Skip to main content

Tongue Biomechanics and Motor Control

  • Chapter
  • First Online:
  • 1923 Accesses

Abstract

The tongue is one of the most intriguing of the skeletal muscles, considering that it consists of several muscles and as a group, takes many shapes. It plays a vital role in respiration, suckling, acquiring and manipulating food, swallowing, and speech. Obviously, not all species use the tongue in the same way, so the tongue has adapted to deform into different shapes and mechanisms of movement to meet the needs of the animal. Even when considering only mammalian tongues, two categories of tongue have been proposed (Doran 1975). The type II tongues in animals such as marsupials, monotremes, and pholidota protrude at least 100 % of their resting length to gather food such as ants or flies. Many of these tongues reach their prodigious lengths by a hydrostatic mechanism typically created by contraction of the vertical and transverse lingual muscles, compressing the longitudinal muscles, resulting in more elongation of the tongue (McClung and Goldberg 2000; Smith and Kier 1989). While intriguing, the type II tongues are not discussed further.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldes LD (1995) Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat. J Comp Neurol 353(1):89–108

    Article  PubMed  CAS  Google Scholar 

  • Bailey EF (2011) Activities of human genioglossus motor units. Respir Physiol Neurobiol 179(1):14–22

    Article  PubMed  Google Scholar 

  • Bailey EF, Fregosi RF (2004) Coordination of intrinsic and extrinsic tongue muscles during spontaneous breathing in the rat. J Appl Physiol 96:440–449

    Article  PubMed  CAS  Google Scholar 

  • Bailey EF, Fridel KW, Rice AD (2007a) Sleep/wake firing patterns of human genioglossus motor units. J Neurophysiol 98(6):3284–3291

    Article  PubMed  Google Scholar 

  • Bailey EF, Rice AD, Fuglevand AJ (2007b) Firing patterns of human genioglossus motor units during voluntary tongue movement. J Neurophysiol 97(1):933–936

    Article  PubMed  Google Scholar 

  • Barlow SM (2009) Central pattern generation involved in oral and respiratory control for feeding in the term infant. Curr Opin Otolaryngol Head Neck Surg 17(3):187–193

    Article  PubMed  Google Scholar 

  • Brozanski B, Daood M, Watchko J, LaFramboise WA, Guthrie RD (1993) Postnatal expression of myosin isoforms in the genioglossus and diaphragm muscles. Pediatr Pulmonol 15(4):212–219

    Article  PubMed  CAS  Google Scholar 

  • Buchaillard S, Perrier P, Payan Y (2009) A biomechanical model of cardinal vowel production: muscle activations and the impact of gravity on tongue positioning. J Acoust Soc Am 126(4):2033–2051

    Article  PubMed  Google Scholar 

  • Cheng S, Butler JE, Gandevia SC, Bilston LE (2008) Movement of the tongue during normal breathing in awake healthy humans. J Physiol 586(pt 17):4283–4294

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Butler JE, Gandevia SC, Bilston LE (2011) Movement of the human upper airway during inspiration with and without inspiratory resistive loading. J Appl Physiol 110(1):69–75

    Article  PubMed  CAS  Google Scholar 

  • Curto FS, Suarez F, Kornblut AD (1980) The extracranial hypoglossal nerve: 112 cadaver dissections. Ear Nose Throat J 59:94–99

    PubMed  Google Scholar 

  • Dellow PG, Lund JP (1971) Evidence for central timing of rhythmical mastication. J Physiol 215(1–13):1971

    Google Scholar 

  • Doran GA (1975) Review of the evolution and phylogeny of the mammalian tongue. Acta Anat (Basel) 91(1):118–129

    Article  CAS  Google Scholar 

  • Ertekin C, Aydogdu I (2003) Neurophysiology of swallowing. Clin Neurophysiol 114:2226–2244

    Article  PubMed  Google Scholar 

  • Fregosi RF, Fuller DD (1997) Respiratory-related control of extrinsic tongue muscle activity. Respir Physiol 110:295–306

    Article  PubMed  CAS  Google Scholar 

  • Fuller DD, Williams JS, Janssen PL, Fregosi RF (1999) Effects of co-activation of tongue protrudor and retractor muscles on tongue movements and pharyngeal airflow mechanics in the rat. J Physiol 519(2):601–613

    Article  PubMed  CAS  Google Scholar 

  • Goetz CG (2007) Textbook of clinical neurology, 3rd edn. Elsevier, Philadelphia

    Google Scholar 

  • Halkjaer L, Melsen B, McMillan AS, Svensson P (2006) Influence of sensory deprivation and perturbation of trigeminal afferent fibers on corticomotor control of human tongue musculature. Exp Brain Res 170:199–205

    Article  PubMed  CAS  Google Scholar 

  • Hwang JC, Bartlett D Jr, St. John WM (1983) Characterization of respiratory-modulated activities of hypoglossal motoneurons. J Appl Physiol 55(3):793–798

    PubMed  CAS  Google Scholar 

  • Jennische M, Sedin G (1998) Speech and language skills in children who required neonatal intensive care. I. Spontaneous speech at 6.5 years of age. Acta Paediatr 87(6):654–666

    Article  PubMed  CAS  Google Scholar 

  • Jennische M, Sedin G (1999) Speech and language skills in children who required neonatal intensive care. II. Linguistic skills at 6 1/2 years of age. Acta Paediatr 88(4):371–383

    Article  PubMed  CAS  Google Scholar 

  • Katakura N, Jia L, Nakamura Y (1995) NMDA-induced rhythmical activity in XII nerve of isolated CNS from newborn rats. Neuroreport 6(4):601–604

    Article  PubMed  CAS  Google Scholar 

  • Kinirons SA, Shall MS, McClung JR, Goldberg SJ (2003) Effect of artificial rearing on the contractile properties and myosin heavy chain isoforms of developing rat tongue muscle. J Neurophysiol 90:120–127

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Nishiguchi T, Sakai A (1985) A horseradish peroxidase study of the rat lingual motoneurons with axons passing through the cervical nerve. Exp Neurol 87:20–34

    Article  PubMed  CAS  Google Scholar 

  • Luo P, Zhang J, Yang R, Pendlebury WW (2006) Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw-tongue coordination via hypoglossal premotor neurons. Eur J Neurosci 23:3269–3283

    Article  PubMed  Google Scholar 

  • Maeda K, Tsukamura H, Yokoyama A (1987) Suppression of luteinizing hormone secretion is removed at late lactation in ovariectomized lactating rats. Endocrinol Jpn 34(5):709–716

    Article  PubMed  CAS  Google Scholar 

  • McClung JR, Goldberg SJ (1999) Organization of motoneurons in the dorsal hypoglossal nucleus that innervate the retrusor muscles of the tongue in the rat. Anat Rec 254(2):222–230

    Article  PubMed  CAS  Google Scholar 

  • McClung JR, Goldberg SJ (2000) Functional anatomy of the hypoglossal innervated muscles of the rat tongue: a model for elongation and protrusion of the mammalian tongue. Anat Rec 260(4):378–386

    Article  PubMed  CAS  Google Scholar 

  • McClung JR, Goldberg SJ (2002) Organization of the hypoglossal motoneurons that innervate the horizontal and oblique components of the genioglossus muscle in the rat. Brain Res 950(1–2):321–324

    Article  PubMed  CAS  Google Scholar 

  • McNutt JC (2009) Asymmetry in two-point discrimination on the tongues of adults and children. Cortex 45(9):1078–1084

    Article  Google Scholar 

  • Nakamura Y, Katakura N, Nakajima M (1999) Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice. J Med Dent Sci 46(2):63–73

    PubMed  CAS  Google Scholar 

  • Napadow VJ, Chen Q, Wedeen VJ, Gilbert RJ (1999) Biomechanical basis for lingual muscular deformation during swallowing. Am J Physiol 277(3 pt 1):G695–G701

    PubMed  CAS  Google Scholar 

  • Oliven A, Odeh M, Geitini L, Oliven R, Steinfeld U, Schwartz AR, Tov N (2007) Effect of coactivation of tongue protrusor and retractor muscles on pharyngeal lumen and airflow in sleep apnea patients. J Appl Physiol 103(5):1662–1668

    Article  PubMed  Google Scholar 

  • Ono T, Iwata H, Hori K, Tamine K, Kondoh J, Hamanaka S, Maeda Y (2009) Evaluation of tongue-, jaw-, and swallowing-related muscle coordination during voluntarily triggered swallowing. Int J Prosthodont 22:493–498

    PubMed  Google Scholar 

  • Peever JH, Shen L, Duffin J (2002) Respiratory pre-motor control of hypoglossal motoneurons in the rat. Neuroscience 110(4):711–722

    Article  PubMed  CAS  Google Scholar 

  • Perkell JS, Zandipour M (2002) Economy of effort in different speaking conditions. II. Kinematic performance spaces for cyclical and speech movements. J Acoust Soc Am 112(4):1642–1651

    Article  PubMed  Google Scholar 

  • Qiu Y, Noguchi Y, Honda M, Nakata H, Tamura Y, Tanaka S, Sadato N, Wang X, Inui K, Kakigi R (2006) Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-related functional magnetic resonance imaging study. Cereb Cortex 16(9):1289–1295

    Article  PubMed  Google Scholar 

  • Reis PM, Jung S, Aristoff JM, Stocker R (2010) How cats lap: water uptake by Felis catus. Science 330(6008):1231–1234

    Article  PubMed  CAS  Google Scholar 

  • Remmers JE, deGroot WJ, Sauerland EK, Anch AM (1978) Pathogenesis of upper airway occlusion during sleep. J Appl Physiol 44(6):931–938

    PubMed  CAS  Google Scholar 

  • Rice A, Fuglevand AJ, Laine CM, Fregosi RF (2011) Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles. J Neurophysiol 105(5):2330–2336

    Article  PubMed  Google Scholar 

  • Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67

    Article  PubMed  CAS  Google Scholar 

  • Saboisky JP, Gorman RB, De Troyer A, Gandevia SC, Butler JE (2007) Differential activation among five human inspiratory motoneuron pools during tidal breathing. J Appl Physiol 102(2):772–780

    Article  PubMed  Google Scholar 

  • Sakamoto K, Nakata H, Kakigi R (2008) Somatosensory-evoked magnetic fields following stimulation of the tongue in humans. Clin Neurophysiol 119(7):1664–1673

    Article  PubMed  Google Scholar 

  • Sakamoto K, Nakata H, Inui K, Perrucci MG, Del Gratta C, Kakigi R, Romani G (2010a) A difference exists in somatosensory processing between the anterior and posterior parts of the tongue. Neurosci Res 66:173–179

    Article  PubMed  Google Scholar 

  • Sakamoto K, Nakata H, Yumoto M, Kakigi R (2010b) Somatosensory processing of the tongue in humans. Dysphagia 25(4):323–333

    Article  Google Scholar 

  • Sauerland EK, Harper RM (1976) The human tongue during sleep: electromyographic activity of the genioglossus muscle. Exp Neurol 51(1):160–170

    Article  PubMed  CAS  Google Scholar 

  • Sauerland EK, Mitchell SP (1970) Electromyographic activity of the human genioglossus muscle in response to respiration and to positional changes of the head. Bull Los Angeles Neurol Soc 35(2):69–73

    PubMed  CAS  Google Scholar 

  • Schnitzler A, Ploner M (2000) Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol 17(6):592–603

    Article  PubMed  CAS  Google Scholar 

  • Smith KK, Kier WM (1989) Trunks, tongues, and tentacles: moving with skeletons of muscle. Am Sci 77:29–36

    Google Scholar 

  • Sokoloff AJ (1993) Topographic segregation of genioglossus motoneurons in the neonatal rat. Neurosci Lett 155(1):102–106

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff AJ, Deacon TW (1992) Musculotopic organization of the hypoglossal nucleus in the hypoglossal nucleus in the cynomolgus monkey, Macaca fascicularis. J Comp Neurol 324:81–93

    Article  PubMed  CAS  Google Scholar 

  • Steele CM, Miller AJ (2010) Sensory input pathways and mechanisms in swallowing: a review. Dysphagia 25(4):323–333

    Article  PubMed  Google Scholar 

  • Tsuiki S, Ono T, Ishiwata Y, Kuroda T (2000) Functional divergence of human genioglossus motor units with respiratory-related activity. Eur Respir J 15:906–910

    Article  PubMed  CAS  Google Scholar 

  • Uemura-Sumi M, Itoh M, Mizuno N (1988) The distribution of hypoglossal motoneurons in the dog, rabbit and rat. Anat Embryol (Berl) 177(5):389–394

    Article  CAS  Google Scholar 

  • Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6(7):533–544

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson V, Malhotra A, Nicholas CL, Worsnop C, Jordan AS, Butler JE, Saboisky JP, Gandevia SC, White DP, Trinder J (2010) Discharge patterns of human genioglossus motor units during arousal from sleep. Sleep 33(3):379–387

    PubMed  Google Scholar 

  • Withington-Wray DJ, Mifflin SW, Spyer KM (1988) Intracellular analysis of respiratory-modulated hypoglossal motoneurons in the cat. Neuroscience 25(3):1041–1051

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Snyder Shall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shall, M.S. (2012). Tongue Biomechanics and Motor Control. In: McLoon, L., Andrade, F. (eds) Craniofacial Muscles. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4466-4_13

Download citation

Publish with us

Policies and ethics