Principles Involved in Interpreting Single-Molecule Force Measurement of Biomolecules

  • Sithara S. Wijeratne
  • Nolan C. Harris
  • Ching-Hwa KiangEmail author
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Single-molecule manipulation techniques provide a unique tool for a close-up investigation of the complex biological properties and interactions. During the force measurement, a single molecule is pulled while its force response is monitored. However, quantifying these non-equilibrium data and using them to understand the structure-function relationship of biological systems have been challenging. We describe the mechanics of nanoscale biomolecules and the use of these force measurements for the free energy reconstruction using the recently derived non-equilibrium work theorem, i.e., Jarzynski’s equality. We also compare the results with those from other phenomenological approaches. Finally, mechanical characterization of systems such as overstretching transitions of DNA are presented, and the implications and challenges of these single-molecule force studies are discussed.



We thank NSF DMR-0907676 and Welch Foundation No. C-1632 for support.


  1. 1.
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112CrossRefGoogle Scholar
  2. 2.
    Harris NC, Song Y, Kiang C-H (2007) Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski’s equality. Phys Rev Lett 99:068101CrossRefGoogle Scholar
  3. 3.
    Botello E, Harris NC, Sargent J, Chen W-H, Lin K-J, Kiang C-H (2009) Temperature and chemical denaturant dependence of forced unfolding of titin I27. J Phys Chem B 113:10845–10848CrossRefGoogle Scholar
  4. 4.
    Calderon CP, Harris NC, Kiang C-H, Cox DD (2009) Analyzing single-molecule manipulation experiments. J Mol Recognit 22:356CrossRefGoogle Scholar
  5. 5.
    Chen W-S, Chen W-H, Chen Z, Gooding AA, Lin K-J, Kiang C-H (2010) Direct observation of multiple pathways of single-stranded DNA stretching. Phys Rev Lett 105:218104CrossRefGoogle Scholar
  6. 6.
    Florin E-L, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417CrossRefGoogle Scholar
  7. 7.
    Lee GU, Kidwell DA, Colton RJ (1994) Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10:354–357CrossRefGoogle Scholar
  8. 8.
    Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266:771–773CrossRefGoogle Scholar
  9. 9.
    Ashkin A, Dziedzic JM, Yamane T (1997) Optical trapping and manipulation of single cells using infared laser beams. Nature 330:769–771CrossRefGoogle Scholar
  10. 10.
    Kuo SC, Sheetz MP (1993) Force of single kinesin molecules measured with optical tweezers. Science 260:232–234CrossRefGoogle Scholar
  11. 11.
    Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127CrossRefGoogle Scholar
  12. 12.
    Evans E (1991) Entropy-driven tension in vesicle membranes and unbinding of adherent vesicles. Langmuir 7:1900–1908CrossRefGoogle Scholar
  13. 13.
    Helm CA, Knoll W, Israelachvili JN (1991) Measurement of ligand-receptor interactions. Proc Natl Acad Sci USA 88:8169–8173CrossRefGoogle Scholar
  14. 14.
    Flory PJ (1969) Statistical mechanics of chain molecules. Interscience Publishers, New YorkGoogle Scholar
  15. 15.
    Smith SB, Cui YJ, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799CrossRefGoogle Scholar
  16. 16.
    Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of the single DNA molecules by using magnetic beads. Science 258:1122–1125CrossRefGoogle Scholar
  17. 17.
    Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600CrossRefGoogle Scholar
  18. 18.
    Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770CrossRefGoogle Scholar
  19. 19.
    Calderon CP, Chen W-H, Lin K-J, Harris NC, Kiang C-H (2009) Quantifying DNA melting transitions using single-molecule force spectroscopy. J Phys Condens Matter 21:034114CrossRefGoogle Scholar
  20. 20.
    Calderon CP, Harris NC, Kiang C-H, Cox DD (2009) Quantifying multiscale noise sources in single-molecule time series. J Phys Chem B 113:138–148CrossRefGoogle Scholar
  21. 21.
    Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627CrossRefGoogle Scholar
  22. 22.
    Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96:108101CrossRefGoogle Scholar
  23. 23.
    Dudko OK, Mathe J, Szabo A, Meller A, Hummer G (2007) Extracting kinetics from single-molecule force spectroscopy: Nanopore unzipping of DNA hairpins. Biophys J 92:4188–4195CrossRefGoogle Scholar
  24. 24.
    Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693CrossRefGoogle Scholar
  25. 25.
    Jarzynski C (2006) Work fluctuation theorems and single-molecule biophysics. Prog Theor Phys Suppl 165:1–17CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics 2013

Authors and Affiliations

  • Sithara S. Wijeratne
    • 1
  • Nolan C. Harris
    • 1
  • Ching-Hwa Kiang
    • 1
    Email author
  1. 1.Department of Physics and AstronomyRice University HoustonHoustonUSA

Personalised recommendations