The Magnus Effect and the Dynamics of a Rough Disc

  • Alexander Plakhov


In this chapter we are concerned with the Magnus effect: the phenomenon governing the deflection of the trajectory of a spinning body (for example, a golf ball or a soccer ball). Surprisingly enough, in highly rarefied media (on Mars or in the thin atmosphere at a height corresponding to low Earth orbits: between 100 and 1,000 km) the inverse effect takes place; this means that the trajectory deflection has opposite signs in sparse and in dense media.


Angular Velocity Resistance Force Isosceles Triangle Transversal Force Golf Ball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aleksenko, A., Plakhov, A.: Bodies of zero resistance and bodies invisible in one direction. Nonlinearity 22, 1247–1258 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces (Funchal, Portugal, 2000), ed. P. Colli and J.F. Rodrigues, Lecture Notes in Math. 1812, Springer, Berlin, 2003, 1–52Google Scholar
  3. 3.
    Bachurin, P., Khanin, K., Marklof, J., Plakhov, A.: Perfect retroreflectors and billiard dynamics. J. Mod. Dyn. 5, 33–48 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Belloni, M., Kawohl, B.: A paper of Legendre revisited. Forum Math. 9, 655–668 (1997)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Belloni, M., Wagner, A.: Newton’s problem of minimal resistance in the class of bodies with prescribed volume. J. Convex Anal. 10, 491–500 (2003)MathSciNetMATHGoogle Scholar
  6. 6.
    Borg, K.I., Söderholm, L.H.: Orbital effects of the Magnus force on a spinning spherical satellite in a rarefied atmosphere. Eur. J. Mech. B/Fluids 27, 623–631 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Borg, K.I., Söderholm, L.H., Essén, H.: Force on a spinning sphere moving in a rarefied gas. Phys. Fluids 15, 736–741 (2003)CrossRefGoogle Scholar
  8. 8.
    Brock, F., Ferone, V., Kawohl, B.: A symmetry problem in the calculus of variations. Calc. Var. 4, 593–599 (1996)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and Their Applications 65, Birkhäuser, Boston, Inc., Boston, MA (2005)Google Scholar
  10. 10.
    Bunimovich. L.B.: Mushrooms and other billiards with divided phase space. Chaos 11, 802–808 (2001)Google Scholar
  11. 11.
    Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions. Math. Nachr. 173, 71–89 (1995)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Buttazzo, G., Kawohl, B.: On Newton’s problem of minimal resistance. Math. Intell. 15, 7–12 (1993)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Chechkin, G.A., Piatnitski, A.L., Shamaev, A.S.: Homogenization. Methods and Applications. Translations of Mathematical Monographs, vol. 234. American Mathematical Society, Providence (2007)Google Scholar
  14. 14.
    Chernov, N.: Entropy, Lyapunov exponents, and mean free path for billiards. J. Stat. Phys. 88, 1–29 (1997)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chow, T.S.: Wetting of rough surfaces. J. Phys.: Condens. Matter 10(27), L445 (1998)Google Scholar
  16. 16.
    Comte, M., Lachand-Robert, T.: Newton’s problem of the body of minimal resistance under a single-impact assumption. Calc. Var. Partial Differ. Eq. 12, 173–211 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Comte, M., Lachand-Robert, T.: Existence of minimizers for Newton’s problem of the body of minimal resistance under a single-impact assumption. J. Anal. Math. 83, 313–335 (2001)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Comte, M., Lachand-Robert, T.: Functions and domains having minimal resistance under a single-impact assumption. SIAM J. Math. Anal. 34, 101–120 (2002)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Eaton, J.E.: On spherically symmetric lenses. Trans. IRE Antennas Propag. 4, 66–71 (1952)Google Scholar
  20. 20.
    Fieseler, P.D.: A method for solar sailing in a low Earth orbit. Acta Astron. 43, 531–541 (1998)CrossRefGoogle Scholar
  21. 21.
    Glutsyuk, A., Kudryashov, Yu.: On quadrilateral orbits in planar billiards. Dokl. Akad. Nauk 438, 590–592 (2011) (in Russian)Google Scholar
  22. 22.
    Glutsyuk, A.A, Kudryashov, Yu.G: On quadrilateral orbits in planar billiards. Doklady Math. 83, 371–373 (2011) [translated from Dokl. Akad. Nauk 438, 509–592 (2011) (Russian)]Google Scholar
  23. 23.
    Gouveia, P.D.F.: Computação de Simetrias Variacionais e Optimização da Resistência Aerodinâmica Newtoniana. Ph.D. Thesis, Universidade de Aveiro (2007)Google Scholar
  24. 24.
    Gouveia, P., Plakhov, A., Torres, D.: Two-dimensional body of maximum mean resistance. Appl. Math. Comput. 215, 37–52 (2009). doi:10.1016/j.amc.2009.04.030MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Gutkin, E.: Billiard dynamics: a survey with the emphasis on open problems. Regul. Chaotic Dyn. 8, 1–13 (2003)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Harrison, I.K., Swinerd, G.G.: A free molecule aerodynamic investigation using multiple satellite analysis. Planet. Space Sci. 44, 171–180 (1996)CrossRefGoogle Scholar
  27. 27.
    Ivanov, S.G., Yanshin, A.M.: Forces and moments acting on bodies rotating around a symmetry axis in a free molecular flow. Fluid Dyn. 15, 449 (1980)MATHCrossRefGoogle Scholar
  28. 28.
    Ivrii, V.Ya.: The second term of the spectral asymptotics for a laplace-beltrami operator on manifolds with boundary. Funct. Anal. Appl. 14, 98–106 (1980)Google Scholar
  29. 29.
    Lachand-Robert, T., Oudet, E. Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16, 368–379 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lachand-Robert, T., Peletier, M.A.: Newton’s problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226, 153–176 (2001)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Lachand-Robert, T., Peletier, M.A.: An example of non-convex minimization and an application to Newton’s problem of the body of least resistance. Ann. Inst. H. Poincaré Anal. Non Lin. 18, 179–198 (2001)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Legendre, A.M.: Sur la maniére de distinguer les maxima des minima dans le calcul des variations. Memoires de L’Academie royale de Sciences annee 1786, pp. 7–37. Paris (1788)Google Scholar
  33. 33.
    Levin, V.L.: Solution of the Monge and the Monge–Kantorovich problems. Theory and applications. Dokl. Akad. Nauk 388, 7–10 (2003) (in Russian)Google Scholar
  34. 34.
    Levin, V.L.: Optimality conditions and exact solutions of the two-dimensional Monge–Kantorovich problem. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 312 (2004) [Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. XI. Translation in J. Math. Sci. (N.Y.) 133, 1456–1463 (2006) (in Russian)]Google Scholar
  35. 35.
    Levin, V.L.: Optimal solutions of the Monge problem. Adv. Math. Econ. 6, 85–122 (2004)CrossRefGoogle Scholar
  36. 36.
    Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)MATHGoogle Scholar
  37. 37.
    McCann, R.J.: Exact solutions to the transportation problem on the line. Proc. R. Soc. Lond. A 455, 1341–1380 (1999)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Mehta, R.D.: Aerodynamics of sport balls. Annu. Rev. Fluid Mech. 17, 151–189 (1985)CrossRefGoogle Scholar
  39. 39.
    Moe, K., Moe, M.M.: Gas–surface interactions and satellite drag coefficients. Planet. Space Sci. 53, 793–801 (2005)CrossRefGoogle Scholar
  40. 40.
    Newton, I.: Philosophiae naturalis principia mathematica. London: Streater (1687)Google Scholar
  41. 41.
    Ogilvy, J.A.: Theory of Wave Scattering from Random Rough Surfaces. A. Hilger in Bristol, England, Philadelphia (1991)MATHGoogle Scholar
  42. 42.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Plakhov, A.: Newton’s problem of a body of minimal aerodynamic resistance. Doklady Math. 390, 314–317 (2003)MathSciNetGoogle Scholar
  44. 44.
    Plakhov, A.: Newton’s problem of the body of minimal resistance with a bounded number of collisions. Russ. Math. Surv. 58, 191–192 (2003)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Plakhov, A.: Newton’s problem of the body of minimum mean resistance. Sbornik: Math. 195, 1017–1037 (2004)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Plakhov, A.: Precise solutions of the one-dimensional Monge–Kantorovich problem. Sbornik: Math. 195, 1291–1307 (2004)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Plakhov, A.: Newton’s problem of minimal resistance for bodies containing a half-space. J. Dyn. Contr. Syst. 10, 247–251 (2004)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Plakhov, A., Torres, D.: Newton’s aerodynamic problem in media of chaotically moving particles. Sbornik: Math. 196, 885–933 (2005). doi:10.1070/SM2005v196n06ABEH000904MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Plakhov, A.: Billiards in unbounded domains reversing the direction of motion of a particle. Russ. Math. Surv. 61, 179–180 (2006)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Plakhov, A.: Billiards and two-dimensional problems of optimal resistance. Arch. Ration. Mech. Anal. 194, 349–382 (2009)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Plakhov, A.: Billiard scattering on rough sets: two-dimensional case. SIAM J. Math. Anal. 40, 2155–2178 (2009)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Plakhov, A.: Scattering in billiards and problems of Newtonian aerodynamics. Russ. Math. Surv. 64, 873–938 (2009)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Plakhov, A.: Comment on “Functions and domains having minimal resistance under a single-impact assumption” [SIAM J. Math. Anal. 34 (2002), pp.101–120]. SIAM J. Math. Anal. 41, 1721–1724 (2009). doi:10.1137/09075439XGoogle Scholar
  54. 54.
    Plakhov, A.: Mathematical retroreflectors. Discr. Contin. Dyn. Syst. A 30, 1211–1235 (2011)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Plakhov, A.: Optimal roughening of convex bodies. Can. J. Math. 64, 1058–1074 (2012)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Plakhov, A., Gouveia, P.: Problems of maximal mean resistance on the plane. Nonlinearity 20, 2271–2287 (2007)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Plakhov, A., Roshchina, V.: Invisibility in billiards. Nonlinearity 24, 847–854 (2011)MathSciNetMATHGoogle Scholar
  58. 58.
    Plakhov, A., Tchemisova, T.: Force acting on a spinning rough disk in a flow of non-interacting particles. Doklady Math. 79, 132–135 (2009)CrossRefGoogle Scholar
  59. 59.
    Plakhov, A., Tchemisova, T., Gouveia, P.: Spinning rough disk moving in a rarefied medium. Proc. R. Soc. A. 466, 2033–2055 (2010)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Plakhov, A., Torres, D.: Newton’s aerodynamic problem in media of chaotically moving particles. Sbornik: Math. 196, 885–933 (2005)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley (Interscience), New York (1962)MATHGoogle Scholar
  62. 62.
    Prandtl, L.: Application of the “Magnus Effect” to the wind propulsion of ships. Die. Naturwiss. 13, 93–108 (1926) [Transl. NACA-TM-367]Google Scholar
  63. 63.
    Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems, vol. 1: Theory. Probability and its Applications (New York). Springer, New York (1998)Google Scholar
  64. 64.
    Rubinov, S.I., Keller, J.B.: The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447–459 (1961)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Rychlik, M.R.: Periodic points of the billiard ball map in a convex domain. J. Diff. Geom. 30, 191–205 (1989)MathSciNetMATHGoogle Scholar
  66. 66.
    Santaló, L.A.: Integral Geometry and Geometric Probability. Addison-Wesley, Reading (1976)MATHGoogle Scholar
  67. 67.
    Stojanov, L.: Note on the periodic points of the billiard. J. Diff. Geom. 34, 835–837 (1991)MathSciNetMATHGoogle Scholar
  68. 68.
    Tabachnikov, S.: Billiards. Société Mathématique de France, Paris (1995)MATHGoogle Scholar
  69. 69.
    Tikhomirov, V.M.: Newton’s aerodynamic problem. Kvant (5), 11–18 (1982) (in Russian)Google Scholar
  70. 70.
    Tikhomirov, V.M.: Stories about maxima and minima. In: Mathematical World, vol. 1. AMS, Providence (1990) [Translated from: V.M. Tikhomirov. Rasskazy o maksimumakh i minimumakh. Nauka, Moscow, 1986 (in Russian)]Google Scholar
  71. 71.
    Tyc, T., Leonhardt, U.: Transmutation of singularities in optical instruments. New J. Phys. 10, 115038 (8 pp.) (2008)Google Scholar
  72. 72.
    Uckelmann, L.: Optimal couplings between one-dimensional distributions. In: Benes, V., Stepan, J. (eds.) Distributions with Given Marginals and Moment Problems, pp. 275–281. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  73. 73.
    Vorobets, Ya.B.: On the measure of the set of periodic points of a billiard. Math. Notes 55, 455–460 (1994)Google Scholar
  74. 74.
    Wang, C.T.: Free molecular flow over a rotating sphere. AIAA J. 10, 713 (1972)CrossRefGoogle Scholar
  75. 75.
    Weidman, P.D., Herczynski, A.: On the inverse Magnus effect in free molecular flow. Phys. Fluids 16, L9–L12 (2004)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Wojtkowski, M.P.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105, 391–414 (1986)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Wojtkowski, M.P.: Two applications of Jacobi fields to the billiard ball problem. J. Diff. Geom. 40, 155–164 (1994)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Alexander Plakhov
    • 1
    • 2
  1. 1.University of AveiroAveiroPortugal
  2. 2.Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations