Skip to main content

Principles Involved in Interpreting Single-Molecule Force Measurement of Biomolecules

  • Conference paper
  • First Online:
  • 1336 Accesses

Abstract

Single-molecule manipulation techniques provide a unique tool for a close-up investigation of the complex biological properties and interactions. During the force measurement, a single molecule is pulled while its force response is monitored. However, quantifying these non-equilibrium data and using them to understand the structure-function relationship of biological systems have been challenging. We describe the mechanics of nanoscale biomolecules and the use of these force measurements for the free energy reconstruction using the recently derived non-equilibrium work theorem, i.e., Jarzynski’s equality. We also compare the results with those from other phenomenological approaches. Finally, mechanical characterization of systems such as overstretching transitions of DNA are presented, and the implications and challenges of these single-molecule force studies are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  Google Scholar 

  2. Harris NC, Song Y, Kiang C-H (2007) Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski’s equality. Phys Rev Lett 99:068101

    Article  Google Scholar 

  3. Botello E, Harris NC, Sargent J, Chen W-H, Lin K-J, Kiang C-H (2009) Temperature and chemical denaturant dependence of forced unfolding of titin I27. J Phys Chem B 113:10845–10848

    Article  Google Scholar 

  4. Calderon CP, Harris NC, Kiang C-H, Cox DD (2009) Analyzing single-molecule manipulation experiments. J Mol Recognit 22:356

    Article  Google Scholar 

  5. Chen W-S, Chen W-H, Chen Z, Gooding AA, Lin K-J, Kiang C-H (2010) Direct observation of multiple pathways of single-stranded DNA stretching. Phys Rev Lett 105:218104

    Article  Google Scholar 

  6. Florin E-L, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  Google Scholar 

  7. Lee GU, Kidwell DA, Colton RJ (1994) Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10:354–357

    Article  Google Scholar 

  8. Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266:771–773

    Article  Google Scholar 

  9. Ashkin A, Dziedzic JM, Yamane T (1997) Optical trapping and manipulation of single cells using infared laser beams. Nature 330:769–771

    Article  Google Scholar 

  10. Kuo SC, Sheetz MP (1993) Force of single kinesin molecules measured with optical tweezers. Science 260:232–234

    Article  Google Scholar 

  11. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  Google Scholar 

  12. Evans E (1991) Entropy-driven tension in vesicle membranes and unbinding of adherent vesicles. Langmuir 7:1900–1908

    Article  Google Scholar 

  13. Helm CA, Knoll W, Israelachvili JN (1991) Measurement of ligand-receptor interactions. Proc Natl Acad Sci USA 88:8169–8173

    Article  Google Scholar 

  14. Flory PJ (1969) Statistical mechanics of chain molecules. Interscience Publishers, New York

    Google Scholar 

  15. Smith SB, Cui YJ, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    Article  Google Scholar 

  16. Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of the single DNA molecules by using magnetic beads. Science 258:1122–1125

    Article  Google Scholar 

  17. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600

    Article  Google Scholar 

  18. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770

    Article  Google Scholar 

  19. Calderon CP, Chen W-H, Lin K-J, Harris NC, Kiang C-H (2009) Quantifying DNA melting transitions using single-molecule force spectroscopy. J Phys Condens Matter 21:034114

    Article  Google Scholar 

  20. Calderon CP, Harris NC, Kiang C-H, Cox DD (2009) Quantifying multiscale noise sources in single-molecule time series. J Phys Chem B 113:138–148

    Article  Google Scholar 

  21. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  Google Scholar 

  22. Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96:108101

    Article  Google Scholar 

  23. Dudko OK, Mathe J, Szabo A, Meller A, Hummer G (2007) Extracting kinetics from single-molecule force spectroscopy: Nanopore unzipping of DNA hairpins. Biophys J 92:4188–4195

    Article  Google Scholar 

  24. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

    Article  Google Scholar 

  25. Jarzynski C (2006) Work fluctuation theorems and single-molecule biophysics. Prog Theor Phys Suppl 165:1–17

    Article  Google Scholar 

Download references

Acknowledgments

We thank NSF DMR-0907676 and Welch Foundation No. C-1632 for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hwa Kiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics

About this paper

Cite this paper

Wijeratne, S.S., Harris, N.C., Kiang, CH. (2013). Principles Involved in Interpreting Single-Molecule Force Measurement of Biomolecules. In: Shaw, G., Prorok, B., Starman, L. (eds) MEMS and Nanotechnology, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4436-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4436-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4435-0

  • Online ISBN: 978-1-4614-4436-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics