Advertisement

Simultaneous Measurement of Force and Conductance Across Single Molecule Junctions

  • Sriharsha V. Aradhya
  • Michael Frei
  • Mark S. Hybertsen
  • Latha Venkataraman
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Measurement of electronics and mechanics of single molecules provides a fundamental understanding of conductance as well as bonding at the atomic scale. To study the mechanics at these length scales, we have built a conducting atomic force microscope (AFM) optimized for high displacement and force resolution. Here, we simultaneously measure conductance and force across single Au-molecule-Au junctions in order to obtain complementary information about the electronics and structure in these systems. First we show that single-atom Au contacts, which have a conductance of G0 (2e2/h), have a rupture force of about 1.4 nN, in excellent agreement with previous theoretical and experimental studies. For a series of amine and pyridine linked molecules which are bound to Au electrodes through an Au-N donor-acceptor bond, we observe that the rupture force depends on the backbone chemistry and can range from 0.5 to 0.8 nN. We also study junctions formed with molecules that bind through P-Au and S-Au interactions. We find that both the conductance signatures and junction evolution of covalent S-Au bond (thiolate) and a donor-acceptor S-Au bond (thiol) are dramatically different. Finally, we perform density functional theory based adiabatic molecular junction elongation and rupture calculations which give us an insight into the underlying mechanisms in these experiments.

Keywords

Linker Group Force Event Breaking Force Molecular Junction Rupture Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Science Foundation (Career Award CHE-07-44185) and by the Packard Foundation. A portion of this work was performed using facilities in the Center for Functional Nanomaterials at Brookhaven National Laboratory and supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

References

  1. 1.
    Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283CrossRefGoogle Scholar
  2. 2.
    Gimzewski JK, Joachim C (1999) Nanoscale science of single molecules using local probes. Science 283(5408):1683–1688CrossRefGoogle Scholar
  3. 3.
    Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408(6812):541–548CrossRefGoogle Scholar
  4. 4.
    Nitzan A, Ratner MA (2003) Electron transport in molecular wire junctions. Science 300(5624):1384–1389CrossRefGoogle Scholar
  5. 5.
    Reed MA et al (1997) Conductance of a molecular junction. Science 278(5336):252–254CrossRefGoogle Scholar
  6. 6.
    Smit RHM et al (2002) Measurement of the conductance of a hydrogen molecule. Nature 419(6910):906–909CrossRefGoogle Scholar
  7. 7.
    Reichert J et al (2002) Driving current through single organic molecules. Phys Rev Lett 88(17):176804CrossRefGoogle Scholar
  8. 8.
    Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301(5637):1221–1223CrossRefGoogle Scholar
  9. 9.
    Venkataraman L et al (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature 442(7105):904–907CrossRefGoogle Scholar
  10. 10.
    Reddy P et al (2007) Thermoelectricity in molecular junctions. Science 315(5818):1568–1571CrossRefGoogle Scholar
  11. 11.
    Widawsky JR et al (2012) Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett 12(1):354–358CrossRefGoogle Scholar
  12. 12.
    Li C et al (2007) Charge transport in single Au/alkanedithiol/Au junctions: coordination geometries and conformational degrees of freedom. J Am Chem Soc 130(1):318–326CrossRefGoogle Scholar
  13. 13.
    Martin S et al (2010) The impact of E-Z photo-isomerization on single molecular conductance. Nano Lett 10(6):2019–2023CrossRefGoogle Scholar
  14. 14.
    Taniguchi M et al (2011) Dependence of single-molecule conductance on molecule junction symmetry. J Am Chem Soc 133(30):11426–11429CrossRefGoogle Scholar
  15. 15.
    Grandbois M et al (1999) How strong is a covalent bond? Science 283(5408):1727–1730CrossRefGoogle Scholar
  16. 16.
    Xu BQ, Xiao XY, Tao NJ (2003) Measurements of single-molecule electromechanical properties. J Am Chem Soc 125(52):16164–16165CrossRefGoogle Scholar
  17. 17.
    Frei M et al (2011) Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett 11(4):1518–1523CrossRefGoogle Scholar
  18. 18.
    Frei M et al (2012) Linker dependent bond rupture force measurements in single-molecule junctions. J Am Chem Soc 134(9):4003–4006CrossRefGoogle Scholar
  19. 19.
    Aradhya SV et al (2012) Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett 12(3):1643–1647CrossRefGoogle Scholar
  20. 20.
    Dudko O, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96(10):108101CrossRefGoogle Scholar
  21. 21.
    Evans E (2001) Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128CrossRefGoogle Scholar
  22. 22.
    Rubio-Bollinger G et al (2001) Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys Rev Lett 87(2):026101CrossRefGoogle Scholar
  23. 23.
    Rubio G, Agraït N, Vieira S (1996) Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys Rev Lett 76(13):2302–2305CrossRefGoogle Scholar
  24. 24.
    Tavazza F, Levine LE, Chaka AM (2009) Elongation and breaking mechanisms of gold nanowires under a wide range of tensile conditions. J Appl Phys 106(4):043522CrossRefGoogle Scholar
  25. 25.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873CrossRefGoogle Scholar
  26. 26.
    Venkataraman L et al (2006) Single-molecule circuits with well-defined molecular conductance. Nano Lett 6(3):458–462CrossRefGoogle Scholar
  27. 27.
    Park YS et al (2007) Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J Am Chem Soc 129(51):15768–15769CrossRefGoogle Scholar
  28. 28.
    Tam ES et al (2011) Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano 5(6):5115–5123CrossRefGoogle Scholar
  29. 29.
    Kamenetska M et al (2010) Conductance and geometry of pyridine-linked single-molecule junctions. J Am Chem Soc 132(19):6817–6821CrossRefGoogle Scholar
  30. 30.
    Quek SY et al (2009) Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nanotechnol 4(4):230–234CrossRefGoogle Scholar
  31. 31.
    Hybertsen MS et al (2008) Amine-linked single-molecule circuits: systematic trends across molecular families. J Phys Condens Mater 20(37):374115CrossRefGoogle Scholar
  32. 32.
    Parameswaran R et al (2010) Reliable formation of single molecule junctions with air-stable diphenylphosphine linkers. J Phys Chem Lett 1(14):2114–2119CrossRefGoogle Scholar
  33. 33.
    Kamenetska M et al (2009) Formation and evolution of single-molecule junctions. Phys Rev Lett 102(12):126803CrossRefGoogle Scholar
  34. 34.
    Basch H, Cohen R, Ratner MA (2005) Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching. Nano Lett 5(9):1668–1675CrossRefGoogle Scholar
  35. 35.
    Ulrich J et al (2006) Variability of conductance in molecular junctions. J Phys Chem B 110(6):2462–2466CrossRefGoogle Scholar
  36. 36.
    Arroyo CR et al (2011) Influence of binding groups on molecular junction formation. J Am Chem Soc 133(36):14313–14319CrossRefGoogle Scholar
  37. 37.
    Strange M, Lopez-Acevedo O, Hakkinen H (2010) Oligomeric gold-thiolate units define the properties of the molecular junction between gold and benzene dithiols. J Phys Chem Lett 1(10):1528–1532CrossRefGoogle Scholar
  38. 38.
    Krüger D et al (2002) Pulling monatomic gold wires with single molecules: an ab initio simulation. Phys Rev Lett 89(18):186402CrossRefGoogle Scholar
  39. 39.
    Li Z, Kosov DS (2007) Nature of well-defined conductance of amine-anchored molecular junctions: density functional calculations. Phys Rev B 76(3):035415CrossRefGoogle Scholar
  40. 40.
    Paulsson M et al (2009) Conductance of alkanedithiol single-molecule junctions: a molecular dynamics study. Nano Lett 9(1):117–121CrossRefGoogle Scholar
  41. 41.
    Qi YH et al (2009) Breaking mechanism of single molecular junctions formed by octanedithiol molecules and Au electrodes. J Am Chem Soc 131(45):16418–16422CrossRefGoogle Scholar
  42. 42.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  43. 43.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  44. 44.
    Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRefGoogle Scholar
  45. 45.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  46. 46.
    Li ZL, Zhang GP, Wang CK (2011) First-principles study on formation and electron-transport properties of single oligothiophene molecular junctions. J Phys Chem C 115(31):15586–15591CrossRefGoogle Scholar
  47. 47.
    Cossaro A et al (2008) X-ray diffraction and computation yield the structure of alkanethiols on gold(111). Science 321(5891):943–946CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics 2013

Authors and Affiliations

  • Sriharsha V. Aradhya
    • 1
  • Michael Frei
    • 1
  • Mark S. Hybertsen
    • 2
  • Latha Venkataraman
    • 1
  1. 1.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA
  2. 2.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA

Personalised recommendations