Skip to main content

Introduction to Neuroevolutionary Methods

  • Chapter
  • First Online:
  • 1869 Accesses

Abstract

Neuroevolution is the machine learning approach through neural networks and evolutionary computation. Before a neural network can do something useful, before it can learn, or be applied to some problem, its topology and the synaptic weights and other parameters of every neuron in the neural network must be set to just the right values to produce the final functional system. Both, the topology and the synaptic weights can be set using the evolutionary process. In this chapter we discuss what Neuroevolution is, what Topology and Weight Evolving Artificial Neural Network (TWEANN) systems are, and how they function. We also discuss how this highly advanced approach to computational intelligence can be implemented, and what some of the problems that the evolved neural network based agents can be applied to.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stanley KO, Risto M (2002) Efficient Reinforcement Learning through Evolving Neural Network Topologies. In Proceedings of the Genetic and Evolutionary Computation Conference.

    Google Scholar 

  2. Sher GI (2012) Evolving Chart Pattern Sensitive Neural Network Based Forex TradingAgents. Available at: http://arxiv.org/abs/1111.5892.

  3. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to Algorithms T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, eds. (MIT Press).

    Google Scholar 

  4. Stanley KO, Miikkulainen R (2003) A Taxonomy for Artificial Embryogeny. Artificial Life 9, 93-130.

    Article  Google Scholar 

  5. Cangelosi A, Parisi D, Nolfi S (1994) Cell Division and Migration in a “Genotype” for Neural Networks. Network Computation in Neural Systems 5, 497-515.

    Article  MATH  Google Scholar 

  6. Turing AM (1952) The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society B Biological Sciences 237, 37-72.

    Article  Google Scholar 

  7. Fleischer K, Barr AH (1993) A Simulation Testbed for The Study of Multicellular Development: The Multiple Mechanisms of Morphogenesis. In C. G. Langton (Ed.), Artificial life III, 389–416.

    Google Scholar 

  8. De M, Suzuki R, Arita T (2007) Heterochrony and Evolvability in Neural Network Development. Artificial Life and Robotics 11, 175-182.

    Article  Google Scholar 

  9. Matos A, Suzuki R, Arita T (2009) Heterochrony and Artificial Embryogeny: a Method for Analyzing Artificial Embryogenies Based on Developmental Dynamics. Artificial Life 15, 131-160.

    Article  Google Scholar 

  10. Thiran P, Peiris V, Heim P, Hochet B (1994) Quantization Effects in Digitally Behaving Circuit Implementations of Kohonen Networks. IEEE Transactions on Neural Networks 5, 450-458.

    Article  Google Scholar 

  11. Glesner M, Pochmuller W, (1994) An Overview of Neural Networks in VLSI. Chapman & Hall, London.

    MATH  Google Scholar 

  12. Schwartz TJ (1990) A Neural Chips Survey. AI Expert 5, 34-38.

    Google Scholar 

  13. Heemskerk JNH (1995) Overview of Neural Hardware. Neurocomputers for BrainStyle Processing Design Implementation and Application, 1-23.

    Google Scholar 

  14. Matsuzawa M, Potember RS, Stenger DA, et al (1993) GABA-Activated Whole-Cell Currents in Containment and Growth of Neuroblastoma Cells on Chemically Patterned Substrates. J. Neurosci. Meth. 50, 253-260.

    Article  Google Scholar 

  15. Matsuzawa M, Kobayashi K, Sugioka K, Knoll W (1998) A Biocompatible Interface for The Geometrical Guidance of Central Neurons in Vitro. Journal of Colloid and Interface Science 202, 213-221.

    Article  Google Scholar 

  16. Matsuzawa M, Krauthamer V, Richard S (1999) Fabrication of Biological Neuronal Networks for the Study of Physiological Information Processing. Johns Hopkins APL Tech. Dig. 20(3), 262-270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sher, G.I. (2013). Introduction to Neuroevolutionary Methods. In: Handbook of Neuroevolution Through Erlang. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4463-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4463-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4462-6

  • Online ISBN: 978-1-4614-4463-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics