial comparing single- and multi-dose combination therapy with diethylcarbamazine and albendazole for treatment of bancroftian filariasis. Am J Trop Med Hyg 70(2):191–196PubMedGoogle Scholar
  49. 49.
    Horton J et al (2000) An analysis of the safety of the single dose, two drug regimens used in programmes to eliminate lymphatic filariasis. Parasitology 121(Suppl):S147–S160PubMedCrossRefGoogle Scholar
  50. 50.
    Molyneux DH et al (2003) Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends Parasitol 19(11):516–522PubMedCrossRefGoogle Scholar
  51. 51.
    Ottesen EA (2002) Major progress toward eliminating lymphatic filariasis. N Engl J Med 347(23):1885–1886PubMedCrossRefGoogle Scholar
  52. 52.
    Addiss D, et al (2004) Albendazole for lymphatic filariasis. Cochrane Database Syst Rev (1): CD003753Google Scholar
  53. 53.
    Jamal S (1981) Lymphovenous anastomosis in filarial lymphedema. Lymphology 14(2):64–68PubMedGoogle Scholar
  54. 54.
    Ottesen EA et al (1997) Strategies and tools for the control/elimination of lymphatic filariasis. Bull World Health Organ 75(6):491–503PubMedGoogle Scholar
  55. 55.
    Molyneux DH, Zagaria N (2002) Lymphatic filariasis elimination: progress in global programme development. Ann Trop Med Parasitol 96(Suppl 2):S15–S40PubMedCrossRefGoogle Scholar
  56. 56.
    Ottesen EA et al (2008) The global programme to eliminate lymphatic filariasis: health impact after 8 years. PLoS Negl Trop Dis 2(10):e317PubMedCrossRefGoogle Scholar
  57. 57.
    Bockarie MJ, Molyneux DH (2009) The end of lymphatic filariasis? BMJ 338:b1686PubMedCrossRefGoogle Scholar
  58. 58.
    Molyneux D (2003) Lymphatic filariasis (elephantiasis) elimination: a public health success and development opportunity. Filaria J 2(1):13PubMedCrossRefGoogle Scholar
  59. 59.
    Addiss DG (2010) Global elimination of lymphatic filariasis: addressing the public health problem. PLoS Negl Trop Dis 4(6):e741PubMedCrossRefGoogle Scholar
  60. 60.
    Schneider MC et al (2011) Elimination of neglected diseases in latin america and the Caribbean: a mapping of selected diseases. PLoS Negl Trop Dis 5(2):e964PubMedCrossRefGoogle Scholar
  61. 61.
    Ramaiah KD et al (2011) Effect of annual mass administration of diethylcarbamazine and albendazole on bancroftian filariasis in five villages in south India. Trans R Soc Trop Med Hyg 105(8):431–437PubMedCrossRefGoogle Scholar
  62. 62.
    Hoerauf A et al (2011) Filariasis in Africa-treatment challenges and prospects. Clin Microbiol Infect 17(7):977–985PubMedCrossRefGoogle Scholar
  63. 63.
    Simonsen PE et al (2010) Lymphatic filariasis control in Tanzania: effect of repeated mass drug administration with ivermectin and albendazole on infection and transmission. PLoS Negl Trop Dis 4(6):e696PubMedCrossRefGoogle Scholar
  64. 64.
    Gyapong JO et al (2010) Integration of control of neglected tropical diseases into health-care systems: challenges and opportunities. Lancet 375(9709):160–165PubMedCrossRefGoogle Scholar
  65. 65.
    Bockarie MJ, Deb RM (2010) Elimination of lymphatic filariasis: do we have the drugs to complete the job? Curr Opin Infect Dis 23(6):617–620PubMedCrossRefGoogle Scholar
  66. 66.
    Brady MA, Hooper PJ, Ottesen EA (2006) Projected benefits from integrating NTD programs in sub-Saharan Africa. Trends Parasitol 22(7):285–291PubMedCrossRefGoogle Scholar
  67. 67.
    Smits HL (2009) Prospects for the control of neglected tropical diseases by mass drug administration. Expert Rev Anti Infect Ther 7(1):37–56PubMedCrossRefGoogle Scholar
  68. 68.
    Blackburn BG et al (2006) Successful integration of insecticide-treated bed net distribution with mass drug administration in Central Nigeria. Am J Trop Med Hyg 75(4):650–655PubMedGoogle Scholar
  69. 69.
    Richards FO Jr et al (2006) Integration of mass drug administration programmes in Nigeria: the challenge of schistosomiasis. Bull World Health Organ 84(8):673–676PubMedCrossRefGoogle Scholar
  70. 70.
    Haddad D et al (2008) Health care at the end of the road: opportunities from 20 years of partnership in onchocerciasis control. Glob Public Health 3(2):187–196PubMedCrossRefGoogle Scholar
  71. 71.
    Tadesse Z, Hailemariam A, Kolaczinski JH (2008) Potential for integrated control of neglected tropical diseases in Ethiopia. Trans R Soc Trop Med Hyg 102(3):213–214PubMedCrossRefGoogle Scholar
  72. 72.
    Matthews GA et al (2009) Preliminary examination of integrated vector management in a tropical rainforest area of Cameroon. Trans R Soc Trop Med Hyg 103(11):1098–1104PubMedCrossRefGoogle Scholar
  73. 73.
    Addiss D (2010) The 6th Meeting of the Global Alliance to Eliminate Lymphatic Filariasis: a half-time review of lymphatic filariasis elimination and its integration with the control of other neglected tropical diseases. Parasit Vectors 3(1):100PubMedCrossRefGoogle Scholar
  74. 74.
    Shriram AN et al (2011) Diurnally subperiodic filariasis in India-prospects of elimination: precept to action? Parasitol Res 109(1):1–8PubMedCrossRefGoogle Scholar
  75. 75.
    Bhullar N, Maikere J (2010) Challenges in mass drug administration for treating lymphatic filariasis in Papua, Indonesia. Parasit Vectors 3:70PubMedCrossRefGoogle Scholar
  76. 76.
    Ramaiah KD (2009) Lymphatic filariasis elimination programme in India: progress and challenges. Trends Parasitol 25(1):7–8PubMedCrossRefGoogle Scholar
  77. 77.
    Bockarie MJ, Taylor MJ, Gyapong JO (2009) Current practices in the management of lymphatic filariasis. Expert Rev Anti Infect Ther 7(5):595–605PubMedCrossRefGoogle Scholar
  78. 78.
    Streit T, Lafontant JG (2008) Eliminating lymphatic filariasis: a view from the field. Ann N Y Acad Sci 1136:53–63PubMedCrossRefGoogle Scholar
  79. 79.
    Pedersen EM et al (2009) The role of monitoring mosquito infection in the Global Programme to Eliminate Lymphatic Filariasis. Trends Parasitol 25(7):319–327PubMedCrossRefGoogle Scholar
  80. 80.
    Stolk WA, de Vlas SJ, Habbema JD (2006) Advances and challenges in predicting the impact of lymphatic filariasis elimination programmes by mathematical modelling. Filaria J 5:5PubMedCrossRefGoogle Scholar
  81. 81.
    Hooper PJ et al (2009) The Global Programme to Eliminate Lymphatic Filariasis: health impact during its first 8 years (2000–2007). Ann Trop Med Parasitol 103(Suppl 1):S17–S21PubMedCrossRefGoogle Scholar
  82. 82.
    Chu BK et al (2010) The economic benefits resulting from the first 8 years of the Global Programme to Eliminate Lymphatic Filariasis (2000–2007). PLoS Negl Trop Dis 4(6):e708PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Helminth Immunology Section, Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaUSA
  2. 2.Clinical Parasitology SectionNational Institutes of HealthBethesdaUSA

Personalised recommendations