Motor Control and Biomechanics of Laryngeal and Pharyngeal Muscles

  • Christy L. Ludlow


This chapter reviews the laryngeal and pharyngeal muscles that are essential for voice, speech and swallowing in the human. The focus is on the individual and combined effects of muscle contraction and how these are controlled for both reflexive and volitional controlled functions in the human. Knowledge of the neural control systems is limited compared to limb control because of difficulties with the non-invasive study of laryngeal/pharyngeal mechanisms in the human. Human production of voice for speech is learned and cortically driven and and may be unique compared to other mammalian systems. Although functional neuroimaging has been fruitful questions about the accuracy of some cortical studies need further investigation. The integrative study of the complex neural control systems for laryngeal and pharyngeal muscle control for voice, speech and swallowing in the human are of high importance for improving patient care.


Transcranial Magnetic Stimulation Recurrent Laryngeal Nerve Vocal Fold Superior Laryngeal Nerve Pharyngeal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andreatta RD, Mann EA, Poletto CJ, Ludlow CL (2002) Mucosal afferents mediate laryngeal adductor responses in the cat. J Appl Physiol 93:1622–1629PubMedGoogle Scholar
  2. Atkins JP (1973) An electromyographic study of recurrent laryngeal nerve conduction and its clinical application. Laryngoscope 83:796–807PubMedCrossRefGoogle Scholar
  3. Aviv JE, Martin JH, Sacco RL, Zagar D, Diamond B, Keen MS, Blitzer A (1996) Supraglottic and pharyngeal sensory abnormalities in stroke patients with dysphagia. Ann Otol Rhinol Laryngol 105:92–97PubMedGoogle Scholar
  4. Aviv JE, Kim T, Sacco RL, Kaplan S, Goodhart K, Diamond B, Close LG (1998) FEESST: a new bedside endoscopic test of the motor and sensory components of swallowing. Ann Otol Rhinol Laryngol 107:378–387PubMedGoogle Scholar
  5. Aydogdu I, Ertekin C, Tarlaci S, Turman B, Kiylioglu N, Secil Y (2001) Dysphagia in lateral medullary infarction (Wallenberg’s syndrome): an acute disconnection syndrome in premotor neurons related to swallowing activity? Stroke 32:2081–2087PubMedCrossRefGoogle Scholar
  6. Barkmeier JM, Bielamowicz S, Takeda N, Ludlow CL (2000) Modulation of laryngeal responses to superior laryngeal nerve stimulation by volitional swallowing in awake humans. J Neurophysiol 83:1264–1272PubMedGoogle Scholar
  7. Benecke R, Meyer BU, Schonle P, Conrad B (1988) Transcranial magnetic stimulation of the human brain: responses in muscles supplied by cranial nerves. Exp Brain Res 71:623–632PubMedCrossRefGoogle Scholar
  8. Benson B, Sulica L, Guss J, Blitzer A (2010) Laryngeal neuropathy of Charcot-Marie-Tooth disease: further observations and novel mutations associated with vocal fold paresis. Laryngoscope 120:291–296PubMedGoogle Scholar
  9. Berke GS, Blackwell KE, Gerratt BR, Verneil A, Jackson KS, Sercarz JA (1999) Selective laryngeal adductor denervation-reinnervation: a new surgical treatment for adductor spasmodic dysphonia. Ann Otol Rhinol Laryngol 108:227–231PubMedGoogle Scholar
  10. Borden GJ, Harris KS (1984) Speech science primer: physiology, acoustics, and perception of speech, 2nd edn. Williams and Wilkins, Baltimore, MDGoogle Scholar
  11. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  12. Brennick MJ, Parisi RA, England SJ (2001) Genioglossal length and EMG responses to static upper airway pressures during hypercapnia in goats. Respir Physiol 127:227–239PubMedCrossRefGoogle Scholar
  13. Brok HA, Copper MP, Stroeve RJ, Ongerboer de Visser BW, Venker-van Haagen AJ, Schouwenburg PF (1999) Evidence for recurrent laryngeal nerve contribution in motor innervation of the human cricopharyngeal muscle. Laryngoscope 109:705–708PubMedCrossRefGoogle Scholar
  14. Casella C, Pata G, Nascimbeni R, Mittempergher F, Salerni B (2009) Does extralaryngeal branching have an impact on the rate of postoperative transient or permanent recurrent laryngeal nerve palsy? World J Surg 33:261–265PubMedCrossRefGoogle Scholar
  15. Cernea CR, Hojaij FC, De Carlucci D Jr, Gotoda R, Plopper C, Vanderlei F, Brandao LG (2009) Recurrent laryngeal nerve: a plexus rather than a nerve? Arch Otolaryngol Head Neck Surg 135:1098–1102PubMedCrossRefGoogle Scholar
  16. Chiang FY, Lu IC, Tsai CJ, Hsiao PJ, Lee KW, Wu CW (2012) Detecting and identifying nonrecurrent laryngeal nerve with the application of intraoperative neuromonitoring during thyroid and parathyroid operation. Am J Otolaryngol 33:1–5PubMedCrossRefGoogle Scholar
  17. Coady MA, Adler F, Davila JJ, Gahtan V (2000) Nonrecurrent laryngeal nerve during carotid artery surgery: case report and literature review. J Vasc Surg 32:192–196PubMedCrossRefGoogle Scholar
  18. Damrose EJ, Huang RY, Ye M, Berke GS, Sercarz JA (2003) Surgical anatomy of the recurrent laryngeal nerve: implications for laryngeal reinnervation. Ann Otol Rhinol Laryngol 112:434–438PubMedGoogle Scholar
  19. Davis PJ, Nail BS (1984) On the location and size of laryngeal motoneurons in the cat and rabbit. J Comp Neurol 230:13–32PubMedCrossRefGoogle Scholar
  20. Dickson JM, Grunewald RA (2004) Somatic symptom progression in idiopathic Parkinson’s disease. Parkinsonism Relat Disord 10:487–492PubMedCrossRefGoogle Scholar
  21. Eisele DW, Smith PL, Alam DS, Schwartz AR (1997) Direct hypoglossal nerve stimulation in obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 123:57–61PubMedCrossRefGoogle Scholar
  22. Flaksman H, Ron Y, Ben-David N, Cinamon U, Levy D, Russo E, Sokolov M, Avni Y, Roth Y (2006) Modified endoscopic swallowing test for improved diagnosis and prevention of aspiration. Eur Arch Otorhinolaryngol 263:637–640PubMedCrossRefGoogle Scholar
  23. Gallena S, Smith PJ, Zeffiro T, Ludlow CL (2001) Effects of levodopa on laryngeal muscle activity for voice onset and offset in Parkinson disease. J Speech Lang Hear Res 44:1284–1299PubMedCrossRefGoogle Scholar
  24. Grohrock P, Hausler U, Jurgens U (1997) Dual-channel telemetry system for recording vocalization-correlated neuronal activity in freely moving squirrel monkeys. J Neurosci Methods 76:7–13PubMedCrossRefGoogle Scholar
  25. Halum SL, Shemirani NL, Merati AL, Jaradeh S, Toohill RJ (2006) Electromyography findings of the cricopharyngeus in association with ipsilateral pharyngeal and laryngeal muscles. Ann Otol Rhinol Laryngol 115:312–316PubMedGoogle Scholar
  26. Hamilton RH, Sanders L, Benson J, Faseyitan O, Norise C, Naeser M, Martin P, Coslett HB (2010) Stimulating conversation: enhancement of elicited propositional speech in a patient with chronic non-fluent aphasia following transcranial magnetic stimulation. Brain Lang 113:45–50PubMedCrossRefGoogle Scholar
  27. Hanson DB, Gerratt BR, Ward PH (1984) Cinegraphic observations of laryngeal function in Parkinson’s disease. Laryngoscope 94:348–353PubMedCrossRefGoogle Scholar
