Skip to main content

A Precision Force Microscope for Biophysics

  • Conference paper
  • First Online:
MEMS and Nanotechnology, Volume 6

Abstract

Mechanical drift between an atomic force microscope (AFM) tip and sample is a longstanding problem that limits tip-sample stability, registration, and the signal-to-noise ratio during imaging. We demonstrate a robust solution to drift that enables novel precision measurements, especially of biological macromolecules in physiologically relevant conditions. Our strategy – inspired by precision optical trapping microscopy – is to actively stabilize both the tip and the sample using locally generated optical signals. In particular, we scatter a laser off the apex of commercial AFM tips and use the scattered light to locally measure and thereby actively control the tip’s three-dimensional position above a sample surface with atomic precision in ambient conditions. With this enhanced stability, we overcome the traditional need to scan rapidly while imaging and achieve a fivefold increase in the image signal-to-noise ratio. Finally, we demonstrate atomic-scale (∼100 pm) tip-sample stability and registration over tens of minutes with a series of AFM images. The stabilization technique requires low laser power (<1 mW), imparts a minimal perturbation upon the cantilever, and is independent of the tip-sample interaction. This work extends atomic-scale tip-sample control, previously restricted to cryogenic temperatures and ultrahigh vacuum, to a wide range of perturbative operating environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eigler DM, Schwizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524–526

    Article  Google Scholar 

  2. King GM et al (2009) Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions. Nano Lett 9:1451

    Article  Google Scholar 

  3. King GM, Golovchenko JA (2005) Probing nanotube-nanopore interactions. Phys Rev Lett 95:216103

    Article  Google Scholar 

  4. Piner RD et al (1999) “Dip-Pen” nanolithography. Science 283:661–663

    Article  Google Scholar 

  5. Scheuring S, Sturgis JN (2005) Chromatic adaptation of photosynthetic membranes. Science 309:484–487

    Article  Google Scholar 

  6. Pohl DW, Moller R (1988) “Tracking” tunneling microscopy. Rev Sci Instrum 59:840–842

    Article  Google Scholar 

  7. Thomson NH et al (1996) Protein tracking and detection of protein motion using atomic force microscopy. Biophys J 70:2421–2431

    Article  Google Scholar 

  8. Abe M et al (2007) Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy. Appl Phys Lett 90:203103

    Article  Google Scholar 

  9. Horcas I et al (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  Google Scholar 

  10. Mokaberi B, Requicha AAG (2006) Drift compensation for automatic nanomanipulation with scanning probe microscopes. IEEE Trans Autom Sci Eng 3:199–207

    Article  Google Scholar 

  11. Proksch R, Dahlberg ED (1993) Optically stabilized, constant-height mode-operation of a magnetic force microscope. J Appl Phys 73:5808–5810

    Article  Google Scholar 

  12. Sparks AW, Manalis SR (2004) Scanning probe microscopy with inherent disturbance suppression. Appl Phys Lett 85:3929–3931

    Article  Google Scholar 

  13. Teague EC (1989) The National-Institute-of-Standards-and-Technology molecular measuring machine project – metrology and precision engineering design. J Vac Sci Technol B 7:1898–1902

    Article  Google Scholar 

  14. Moon EE, Smith HI (2006) Nanometer-precision pattern registration for scanning-probe lithographies using interferometric-spatial-phase imaging. J Vac Sci Technol B 24:3083–3087

    Article  Google Scholar 

  15. Moon EE et al (2007) Atomic-force lithography with interferometric tip-to-substrate position metrology. J Vac Sci Technol B 25:2284–2287

    Article  Google Scholar 

  16. Nugent-Glandorf L, Perkins TT (2004) Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. Opt Lett 29:2611–2613

    Article  Google Scholar 

  17. Carter AR et al (2007) Stabilization of an optical microscope to 0.1 nm in three dimensions. Appl Opt 46:421–427

    Article  Google Scholar 

  18. Carter AR et al (2007) Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D. Opt Express 15:13434–13445

    Article  Google Scholar 

  19. Schimmel T et al (1999) True atomic resolution under ambient conditions obtained by atomic force microscopy in the contact mode. Appl Phys A: Mater Sci Process 68:399–402

    Article  Google Scholar 

  20. Gelles J et al (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453

    Article  Google Scholar 

  21. Yildiz A et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    Article  Google Scholar 

  22. Vesenka J et al (1993) Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys J 65:992–997

    Article  Google Scholar 

  23. Stipe BC et al (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280:1732–1735

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Burroughs Wellcome Fund Career Award at the Scientific Interface (GMK) and a Burroughs Wellcome Fund Career Award in the Biomedical Sciences (TTP), a National Research Council Research Associateship Award (GMK), an NIH Molecular Biophysics Training Scholarship (ABC, T32 GM-065103), a Butcher Grant, the NSF (grant #: 0923544) and NIST. Mention of commercial products is for information only; it does not imply NIST’s recommendation or endorsement, nor does it imply that the products mentioned are necessarily the best available for the purpose. TTP is a staff member of NIST’s Quantum Physics Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin M. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics

About this paper

Cite this paper

King, G.M., Churnside, A.B., Perkins, T.T. (2013). A Precision Force Microscope for Biophysics. In: Shaw, G., Prorok, B., Starman, L. (eds) MEMS and Nanotechnology, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4436-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4436-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4435-0

  • Online ISBN: 978-1-4614-4436-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics