Advertisement

Motor Control of Extraocular Muscle

Chapter

Abstract

Six pairs of extraocular muscles (EOMs) are innervated by three pairs of cranial nerves whose cell bodies lie in three cranial nerve nuclei on each side of the brain, namely the oculomotor, trochlear, and abducens nuclei. Early studies of the oculomotor system examined neuronal responses of extraocular motoneurons within these motor nuclei and developed a framework for understanding the motor control of EOM (Fuchs and Luschei 1970; Keller and Robinson 1971). Perhaps one of the most significant and elegant outcomes of some of these studies was the proposal for a “final common pathway” for eye movements (Robinson 1968, 1981). Thus, according to the oculomotor final common pathway theory, motoneuron innervation of EOM was independent of the type of eye movement that was being executed. While this framework still has validity in understanding the neural control of eye movements, there have been new developments in the last couple of decades that has brought about renewed interest in the oculomotor periphery and cast doubt on the so-called “final common pathway.” The goals of this chapter are to review ocular biomechanics and motor control of EOM while highlighting new developments and identifying issues that are yet unresolved. We have confined our discussion to the motor neurons and their effector organ, the eye. Central control of eye movements is outside the scope of this chapter.

Keywords

Lateral Rectus Medial Rectus Inferior Rectus Oculomotor Nucleus Abducens Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by NIH grant EY015312. I wish to thank Dr. Anand Joshi and the editors for critically reading the manuscript and providing helpful comments.

References

  1. Anderson SR, Porrill J, Sklavos S, Gandhi NJ, Sparks DL, Dean P (2009) Dynamics of primate oculomotor plant revealed by effects of abducens microstimulation. J Neurophysiol 101(6):2907–2923PubMedCrossRefGoogle Scholar
  2. Angelaki DE, Hess BJ (2004) Control of eye orientation: where does the brain’s role end and the muscle’s begin? Eur J Neurosci 19(1):1–10PubMedCrossRefGoogle Scholar
  3. Brandner M, Buchberger M, Kaltofen T, Haslwanter T, Hoerantner R, Langmann A (2011) Biomechanical analysis of x-pattern exotropia. Am J Ophthalmol 152(1):141–146PubMedCrossRefGoogle Scholar
  4. Buttner-Ennever JA (2006) The extraocular motor nuclei: organization and functional neuroanatomy. In: Buttner-Ennever JA (ed) Progress in brain research: neuroanatomy of the oculomotor system. Elsevier, Netherlands, pp 95–125CrossRefGoogle Scholar
  5. Buttner-Ennever JA, Akert K (1981) Medial rectus subgroups of the oculomotor nucleus and their abducens internuclear input in the monkey. J Comp Neurol 197(1):17–27PubMedCrossRefGoogle Scholar
  6. Buttner-Ennever JA, Horn AK, Scherberger H, D’Ascanio P (2001) Motoneurons of twitch and nontwitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. J Comp Neurol 438(3):318–335PubMedCrossRefGoogle Scholar
  7. Chen AL, Ramat S, Serra A, King SA, Leigh RJ (2011) The role of the medial longitudinal fasciculus in horizontal gaze: tests of current hypotheses for saccade-vergence interactions. Exp Brain Res 208(3):335–343PubMedCrossRefGoogle Scholar
  8. Clark RA, Miller JM, Demer JL (1997) Location and stability of rectus muscle pulleys. Muscle paths as a function of gaze. Invest Ophthalmol Vis Sci 38(1):227–240PubMedGoogle Scholar
  9. Clark RA, Miller JM, Demer JL (1998a) Displacement of the medial rectus pulley in superior oblique palsy. Invest Ophthalmol Vis Sci 39(1):207–212PubMedGoogle Scholar
  10. Clark RA, Miller JM, Rosenbaum AL, Demer JL (1998b) Heterotopic muscle pulleys or oblique muscle dysfunction? J AAPOS 2(1):17–25PubMedCrossRefGoogle Scholar
  11. Clark RA, Miller JM, Demer JL (2000) Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions. Invest Ophthalmol Vis Sci 41(12):3787–3797PubMedGoogle Scholar
  12. Clendaniel RA, Mays LE (1994) Characteristics of antidromically identified oculomotor internuclear neurons during vergence and versional eye movements. J Neurophysiol 71(3):1111–1127PubMedGoogle Scholar
  13. Collins CC (1971) Orbital mechanics. In: Bach-y-Rita P, Collins CC, Hyde JE (eds) The control of eye movements. Academic, New York, pp 283–325Google Scholar
  14. Crawford JD, Vilis T (1992) Symmetry of oculomotor burst neuron coordinates about Listing’s plane. J Neurophysiol 68(2):432–448PubMedGoogle Scholar
  15. Crawford JD, Ceylan MZ, Klier EM, Guitton D (1999) Three-dimensional eye-head coordination during gaze saccades in the primate. J Neurophysiol 81(4):1760–1782PubMedGoogle Scholar
  16. Cullen KE, Van Horn MR (2011) The neural control of fast vs. slow vergence eye movements. Eur J Neurosci 33(11):2147–2154PubMedCrossRefGoogle Scholar
  17. Das VE (2008) Investigating mechanisms of strabismus in nonhuman primates. J AAPOS 12(4):324–325PubMedCrossRefGoogle Scholar
  18. Das VE (2011) Cells in the supraoculomotor area in monkeys with strabismus show activity related to strabismus angle. Ann N Y Acad Sci 1233:85–90PubMedCrossRefGoogle Scholar
  19. Das VE, Mustari MJ (2007) Correlation of cross-axis eye movements and motoneuron activity in non-human primates with “A” pattern strabismus. Invest Ophthalmol Vis Sci 48(2):665–674PubMedCrossRefGoogle Scholar
  20. Delgado-Garcia JM, del Pozo F, Baker R (1986a) Behavior of neurons in the abducens nucleus of the alert cat—I. Motoneurons. Neuroscience 17(4):929–952PubMedCrossRefGoogle Scholar
  21. Delgado-Garcia JM, del Pozo F, Baker R (1986b) Behavior of neurons in the abducens nucleus of the alert cat—II. Internuclear neurons. Neuroscience 17(4):953–973PubMedCrossRefGoogle Scholar
  22. Demer JL (2001) Clarity of words and thoughts about strabismus [letter; comment]. Am J Ophthalmol 132(5):757–759PubMedCrossRefGoogle Scholar
  23. Demer JL (2004) Pivotal role of orbital connective tissue in binocular alignment and strabismus: the Friedenwald lecture. Invest Ophthalmol Vis Sci 45(3):729–738PubMedCrossRefGoogle Scholar
  24. Demer JL (2006) Current concepts of mechanical and neural factors in ocular motility. Curr Opin Neurol 19:4  –13PubMedGoogle Scholar
  25. Demer JL, Miller JM, Poukens V, Vinters HV, Glasgow BJ (1995) Evidence for fibromuscular pulleys of the recti extraocular muscles. Invest Ophthalmol Vis Sci 36(6):1125–1136PubMedGoogle Scholar
  26. Demer JL, Miller JM, Poukens V (1996) Surgical implications of the rectus extraocular muscle pulleys. J Pediatr Ophthalmol Strabismus 33(4):208–218PubMedGoogle Scholar
  27. Demer JL, Oh SY, Poukens V (2000) Evidence for active control of rectus extraocular muscle pulleys. Invest Ophthalmol Vis Sci 41(6):1280–1290PubMedGoogle Scholar
  28. Demer JL, Kono R, Wright W (2003) Magnetic resonance imaging of human extraocular muscles in convergence. J Neurophysiol 89(4):2072–2085PubMedCrossRefGoogle Scholar
  29. Fuchs AF, Luschei ES (1970) Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movement. J Neurophysiol 33(3):382–392PubMedGoogle Scholar
  30. Fuchs AF, Scudder CA, Kaneko CR (1988) Discharge patterns and recruitment order of identified motoneurons and internuclear neurons in the monkey abducens nucleus. J Neurophysiol 60(6):1874–1895PubMedGoogle Scholar
  31. Ghasia FF, Angelaki DE (2005) Do motoneurons encode the noncommutativity of ocular rotations? Neuron 47(2):281–293PubMedCrossRefGoogle Scholar
  32. Goldstein HP (1983) The neural encoding of saccades in the rhesus monkey. Johns Hopkins University, Baltimore, MDGoogle Scholar
  33. Haslwanter T, Buchberger M, Kaltofen T, Hoerantner R, Priglinger S (2005) SEE++: a biomechanical model of the oculomotor plant. Ann N Y Acad Sci 1039:9–14PubMedCrossRefGoogle Scholar
  34. Haustein W (1989) Considerations on Listing’s Law and the primary position by means of a matrix description of eye position control. Biol Cybern 60(6):411–420PubMedCrossRefGoogle Scholar
  35. Hoerantner R, Kaltofen T, Priglinger S, Fock CM, Buchberger M, Haslwanter T (2007) Model-based improvements in the treatment of patients with strabismus and axial high myopia. Invest Ophthalmol Vis Sci 48(3):1133–1138PubMedCrossRefGoogle Scholar
  36. Joshi AC, Das VE (2011) Responses of medial rectus motoneurons in monkeys with strabismus. Invest Ophthalmol Vis Sci 52:6697–6705Google Scholar
  37. Keller EL (1973) Accommodative vergence in the alert monkey. Motor unit analysis. Vision Res 13(8):1565–1575PubMedCrossRefGoogle Scholar
  38. Keller EL, Robinson DA (1971) Absence of a stretch reflex in extraocular muscles of the monkey. J Neurophysiol 34(5):908–919PubMedGoogle Scholar
  39. Keller EL, Robinson DA (1972) Abducens unit behavior in the monkey during vergence movements. Vision Res 12(3):369–382PubMedCrossRefGoogle Scholar
  40. King WM, Zhou W (2000) New ideas about binocular coordination of eye movements: is there a chameleon in the primate family tree? Anat Rec 261(4):153–161PubMedCrossRefGoogle Scholar
  41. King WM, Zhou W (2002) Neural basis of disjunctive eye movements. Ann N Y Acad Sci 956:273–283PubMedCrossRefGoogle Scholar
  42. King WM, Fuchs AF, Magnin M (1981) Vertical eye movement-related responses of neurons in midbrain near intestinal nucleus of Cajal. J Neurophysiol 46(3):549–562PubMedGoogle Scholar
  43. Klier EM, Meng H, Angelaki DE (2006) Three-dimensional kinematics at the level of the oculomotor plant. J Neurosci 26(10):2732–2737PubMedCrossRefGoogle Scholar
  44. Klier EM, Meng H, Angelaki DE (2011) Revealing the kinematics of the oculomotor plant with tertiary eye positions and ocular counterroll. J Neurophysiol 105(2):640–649PubMedCrossRefGoogle Scholar
  45. Kono R, Clark RA, Demer JL (2002) Active pulleys: magnetic resonance imaging of rectus muscle paths in tertiary gazes. Invest Ophthalmol Vis Sci 43(7):2179–2188PubMedGoogle Scholar
  46. Koornneef L (1977) New insights in the human orbital connective tissue. Result of a new anatomical approach. Arch Ophthalmol 95(7):1269–1273PubMedCrossRefGoogle Scholar
  47. Langer T, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235(1):1–25PubMedCrossRefGoogle Scholar
  48. Langer T, Kaneko CR, Scudder CA, Fuchs AF (1986) Afferents to the abducens nucleus in the monkey and cat. J Comp Neurol 245(3):379–400PubMedCrossRefGoogle Scholar
  49. Leigh RJ, Zee DS (2006) The neurology of eye movements. Oxford University Press, New YorkGoogle Scholar
  50. Mays LE (1998) Has Hering been hooked? Nat Med 4(8):889–890PubMedCrossRefGoogle Scholar
  51. Mays LE, Porter JD (1984) Neural control of vergence eye movements: activity of abducens and oculomotor neurons. J Neurophysiol 52(4):743–761PubMedGoogle Scholar
  52. Mays LE, Zhang Y, Thorstad MH, Gamlin PD (1991) Trochlear unit activity during ocular convergence. J Neurophysiol 65(6):1484–1491PubMedGoogle Scholar
  53. McCrea RA, Strassman A, Highstein SM (1986) Morphology and physiology of abducens motoneurons and internuclear neurons intracellularly injected with horseradish peroxidase in alert squirrel monkeys. J Comp Neurol 243(3):291–308PubMedCrossRefGoogle Scholar
  54. McLoon LK, Wirtschafter J (2003) Activated satellite cells in extraocular muscles of normal adult monkeys and humans. Invest Ophthalmol Vis Sci 44(5):1927–1932PubMedCrossRefGoogle Scholar
  55. McLoon LK, Rowe J, Wirtschafter J, McCormick KM (2004) Continuous myofiber remodeling in uninjured extraocular myofibers: myonuclear turnover and evidence for apoptosis. Muscle Nerve 29(5):707–715PubMedCrossRefGoogle Scholar
  56. McLoon LK, Park HN, Kim JH, Pedrosa-Domellof F, Thompson LV (2011) A continuum of myofibers in adult rabbit extraocular muscle: force, shortening velocity, and patterns of myosin heavy chain co-localization. J Appl Physiol 111(4):1178–1189PubMedCrossRefGoogle Scholar
  57. Miller JM (1989) Functional anatomy of normal human rectus muscles. Vision Res 29(2):223–240PubMedCrossRefGoogle Scholar
  58. Miller J (2003) No oculomotor plant, no final common path. Strabismus 11(4):205–211PubMedCrossRefGoogle Scholar
  59. Miller JM, Robins D (1987) Extraocular muscle sideslip and orbital geometry in monkeys. Vision Res 27(3):381–392PubMedCrossRefGoogle Scholar
  60. Miller JM, Demer JL, Rosenbaum AL (1993) Effect of transposition surgery on rectus muscle paths by magnetic resonance imaging. Ophthalmology 100(4):475–487PubMedGoogle Scholar
  61. Miller JM, Bockisch CJ, Pavlovski DS (2002) Missing lateral rectus force and absence of medial rectus co-contraction in ocular convergence. J Neurophysiol 87(5):2421–2433PubMedGoogle Scholar
  62. Miller JM, Demer JL, Poukens V, Pavlovski DS, Nguyen HN, Rossi EA (2003) Extraocular connective tissue architecture. J Vis 3(3):240–251PubMedCrossRefGoogle Scholar
  63. Miller JM, Davison RC, Gamlin PD (2011) Motor nucleus activity fails to predict extraocular muscle forces in ocular convergence. J Neurophysiol 105(6):2863–2873PubMedCrossRefGoogle Scholar
  64. Moschovakis AK, Scudder CA, Highstein SM (1990) A structural basis for Hering’s law: projections to extraocular motoneurons. Science 248(4959):1118–1119PubMedCrossRefGoogle Scholar
  65. Narasimhan A, Tychsen L, Poukens V, Demer JL (2007) Horizontal rectus muscle anatomy in naturally and artificially strabismic monkeys. Invest Ophthalmol Vis Sci 48(6):2576–2588PubMedCrossRefGoogle Scholar
  66. Oh SY, Poukens V, Demer JL (2001) Quantitative analysis of rectus extraocular muscle layers in monkey and humans. Invest Ophthalmol Vis Sci 42(1):10–16PubMedGoogle Scholar
  67. Oh SY, Clark RA, Velez F, Rosenbaum AL, Demer JL (2002) Incomitant strabismus associated with instability of rectus pulleys. Invest Ophthalmol Vis Sci 43(7):2169–2178PubMedGoogle Scholar
  68. Pola J, Robinson DA (1978) Oculomotor signals in medial longitudinal fasciculus of the monkey. J Neurophysiol 41(2):245–259PubMedGoogle Scholar
  69. Quaia C, Optican LM (1998) Commutative saccadic generator is sufficient to control a 3-D ocular plant with pulleys. J Neurophysiol 79(6):3197–3215PubMedGoogle Scholar
  70. Quaia C, Ying HS, Nichols AM, Optican LM (2009a) The viscoelastic properties of passive eye muscle in primates. I: Static forces and step responses. PLoS One 4(4):e4850PubMedCrossRefGoogle Scholar
  71. Quaia C, Ying HS, Optican LM (2009b) The viscoelastic properties of passive eye muscle in primates. II: Testing the quasi-linear theory. PLoS One 4(8):e6480PubMedCrossRefGoogle Scholar
  72. Quaia C, Ying HS, Optican LM (2010) The viscoelastic properties of passive eye muscle in primates. III: Force elicited by natural elongations. PLoS One 5(3):e9595PubMedCrossRefGoogle Scholar
  73. Robinson DA (1964) The mechanics of human saccadic eye movement. J Physiol 174:245–264PubMedGoogle Scholar
  74. Robinson DA (1968) Eye movement control in primates. The oculomotor system contains specialized subsystems for acquiring and tracking visual targets. Science 161(847):1219–1224PubMedCrossRefGoogle Scholar
  75. Robinson DA (1981) Control of eye movements. In: Brooks V (ed) Handbook of physiology. The nervous system. Williams and Wilkins, Bethesda, MD, pp 1275–1320Google Scholar
  76. Robinson DA (1982) The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern 46:53–66PubMedCrossRefGoogle Scholar
  77. Schoemaker I, Hoefnagel PP, Mastenbroek TJ, Kolff CF, Schutte S, van der Helm FC, Picken SJ, Gerritsen AF, Wielopolski PA, Spekreijse H, Simonsz HJ (2006) Elasticity, viscosity, and deformation of orbital fat. Invest Ophthalmol Vis Sci 47(11):4819–4826PubMedCrossRefGoogle Scholar
  78. Schutte S, van den Bedem SP, van Keulen F, van der Helm FC, Simonsz HJ (2006) A finite-element analysis model of orbital biomechanics. Vision Res 46(11):1724–1731PubMedCrossRefGoogle Scholar
  79. Seidman SH, Leigh RJ, Tomsak RL, Grant MP, Dell’Osso LF (1995) Dynamic properties of the human vestibulo-ocular reflex during head rotations in roll. Vision Res 35(5):679–689PubMedCrossRefGoogle Scholar
  80. Sharpe JA, Wong AMF (2005) Anatomy and physiology of the ocular motor systems. In: Miller NR, Newman NJ (eds) Walsh and Hoyt’s clinical neuro-opthalmology, vol 1. Lippincott Williams and Wilkins, Philadelphia, pp 809–885Google Scholar
  81. Sklavos S, Porrill J, Kaneko CR, Dean P (2005) Evidence for wide range of time scales in oculomotor plant dynamics: implications for models of eye-movement control. Vision Res 45(12):1525–1542PubMedCrossRefGoogle Scholar
  82. Sklavos S, Dimitrova DM, Goldberg SJ, Porrill J, Dean P (2006) Long time-constant behavior of the oculomotor plant in barbiturate-anesthetized primate. J Neurophysiol 95(2):774–782PubMedCrossRefGoogle Scholar
  83. Spencer RF, Porter JD (1981) Innervation and structure of extraocular muscles in the monkey in comparison to those of the cat. J Comp Neurol 198(4):649–665PubMedCrossRefGoogle Scholar
  84. Stahl JS, Simpson JI (1995) Dynamics of abducens nucleus neurons in the awake rabbit. J Neurophysiol 73(4):1383–1395PubMedGoogle Scholar
  85. Sylvestre PA, Cullen KE (1999) Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements. J Neurophysiol 82(5):2612–2632PubMedGoogle Scholar
  86. Sylvestre PA, Cullen KE (2002) Dynamics of abducens nucleus neuron discharges during disjunctive saccades. J Neurophysiol 88(6):3452–3468PubMedCrossRefGoogle Scholar
  87. Tweed DB, Haslwanter TP, Happe V, Fetter M (1999) Non-commutativity in the brain. Nature 399(6733):261–263PubMedCrossRefGoogle Scholar
  88. Ugolini G, Klam F, Doldan Dans M, Dubayle D, Brandi AM, Buttner-Ennever J, Graf W (2006) Horizontal eye movement networks in primates as revealed by retrograde transneuronal transfer of rabies virus: differences in monosynaptic input to “slow” and “fast” abducens motoneurons. J Comp Neurol 498(6):762–785PubMedCrossRefGoogle Scholar
  89. Warwick R (1953) Representation of the extraocular muscles in the oculomotor nuclei of the monkey. J Comp Neurol 98(3):449–503PubMedCrossRefGoogle Scholar
  90. Wei Q, Pai DK (2008) Physically consistent registration of extraocular muscle models from MRI. Conf Proc IEEE Eng Med Biol Soc 2008:2237–2241PubMedGoogle Scholar
  91. Wei Q, Sueda S, Pai DK (2010) Physically-based modeling and simulation of extraocular muscles. Prog Biophys Mol Biol 103(2–3):273–283PubMedCrossRefGoogle Scholar
  92. Yoo L, Reed J, Shin A, Kung J, Gimzewski JK, Poukens V, Goldberg RA, Mancini R, Taban M, Moy R, Demer JL (2011) Characterization of ocular tissues using microindentation and hertzian viscoelastic models. Invest Ophthalmol Vis Sci 52(6):3475–3482PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.College of OptometryUniversity of HoustonHoustonUSA

Personalised recommendations