  28. Hardemark Cedborg AI, Sundman E, Boden K, Hedstrom HW, Kuylenstierna R, Ekberg O, Eriksson LI (2009) Co-ordination of spontaneous swallowing with respiratory airflow and diaphragmatic and abdominal muscle activity in healthy adult humans. Exp Physiol 94:459–468PubMedCrossRefGoogle Scholar
  29. Henriquez VM, Schulz GM, Bielamowicz S, Ludlow CL (2007) Laryngeal reflex responses are not modulated during human voice and respiratory tasks. J Physiol 585:779–789PubMedCrossRefGoogle Scholar
  30. Hickok G, Houde J, Rong F (2011) Sensorimotor integration in speech processing: computational basis and neural organization. Neuron 69:407–422PubMedCrossRefGoogle Scholar
  31. Horner RL, Guz A (1991) Some factors affecting the maintenance of upper airway patency in man. Respir Med 85(suppl A):27–30PubMedCrossRefGoogle Scholar
  32. Jafari S, Prince RA, Kim DY, Paydarfar D (2003) Sensory regulation of swallowing and airway protection: a role for the internal superior laryngeal nerve in humans. J Physiol 550:287–304PubMedCrossRefGoogle Scholar
  33. Jayasekeran V, Singh S, Tyrrell P, Michou E, Jefferson S, Mistry S, Gamble E, Rothwell J, Thompson D, Hamdy S (2010) Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions. Gastroenterology 138:1737–1746PubMedCrossRefGoogle Scholar
  34. Jordan AS, White DP (2008) Pharyngeal motor control and the pathogenesis of obstructive sleep apnea. Respir Physiol Neurobiol 160:1–7PubMedCrossRefGoogle Scholar
  35. Jurgens U (2000) Localization of a pontine vocalization-controlling area. J Acoust Soc Am 108:1393–1396PubMedCrossRefGoogle Scholar
  36. Jurgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav Rev 26:235–258PubMedCrossRefGoogle Scholar
  37. Jurgens U (2009) The neural control of vocalization in mammals: a review. J Voice 23:1–10PubMedCrossRefGoogle Scholar
  38. Kahrilas PJ, Logemann JA, Lin S, Ergun GA (1992) Pharyngeal clearance during swallowing: a combined manometric and videofluoroscopic study. Gastroenterology 103:128–136PubMedGoogle Scholar
  39. Kent RD (2000) Research on speech motor control and its disorders: a review and prospective. J Commun Disord 33:391–427; quiz 428Google Scholar
  40. Khedr EM, Aref EE (2002) Electrophysiological study of vocal-fold mobility disorders using a magnetic stimulator. Eur J Neurol 9:259–267PubMedCrossRefGoogle Scholar
  41. Kim H, Chung CS, Lee KH, Robbins J (2000) Aspiration subsequent to a pure medullary infarction: lesion sites, clinical variables, and outcome. Arch Neurol 57:478–483PubMedCrossRefGoogle Scholar
  42. Kitagawa J, Shingai T, Takahashi Y, Yamada Y (2002) Pharyngeal branch of the glossopharyngeal nerve plays a major role in reflex swallowing from the pharynx. Am J Physiol Regul Integr Comp Physiol 282:R1342–R1347PubMedGoogle Scholar
  43. Kitagawa J, Nakagawa K, Hasegawa M, Iwakami T, Shingai T, Yamada Y, Iwata K (2009) Facilitation of reflex swallowing from the pharynx and larynx. J Oral Sci 51:167–171PubMedCrossRefGoogle Scholar
  44. Komisaruk BR, Mosier KM, Liu WC, Criminale C, Zaborszky L, Whipple B, Kalnin A (2002) Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI. AJNR Am J Neuroradiol 23:609–617PubMedGoogle Scholar
  45. Kwak PE, Friedman AD, Lamarre ED, Lorenz RR (2010) Selective reinnervation of the posterior cricoarytenoid and interarytenoid muscles: an anatomical study. Laryngoscope 120:463–467PubMedCrossRefGoogle Scholar
  46. Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174PubMedCrossRefGoogle Scholar
  47. Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL (2008) Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage 42:285–295PubMedCrossRefGoogle Scholar
