Skip to main content

Cellular and Viral Mechanisms of HIV-1 Transmission Mediated by Dendritic Cells

  • Chapter
  • First Online:
HIV Interactions with Dendritic Cells

Abstract

Dendritic cells (DCs) play a key role in the initial infection and cell-to-cell transmission events that occur upon HIV-1 infection. DCs interact closely with CD4+ T cells, the main target of HIV-1 replication. HIV-1 challenged DCs and target CD4+ T cells form a virological synapse that allows highly efficient transmission of HIV-1 to the target CD4+ T cells, in the absence of productive HIV-1 replication in the DCs. Immature and subsets of mature DCs show distinct patterns of HIV-1 replication and cell-to-cell transmission, depending upon the maturation stimulus that is used. The cellular and viral mechanisms that promote formation of the virological synapse have been the subject of intense study and the most recent progress is discussed here. Characterizing the cellular and viral factors that affect DC-mediated cell-to-cell transmission of HIV-1 to CD4+ T cells is vitally important to understanding, and potentially blocking, the initial dissemination of HIV-1 in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arhel NJ, Kirchhoff F (2009) Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Curr Top Microbiol Immunol 339:147–175

    Article  PubMed  CAS  Google Scholar 

  • Arrighi JF, Pion M, Garcia E, Escola JM, van Kooyk Y, Geijtenbeek TB, Piguet V (2004) DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med 200:1279–1288

    Article  PubMed  CAS  Google Scholar 

  • Biggins JE, Biesinger T, Yu Kimata MT, Arora R, Kimata JT (2007) ICAM-3 influences human immunodeficiency virus type 1 replication in CD4(+) T cells independent of DC-SIGN-mediated transmission. Virology 364:383–394

    Article  PubMed  CAS  Google Scholar 

  • Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L et al (2010) Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32:654–669

    Article  PubMed  CAS  Google Scholar 

  • Boggiano C, Manel N, Littman DR (2007) Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J Virol 81:2519–2523

    Article  PubMed  CAS  Google Scholar 

  • Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371

    PubMed  CAS  Google Scholar 

  • Coleman CM, Spearman P, Wu L (2011) Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology 8:26

    Article  PubMed  CAS  Google Scholar 

  • Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51

    Article  PubMed  Google Scholar 

  • de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TB (2007) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13:367–371

    Article  PubMed  Google Scholar 

  • Dong C, Janas AM, Wang JH, Olson WJ, Wu L (2007) Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virol 81:11352–11362

    Article  PubMed  CAS  Google Scholar 

  • Earl PL, Moss B, Doms RW (1991) Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J Virol 65:2047–2055

    PubMed  CAS  Google Scholar 

  • Fackler OT, Krausslich HG (2006) Interactions of human retroviruses with the host cell cytoskeleton. Curr Opin Microbiol 9:409–415

    Article  PubMed  CAS  Google Scholar 

  • Fahrbach KM, Barry SM, Ayehunie S, Lamore S, Klausner M, Hope TJ (2007) Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J Virol 81:6858–6868

    Article  PubMed  CAS  Google Scholar 

  • Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, Fu J, Hartnell LM, Ruthel GT, Schneider DK, Nagashima K et al (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci U S A 107:13336–13341

    Article  PubMed  CAS  Google Scholar 

  • Foster JL, Garcia JV (2008) HIV-1 Nef: at the crossroads. Retrovirology 5:84

    Article  PubMed  Google Scholar 

  • Frank I, Piatak M Jr, Stoessel H, Romani N, Bonnyay D, Lifson JD, Pope M (2002) Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J Virol 76:2936–2951

    Article  PubMed  CAS  Google Scholar 

  • Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF, Blot G, Leuba F, Escola JM, Demaurex N, Marsh M et al (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6:488–501

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR et al (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–585

    Article  PubMed  CAS  Google Scholar 

  • Goujon C, Malim MH (2010) Characterization of the alpha interferon-induced postentry block to HIV-1 infection in primary human macrophages and T cells. J Virol 84:9254–9266

    Article  PubMed  CAS  Google Scholar 

  • Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TB (2010) HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 11:419–426

    Article  PubMed  CAS  Google Scholar 

  • Gurney KB, Elliott J, Nassanian H, Song C, Soilleux E, McGowan I, Anton PA, Lee B (2005) Binding and transfer of human immunodeficiency virus by DC-SIGN  +  cells in human rectal mucosa. J Virol 79:5762–5773

    Article  PubMed  CAS  Google Scholar 

  • Hanley TM, Blay Puryear W, Gummuluru S, Viglianti GA (2010) PPARgamma and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog 6:e1000981

    Article  PubMed  Google Scholar 

  • Hatch SC, Archer J, Gummuluru S (2009) Glycosphingolipid composition of human immundeficiency virus type-1 particles is a crucial determinant for dendritic cell-mediated HIV-1 trans infection. J Virol 83:3496–3506

    Article  PubMed  CAS  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    Article  PubMed  CAS  Google Scholar 

  • Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JC, Arteaga J, Paul S, Kumar A, Latz E, Urcuqui-Inchima S (2011) Up-regulation of TLR2 and TLR4 in dendritic cells in response to HIV type 1 and coinfection with opportunistic pathogens. AIDS Res Hum Retroviruses 27:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Hijazi K, Wang Y, Scala C, Jeffs S, Longstaff C, Stieh D, Haggarty B, Vanham G, Schols D, Balzarini J et al (2011) DC-SIGN increases the affinity of HIV-1 envelope glycoprotein interaction with CD4. PLoS One 6:e28307

    Article  PubMed  CAS  Google Scholar 

  • Hong PW, Flummerfelt KB, de Parseval A, Gurney K, Elder JH, Lee B (2002) Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding. J Virol 76:12855–12865

    Article  PubMed  CAS  Google Scholar 

  • Hong PW, Nguyen S, Young S, Su SV, Lee B (2007) Identification of the optimal DC-SIGN binding site on human immunodeficiency virus type 1 gp120. J Virol 81:8325–8336

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Blanco J, Erkizia I, Fernandez-Figueras MT, Borras FE, Naranjo-Gomez M, Bofill M, Ruiz L, Clotet B, Martinez-Picado J (2007) Maturation of blood-derived dendritic cells enhances human immunodeficiency virus type 1 capture and transmission. J Virol 81:7559–7570

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Esteban O, Rodriguez-Plata MT, Erkizia I, Prado JG, Blanco J, Garcia-Parajo MF, Martinez-Picado J (2011) Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells. Traffic 12:1702–1713

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Naranjo-Gomez M, Archer J, Hatch SC, Erkizia I, Blanco J, Borras FE, Puertas MC, Connor JH, Fernandez-Figueras MT, Moore L, Clotet B, Gummuluru S, Martinez- Picado J (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113(12):2732–2741

    Google Scholar 

  • Janas AM, Dong C, Wang JH, Wu L (2008) Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry. Virology 375:442–451

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Kashefi K, Hollinshead M, Sattentau QJ (2004) HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199:283–293

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Mitar I, Sattentau QJ (2007a) Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J Virol 81:13916–13921

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Mitar I, Sattentau QJ (2007b) Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J Virol 81:5547–5560

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff F (2010) Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8:55–67

    Article  PubMed  CAS  Google Scholar 

  • Krementsov DN, Weng J, Lambele M, Roy NH, Thali M (2009) Tetraspanins regulate cell-to-cell transmission of HIV-1. Retrovirology 6:64

    Article  PubMed  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34

    Article  PubMed  CAS  Google Scholar 

  • Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16:135–144

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Leslie G, Soilleux E, O’Doherty U, Baik S, Levroney E, Flummerfelt K, Swiggard W, Coleman N, Malim M et al (2001) cis Expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor. J Virol 75:12028–12038

    Article  PubMed  CAS  Google Scholar 

  • Lehmann M, Nikolic DS, Piguet V (2011) How HIV-1 takes advantage of the cytoskeleton during replication and cell-to-cell transmission. Viruses 3:1757–1776

