Interactions Between HIV-1 and Innate Immunity in Dendritic Cells

  • Aymeric Silvin
  • Nicolas Manel
Part of the Advances in Experimental Medicine and Biology book series (volume 762)


Dendritic cells couple pathogen sensing with induction of innate and adaptive immune responses. Pathogen sensing in dendritic cells relies on interactions between molecular patterns of the pathogens and germline-encoded, also referred to as innate, receptors. In this chapter, we analyze some of the interactions between HIV-1 and the innate immune system in dendritic cells. The HIV-1 replication cycle is constituted by an extracellular and an intracellular phase. The two phases of the cycle provide distinct opportunities for interactions with cell-extrinsic and cell-intrinsic mechanisms in dendritic cells. According to the types of dendritic cells, the mechanisms of innate interactions between dendritic cells and HIV-1 lead to specific responses. These innate interactions may contribute to influencing and shaping the adaptive immune response against the virus.


Innate Interaction Interferon Production Costimulatory Molecule Expression Dead Pathogen Intrinsic Immunity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We apologize to the authors and colleagues whose work was not cited. We thank Philippe Benaroch, Vassili Soumelis, Xavier Lahaye, and Takeshi Satoh for critical reading of the manuscript.


  1. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, Guttman M et al (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science (New York, NY) 326(5950):257–263. doi: 10.1126/science.1179050 CrossRefGoogle Scholar
  2. Asaoka K, Ikeda K, Hishinuma T, Horie-Inoue K, Takeda S, Inoue S (2005) A retrovirus restriction factor TRIM5alpha is transcriptionally regulated by interferons. Biochem Biophys Res Commun 338(4):1950–1956. doi: 10.1016/j.bbrc.2005.10.173 PubMedCrossRefGoogle Scholar
  3. Barker J, Gezelter S, Inaba K, Steinman R (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic… Science (New York, NY)Google Scholar
  4. Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science (New York, NY) 220(4599):868–871CrossRefGoogle Scholar
  5. Beignon A-S, McKenna K, Skoberne M, Manches O, Dasilva I, Kavanagh DG, Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 115(11):3265–3275. doi: 10.1172/JCI26032 PubMedCrossRefGoogle Scholar
  6. Bieniasz PD (2004) Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5(11):1109–1115. doi: 10.1038/ni1125 PubMedCrossRefGoogle Scholar
  7. Boggiano C, Manel N, Littman DR (2007) Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J Virol 81(5):2519–2523. doi: 10.1128/JVI.01661-06 PubMedCrossRefGoogle Scholar
  8. Cameron, PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, and Steinman RM (1992). 1992. Dendritic Cells Exposed to Human Immunodeficiency Virus Type-1 Transmit a Vigorous Cytopathic Infection to CD4+ T Cells. Science (New York, NY) 257(5068):383–387. doi:10.1126/science.1352913PubMedCrossRefGoogle Scholar
  9. Chiu, Yu-Hsin, Macmillan JB, and Chen ZJ (2009) RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons Through the RIG-I Pathway. Cell 138 (3): 576–591. doi:10.1016/j.cell.2009.06.015PubMedCrossRefGoogle Scholar
  10. Chowdhury D, Beresford PJ, Zhu P, Zhang D, Sung J-S, Demple B, Perrino FW, Lieberman J (2006) The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme a-mediated cell death. Mol Cell 23(1):133–142. doi: 10.1016/j.molcel.2006.06.005 PubMedCrossRefGoogle Scholar
  11. Crow YJ, Rehwinkel J (2009) Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet 18(R2):R130–R136. doi: 10.1093/hmg/ddp293 PubMedCrossRefGoogle Scholar
  12. Flacher V, Bouschbacher M, Verronèse E, Massacrier C, Sisirak V, Berthier-Vergnes O, de Saint-Vis B, Caux C, Dezutter-Dambuyant C, Lebecque S (2006) Human langerhans cells express a specific TLR profile and differentially respond to viruses and gram-positive bacteria. J Immunol (Baltimore, MD: 1950) 177(11):7959Google Scholar
  13. Fontenot D, He H, Hanabuchi S, Nehete PN, Zhang M, Chang M, Nehete B et al (2009) TSLP production by epithelial cells exposed to immunodeficiency virus triggers DC-mediated mucosal infection of CD4+ T cells. Proc Natl Acad Sci U S A 106(39):16776–16781. doi: 10.1073/pnas.0907347106 PubMedCrossRefGoogle Scholar
  14. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5):587–597PubMedCrossRefGoogle Scholar
  15. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science (New York, NY) 327(5966):656–661. doi: 10.1126/science.1178331 CrossRefGoogle Scholar
  16. Goldfeld AE, Birch-Limberger K, Schooley RT, Walker BD (1991) HIV-1 infection does not induce tumor necrosis factor-alpha or interferon-beta gene transcription. J Acquir Immune Defic Syndr 4(1):41–47PubMedGoogle Scholar
  17. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HCT, Rice GI, Christodoulou E, Walker PA et al (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. doi: 10.1038/nature10623
  18. Goujon C, Jarrosson-Wuillème L, Bernaud J, Rigal D, Darlix J-L, Cimarelli A (2006) With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther 13(12):991–994. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  19. Goujon C, Rivière L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix J-L, Cimarelli A (2007) SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4:2. doi: 10.1186/1742-4690-4-2 PubMedCrossRefGoogle Scholar
  20. Granelli-Piperno A, Pritsker A, Pack M, Shimeliovich I, Arrighi JF, Park CG, Trumpfheller C, Piguet V, Moran TM, Steinman RM (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol (Baltimore, MD: 1950) 175(7):4265Google Scholar
  21. Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM (2004) HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101(20):7669–7674. doi: 10.1073/pnas.0402431101 PubMedCrossRefGoogle Scholar
  22. Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ (1989) Activation of HIV gene expression during monocyte differentiation by induction of NF-kB. Nature 339(6219):70–73. doi: 10.1038/339070a0 PubMedCrossRefGoogle Scholar
  23. Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TBH (2007) C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26(5):605–616. doi: 10.1016/j.immuni.2007.03.012 PubMedCrossRefGoogle Scholar
  24. Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TBH (2010) HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 11(5):419–426. doi: 10.1038/ni.1858 PubMedCrossRefGoogle Scholar
  25. Guermonprez P, Amigorena S (2005) Pathways for antigen cross presentation. Springer Semin Immunopathol 26(3):257–271. doi: 10.1007/s00281-004-0176-0 PubMedCrossRefGoogle Scholar
  26. Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S (2003) ER-phagosome fusion defines an MHC Class I cross-presentation compartment in dendritic cells. Nature 425(6956):397–402. doi: 10.1038/nature01911 PubMedCrossRefGoogle Scholar
  27. Gummuluru S, Rogel M, Stamatatos L, Emerman M (2003) Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J Virol 77(23):12865–12874PubMedCrossRefGoogle Scholar
  28. Hanley TM, Blay Puryear W, Gummuluru S, Viglianti GA (2010) PPARgamma and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog 6:e1000981. doi: 10.1371/journal.ppat.1000981 PubMedCrossRefGoogle Scholar
  29. Harman A, Lai J, Turville S, Samarajiwa S, Gray L, Marsden V, Mercier S et al (2011) HIV infection of dendritic cells subverts the interferon induction pathway via IRF1 and inhibits type 1 interferon production. Blood. doi: 10.1182/blood-2010-07-297721
  30. Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O, Drakesmith H et al (2007) Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8(6):569–577. doi: 10.1038/ni1470 PubMedCrossRefGoogle Scholar
  31. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474(7353):658–661. doi: 10.1038/nature10195 PubMedCrossRefGoogle Scholar
  32. Iannacone M, Moseman EA, Tonti E, Bosurgi L, Junt T, Henrickson SE, Whelan SP, Guidotti LG, von Andrian UH (2010) Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465(7301):1079–1083. doi: 10.1038/nature09118 PubMedCrossRefGoogle Scholar
  33. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H et al (2005) A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 7(1):40–48. doi: 10.1038/ni1282 PubMedCrossRefGoogle Scholar
  34. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455(7213):674–678. doi: 10.1038/nature07317 PubMedCrossRefGoogle Scholar
  35. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science (New York, NY) 327(5963):291–295. doi: 10.1126/science.1183021 CrossRefGoogle Scholar
  36. Izaguirre A, Barnes BJ, Amrute S, Yeow W-S, Megjugorac N, Dai J, Feng D, Chung E, Pitha PM, Fitzgerald-Bocarsly P (2003) Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leuk Biol 74(6):1125–1138. doi: 10.1189/jlb.0603255 CrossRefGoogle Scholar
  37. Izquierdo-Useros N, Blanco J, Erkizia I, Fernández-Figueras MT, Borràs FE, Naranjo-Gómez M, Bofill M, Ruiz L, Clotet B, Martinez-Picado J (2007) Maturation of blood-derived dendritic cells enhances human immunodeficiency virus type 1 capture and transmission. J Virol 81(14):7559–7570. doi: 10.1128/JVI.02572-06 PubMedCrossRefGoogle Scholar
  38. Janeway CA (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol 54(Pt 1):1–13PubMedCrossRefGoogle Scholar
  39. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségéral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. doi: 10.1038/nature10117
  40. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N et al (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. doi: 10.1038/ni.2236
  41. Larange A, Antonios D, Pallardy M, Kerdine-Romer S (2009) TLR7 and TLR8 agonists trigger different signaling pathways for human dendritic cell maturation. J Leuk Biol 85(4):673–683. doi: 10.1189/jlb.0808504 CrossRefGoogle Scholar
  42. Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee Y-A, de Silva U et al (2007) Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 39(9):1065–1067. doi: 10.1038/ng2091 PubMedCrossRefGoogle Scholar
  43. Lepelley A, Louis S, Sourisseau M, Law HKW, Pothlichet J, Schilte C, Chaperot L et al (2011) Innate sensing of HIV-infected cells. PLoS Pathog 7(2):e1001284. doi: 10.1371/journal.ppat.1001284 PubMedCrossRefGoogle Scholar
  44. Li Y, Li X, Stremlau M, Lee M, Sodroski J (2006) Removal of arginine 332 allows human TRIM5{Alpha} to bind human immunodeficiency virus capsids and to restrict infection. J Virol 80(14):6738. doi: 10.1128/JVI.00270-06 PubMedCrossRefGoogle Scholar
  45. Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp J, Akira S et al (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32(2):279–289. doi: 10.1016/j.immuni.2010.01.013 PubMedCrossRefGoogle Scholar
  46. Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12(9):817–826PubMedCrossRefGoogle Scholar
  47. Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR (2010) A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467(7312):214–217. doi: 10.1038/nature09337 PubMedCrossRefGoogle Scholar
  48. Mangeot PE, Duperrier K, Nègre D, Boson B, Rigal B, Cosset FL, Darlix J-L (2002) High Levels of Transduction of Human Dendritic Cells with Optimized SIV Vectors. Molecular Therapy 5(3):283–290. doi:10.1006/mthe.2002.0541PubMedCrossRefGoogle Scholar
  49. Mangeot PE, Nègre D, Dubois B, Winter AJ, Leissner P, Mehtali M, Kaiserlian D, Cosset FL, Darlix JL (2000) Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J Virol 74(18):8307–8315PubMedCrossRefGoogle Scholar
  50. Mangeot P, Duperrier K, Nègre D, Boson B (2002) High levels of transduction of human dendritic cells with optimized SIV vectors. Mol TherGoogle Scholar
  51. Marié I, Durbin JE, Levy DE (1998) Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 17(22):6660–6669. doi: 10.1093/emboj/17.22.6660 PubMedCrossRefGoogle Scholar
  52. Matzinger P (2002) The danger model: a renewed sense of self. Science (New York, NY) 296(5566):301–305. doi: 10.1126/science.1071059 CrossRefGoogle Scholar
  53. Medzhitov R, Janeway CA (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298PubMedCrossRefGoogle Scholar
  54. Melki M-T, Saïdi H, Dufour A, Olivo-Marin J-C, Gougeon M-L (2010) Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk—a pivotal role of HMGB1. PLoS Pathog 6(4):e1000862PubMedCrossRefGoogle Scholar
  55. Neil SJD, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451(7177):425–430. doi: 10.1038/nature06553 PubMedCrossRefGoogle Scholar
  56. Nègre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, Winter AJ et al (2000) Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther 7. doi: 10.1038/
  57. Peng G, Lei K, Jin W, Greenwell-Wild T, Wahl S (2006) Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J Exp Med 203(1):41. doi: 10.1084/jem.20051512 PubMedCrossRefGoogle Scholar
  58. Pertel T, Hausmann S, Morger D, Züger S, Guerra J, Lascano J, Reinhard C et al (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472(7343):361–365. doi: 10.1038/nature09976 PubMedCrossRefGoogle Scholar
  59. Powell RD, Holland PJ, Hollis T, Perrino FW (2011) The Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem. doi: 10.1074/jbc.C111.317628
  60. Pritschet K, Donhauser N, Schuster P, Ries M, Haupt S, Kittan NA, Korn K et al (2012) CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells. Virology 423(2):152–164. doi: 10.1016/j.virol.2011.11.026 PubMedCrossRefGoogle Scholar
  61. Ravot E, Comolli G, Lori F, Lisziewicz J (2002) High efficiency lentiviral gene delivery in non-dividing cells by deoxynucleoside treatment. J Gene Med 4(2):161–169. doi: 10.1002/jgm.256 PubMedCrossRefGoogle Scholar
  62. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC et al (2009) Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832. doi: 10.1038/ng.373 PubMedCrossRefGoogle Scholar
  63. Rice G, Newman WG, Dean J, Patrick T, Parmar R, Flintoff K, Robins P et al (2007) Heterozygous mutations in TREX1 cause familial Chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet 80(4):811–815. doi: 10.1086/513443 PubMedCrossRefGoogle Scholar
  64. Robbins SH, Walzer T, Dembélé D, Thibault C, Defays A, Bessou G, Huichun Xu et al (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17. doi: 10.1186/gb-2008-9-1-r17 PubMedCrossRefGoogle Scholar
  65. Saïdi H, Melki M-T, Gougeon M-L (2008) HMGB1-dependent triggering of HIV-1 replication and persistence in dendritic cells as a consequence of NK-DC cross-talk. PLoS One 3(10):e3601PubMedCrossRefGoogle Scholar
  66. Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, Ryffel B, Swanson JA, Müller M, Blander JM (2011) Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature. doi: 10.1038/nature10072
  67. Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin a retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nat Cell Biol 430(6999):569–573. doi: 10.1038/nature02777 Google Scholar
  68. Schmidt B, Ashlock BM, Foster H, Fujimura SH, Levy JA (2005) HIV-infected cells are major inducers of plasmacytoid dendritic cell interferon production, maturation, and migration. Virology 343(2):256–266. doi: 10.1016/j.virol.2005.09.059 PubMedCrossRefGoogle Scholar
  69. Sharp PM, Hahn BH (2011) Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspect Med 1(1):a006841. doi: 10.1101/cshperspect.a006841 Google Scholar
  70. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650. doi: 10.1038/nature00939 PubMedCrossRefGoogle Scholar
  71. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, Gilliet M et al (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3(7):673–680. doi: 10.1038/ni805 PubMedGoogle Scholar
  72. Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58PubMedCrossRefGoogle Scholar
  73. Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24(1):93–103. doi: 10.1016/j.immuni.2005.12.003 PubMedCrossRefGoogle Scholar
  74. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature 427(6977):848–853. doi: 10.1038/nature02343 PubMedCrossRefGoogle Scholar
  75. Taniguchi T, Takaoka A (2002) The interferon-Α/Β system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14(1):111–116. doi: 10.1016/S0952-7915(01)00305-3 PubMedCrossRefGoogle Scholar
  76. Triques K, Stevenson M (2004) Characterization of restrictions to human immunodeficiency virus type 1 infection of monocytes. J Virol 78(10):5523. doi: 10.1128/JVI.78.10.5523-5527.2004 PubMedCrossRefGoogle Scholar
  77. Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, Dable J et al (2004) Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103(6):2170–2179. doi: 10.1182/blood-2003-09-3129 PubMedCrossRefGoogle Scholar
  78. van der Aar AMG, Sylva-Steenland RMR, Bos JD, Kapsenberg ML, de Jong EC, Teunissen M (2007) Cutting edge: loss of TLR2, TLR4, and TLR5 on langerhans cells abolishes bacterial recognition. J Immunol (Baltimore, MD: 1950) 178(4):1986Google Scholar
  79. Vremec D, Zorbas M, Scollay R, Saunders DJ, Ardavin CF, Wu L, Shortman K (1992) The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med 176(1):47–58PubMedCrossRefGoogle Scholar
  80. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3(10):1085–1094. doi: 10.1105/tpc.3.10.1085 PubMedGoogle Scholar
  81. Wu L, Martin TD, Carrington M, KewalRamani VN (2004) Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 318(1):17–23. doi: 10.1016/j.virol.2003.09.028 PubMedCrossRefGoogle Scholar
  82. Xu R-H, Remakus S, Ma X, Roscoe F, Sigal LJ (2010) Direct presentation is sufficient for an efficient anti-viral CD8 T cell response. PLoS Pathog 6(2):e1000768. doi: 10.1371/journal.ppat.1000768 PubMedCrossRefGoogle Scholar
  83. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol. doi: 10.1038/ni.1941
  84. Yan N, Cherepanov P, Daigle JE, Engelman A, Lieberman J (2009) The SET complex acts as a barrier to autointegration of HIV-1. PLoS Pathog 5(3):e1000327. doi: 10.1371/journal.ppat.1000327 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Immunity and CancerInstitut Curie-INSERM U932ParisFrance

Personalised recommendations