  48. Ludlow CL, VanPelt F, Koda J (1992) Characteristics of late responses to superior laryngeal nerve stimulation in humans. Ann Otol Rhinol Laryngol 101:127–134PubMedGoogle Scholar
  49. Ludlow CL, Adler CH, Berke GS, Bielamowicz SA, Blitzer A, Bressman SB, Hallett M, Jinnah HA, Juergens U, Martin SB, Perlmutter JS, Sapienza C, Singleton A, Tanner CM, Woodson GE (2008) Research priorities in spasmodic dysphonia. Otolaryngol Head Neck Surg 139:495–505PubMedCrossRefGoogle Scholar
  50. Mann EA, Burnett T, Cornell S, Ludlow CL (2002) The effect of neuromuscular stimulation of the genioglossus on the hypopharyngeal airway. Laryngoscope 112:351–356PubMedCrossRefGoogle Scholar
  51. Maranillo E, Leon X, Orus C, Quer M, Sanudo JR (2005) Variability in nerve patterns of the adductor muscle group supplied by the recurrent laryngeal nerve. Laryngoscope 115:358–362PubMedCrossRefGoogle Scholar
  52. Maranillo E, Vazquez T, Quer M, Niedenfuhr MR, Leon X, Viejo F, Parkin I, Sanudo JR (2008) Potential structures that could be confused with a nonrecurrent inferior laryngeal nerve: an anatomic study. Laryngoscope 118:56–60PubMedCrossRefGoogle Scholar
  53. Martin RE, Goodyear BG, Gati JS, Menon RS (2001) Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol 85:938–950PubMedGoogle Scholar
  54. Martin R, Barr A, Macintosh B, Smith R, Stevens T, Taves D, Gati J, Menon R, Hachinski V (2007) Cerebral cortical processing of swallowing in older adults. Exp Brain Res 176:12–22PubMedCrossRefGoogle Scholar
  55. Martin PI, Naeser MA, Ho M, Treglia E, Kaplan E, Baker EH, Pascual-Leone A (2009a) Research with transcranial magnetic stimulation in the treatment of aphasia. Curr Neurol Neurosci Rep 9:451–458PubMedCrossRefGoogle Scholar
  56. Martin PI, Naeser MA, Ho M, Doron KW, Kurland J, Kaplan J, Wang Y, Nicholas M, Baker EH, Alonso M, Fregni F, Pascual-Leone A (2009b) Overt naming fMRI pre- and post-TMS: two nonfluent aphasia patients, with and without improved naming post-TMS. Brain Lang 111:20–35PubMedCrossRefGoogle Scholar
  57. Mu L, Sanders I (1998) Neuromuscular organization of the human upper esophageal sphincter. Ann Otol Rhinol Laryngol 107:370–377PubMedGoogle Scholar
  58. Mu L, Sanders I (2001) Neuromuscular compartments and fiber-type regionalization in the human inferior pharyngeal constrictor muscle. Anat Rec 264:367–377PubMedCrossRefGoogle Scholar
  59. Mu L, Sanders I (2007) Neuromuscular specializations within human pharyngeal constrictor muscles. Ann Otol Rhinol Laryngol 116:604–617PubMedGoogle Scholar
  60. Mu L, Sanders I (2008) Newly revealed cricothyropharyngeus muscle in the human laryngopharynx. Anat Rec (Hoboken) 291:927–938CrossRefGoogle Scholar
  61. Nicholas CL, Bei B, Worsnop C, Malhotra A, Jordan AS, Saboisky JP, Chan JK, Duckworth E, White DP, Trinder J (2010) Motor unit recruitment in human genioglossus muscle in response to hypercapnia. Sleep 33:1529–1538PubMedGoogle Scholar
  62. Oliven A, O’Hearn DJ, Boudewyns A, Odeh M, De Backer W, van de Heyning P, Smith PL, Eisele DW, Allan L, Schneider H, Testerman R, Schwartz AR (2003) Upper airway response to electrical stimulation of the genioglossus in obstructive sleep apnea. J Appl Physiol 95:2023–2029PubMedGoogle Scholar
  63. Perlman AL, Luschei ES, Du Mond CE (1989) Electrical activity from the superior pharyngeal constrictor during reflexive and nonreflexive tasks. J Speech Hear Res 32:749–754PubMedGoogle Scholar
  64. Perlman AL, Palmer PM, McCulloch TM, Vandaele DJ (1999) Electromyographic activity from human laryngeal, pharyngeal, and submental muscles during swallowing. J Appl Physiol 86:1663–1669PubMedGoogle Scholar
  65. Poletto CJ, Verdun LP, Strominger R, Ludlow CL (2004) Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures. J Appl Physiol 97:858–866PubMedCrossRefGoogle Scholar
  66. Raffaelli M, Iacobone M, Henry JF (2000) The “false” nonrecurrent inferior laryngeal nerve. Surgery 128:1082–1087PubMedCrossRefGoogle Scholar
  67. Rodel RM, Olthoff A, Tergau F, Simonyan K, Kraemer D, Markus H, Kruse E (2004) Human cortical motor representation of the larynx as assessed by transcranial magnetic stimulation (TMS). Laryngoscope 114:918–922PubMedCrossRefGoogle Scholar
  68. Sasaki CT, Suzuki M (1976) Laryngeal reflexes in cat, dog and man. Arch Otolaryngol 102:400–402PubMedCrossRefGoogle Scholar
  69. Shaker R, Medda BK, Ren J, Jaradeh S, Xie P, Lang IM (1998) Pharyngoglottal closure reflex: identification and characterization in a feline model. Am J Physiol 275:G521–G525PubMedGoogle Scholar
  70. Shaker R, Ren J, Bardan E, Easterling C, Dua K, Xie P, Kern M (2003) Pharyngoglottal closure reflex: characterization in healthy young, elderly and dysphagic patients with predeglutitive aspiration. Gerontology 49:12–20PubMedCrossRefGoogle Scholar
  71. Shao T, Yang W, Zhang T, Wang Y, Jin X, Li Q, Kuang J, Qiu W, Chu PG, Yen Y (2010) A newly identified variation at the entry of the recurrent laryngeal nerve into the larynx. J Invest Surg 23:314–320PubMedCrossRefGoogle Scholar
  72. Sims S, Yamashita T, Rhew K, Ludlow CL (1996) An evaluation of the use of magnetic stimulation to measure laryngeal muscle response latencies in normal subjects. Otolaryngol Head Neck Surg 114:761–767PubMedCrossRefGoogle Scholar
  73. Smith A, Zelaznik HN (2004) Development of functional synergies for speech motor coordination in childhood and adolescence. Dev Psychobiol 45:22–33PubMedCrossRefGoogle Scholar
  74. Smith PL, Eisele DW, Podszus T, Penzel T, Grote L, Peter JH, Schwartz AR (1996) Electrical stimulation of upper airway musculature. Sleep 19:S284–S287PubMedGoogle Scholar
  75. Soros P, Lalone E, Smith R, Stevens T, Theurer J, Menon RS, Martin RE (2008) Functional MRI of oropharyngeal air-pulse stimulation. Neuroscience 153:1300–1308PubMedCrossRefGoogle Scholar
  76. Strohl KP, Hensley MJ, Hallett M, Saunders NA, Ingram RHJ (1980) Activation of upper airway muscles before onset of inspiration in normal humans. J Appl Physiol 48:638–642Google Scholar
  77. Theurer JA, Bihari F, Barr AM, Martin RE (2005) Oropharyngeal stimulation with air-pulse trains increases swallowing frequency in healthy adults. Dysphagia 20:254–260PubMedCrossRefGoogle Scholar
  78. Theurer JA, Czachorowski KA, Martin LP, Martin RE (2009) Effects of oropharyngeal air-pulse stimulation on swallowing in healthy older adults. Dysphagia 24:302–313PubMedCrossRefGoogle Scholar
  79. Toniato A, Mazzarotto R, Piotto A, Bernante P, Pagetta C, Pelizzo MR (2004) Identification of the nonrecurrent laryngeal nerve during thyroid surgery: 20-year experience. World J Surg 28:659–661PubMedCrossRefGoogle Scholar
  80. Widdicombe J, Addington R (2006) Modified endoscopic swallowing test for improved diagnosis and prevention of aspiration. Eur Arch Otorhinolaryngol 263:1057–1058; author reply 1059Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Communication Sciences and Disorders, Rm. HHS 1141, MSC 4304James Madison UniversityHarrisonburgUSA

Personalised recommendations