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Shoham T (2005a) Protein–protein interactions in the tetraspanin web. Physiology (Bethesda) 20:218–224

    Article  CAS  Google Scholar 

  • Levy S, Shoham T (2005b) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5:136–148

    Article  PubMed  CAS  Google Scholar 

  • McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–1297

    Article  PubMed  CAS  Google Scholar 

  • Messmer D, Bromberg J, Devgan G, Jacque JM, Granelli-Piperno A, Pope M (2002a) Human immunodeficiency virus type 1 Nef mediates activation of STAT3 in immature dendritic cells. AIDS Res Hum Retroviruses 18:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Messmer D, Jacque JM, Santisteban C, Bristow C, Han SY, Villamide-Herrera L, Mehlhop E, Marx PA, Steinman RM, Gettie A et al (2002b) Endogenously expressed nef uncouples cytokine and chemokine production from membrane phenotypic maturation in dendritic cells. J Immunol 169:4172–4182

    PubMed  CAS  Google Scholar 

  • Michel N, Allespach I, Venzke S, Fackler OT, Keppler OT (2005) The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Curr Biol 15:714–723

    Article  PubMed  CAS  Google Scholar 

  • Naghavi MH, Goff SP (2007) Retroviral proteins that interact with the host cell cytoskeleton. Curr Opin Immunol 19:402–407

    Article  PubMed  CAS  Google Scholar 

  • Nikolic DS, Lehmann M, Felts R, Garcia E, Blanchet FP, Subramaniam S, Piguet V (2011) HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 118:4841–4852

    Article  PubMed  CAS  Google Scholar 

  • Pertel T, Reinhard C, Luban J (2011) Vpx rescues HIV-1 transduction of dendritic cells from the antiviral state established by type 1 interferon. Retrovirology 8:49

    Article  PubMed  CAS  Google Scholar 

  • Petit C, Buseyne F, Boccaccio C, Abastado JP, Heard JM, Schwartz O (2001) Nef is required for efficient HIV-1 replication in cocultures of dendritic cells and lymphocytes. Virology 286:225–236

    Article  PubMed  CAS  Google Scholar 

  • Poli G, Orenstein JM, Kinter A, Folks TM, Fauci AS (1989) Interferon-alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science 244:575–577

    Article  PubMed  CAS  Google Scholar 

  • Puigdomenech I, Massanella M, Izquierdo-Useros N, Ruiz-Hernandez R, Curriu M, Bofill M, Martinez-Picado J, Juan M, Clotet B, Blanco J (2008) HIV transfer between CD4 T cells does not require LFA-1 binding to ICAM-1 and is governed by the interaction of HIV envelope glycoprotein with CD4. Retrovirology 5:32

    Article  PubMed  Google Scholar 

  • Qin Y, Li Y, Liu W, Tian R, Guo Q, Li S, Li H, Zhang D, Zheng Y, Wu L et al (2011) Penicillium marneffei-stimulated dendritic cells enhance HIV-1 trans-infection and promote viral infection by activating primary CD4+ T cells. PLoS One 6:e27609

    Article  PubMed  CAS  Google Scholar 

  • Rappocciolo G, Piazza P, Fuller CL, Reinhart TA, Watkins SC, Rowe DT, Jais M, Gupta P, Rinaldo CR (2006) DC-SIGN on B lymphocytes is required for transmission of HIV-1 to T lymphocytes. PLoS Pathog 2:e70

    Article  PubMed  Google Scholar 

  • Reitter JN, Means RE, Desrosiers RC (1998) A role for carbohydrates in immune evasion in AIDS. Nat Med 4:679–684

    Article  PubMed  CAS  Google Scholar 

  • Sanders RW, de Jong EC, Baldwin CE, Schuitemaker JH, Kapsenberg ML, Berkhout B (2002) Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. J Virol 76:7812–7821

    Article  PubMed  CAS  Google Scholar 

  • Sanders RW, van Anken E, Nabatov AA, Liscaljet IM, Bontjer I, Eggink D, Melchers M, Busser E, Dankers MM, Groot F et al (2008) The carbohydrate at asparagine 386 on HIV-1 gp120 is not essential for protein folding and function but is involved in immune evasion. Retrovirology 5:10

    Article  PubMed  Google Scholar 

  • Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582

    Article  PubMed  CAS  Google Scholar 

  • Smith AL, Ganesh L, Leung K, Jongstra-Bilen J, Jongstra J, Nabel GJ (2007) Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells. J Exp Med 204:421–430

    Article  PubMed  CAS  Google Scholar 

  • Sol-Foulon N, Moris A, Nobile C, Boccaccio C, Engering A, Abastado JP, Heard JM, van Kooyk Y, Schwartz O (2002) HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16:145–155

    Article  PubMed  CAS  Google Scholar 

  • St Gelais C, Coleman C, Wang J-H, Wu L (2012) Nef enhances dendritic cell-mediated viral transmission to CD4+ T cells and promotes T-cell activation. PLoS One 7(3):e34521

    Article  PubMed  CAS  Google Scholar 

  • Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25:373–381

    Article  PubMed  CAS  Google Scholar 

  • Trumpfheller C, Park CG, Finke J, Steinman RM, Granelli-Piperno A (2003) Cell type-dependent retention and transmission of HIV-1 by DC-SIGN. Int Immunol 15:289–298

    Article  PubMed  CAS  Google Scholar 

  • Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, Dable J, Stossel H, Romani N, Piatak M Jr et al (2004) Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103:2170–2179

    Article  PubMed  CAS  Google Scholar 

  • van Gisbergen KP, Paessens LC, Geijtenbeek TB, van Kooyk Y (2005) Molecular mechanisms that set the stage for DC-T cell engagement. Immunol Lett 97:199–208

    Article  PubMed  Google Scholar 

  • van Kooyk Y, Geijtenbeek TB (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697–709

    Article  PubMed  Google Scholar 

  • van Montfort T, Eggink D, Boot M, Tuen M, Hioe CE, Berkhout B, Sanders RW (2011) HIV-1 N-glycan composition governs a balance between dendritic cell-mediated viral transmission and antigen presentation. J Immunol 187:4676–4685

    Article  PubMed  Google Scholar 

  • Vasiliver-Shamis G, Dustin ML, Hioe CE (2010) HIV-1 virological synapse is not simply a copycat of the immunological synapse. Viruses 2:1239–1260

    Article  PubMed  CAS  Google Scholar 

  • Vendrame D, Sourisseau M, Perrin V, Schwartz O, Mammano F (2009) Partial inhibition of human immunodeficiency virus replication by type I interferons: impact of cell-to-cell viral transfer. J Virol 83:10527–10537

    Article  PubMed  CAS  Google Scholar 

  • Walker BD, Kowalski M, Goh WC, Kozarsky K, Krieger M, Rosen C, Rohrschneider L, Haseltine WA, Sodroski J (1987) Inhibition of human immunodeficiency virus syncytium formation and virus replication by castanospermine. Proc Natl Acad Sci U S A 84:8120–8124

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Janas AM, Olson WJ, KewalRamani VN, Wu L (2007a) CD4 coexpression regulates DC-SIGN-mediated transmission of human immunodeficiency virus type 1. J Virol 81:2497–2507

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Janas AM, Olson WJ, Wu L (2007b) Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. J Virol 81:8933–8943

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Kwas C, Wu L (2009) Intercellular adhesion molecule (ICAM)-1, but not ICAM-2 and -3, is important for dendritic cell-mediated human immunodeficiency virus type-1 transmission. J Virol 83:4195–4204

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Wells C, Wu L (2008) Macropinocytosis and cytoskeleton contribute to dendritic cell-mediated HIV-1 transmission to CD4+ T cells. Virology 381:143–154

    Article  PubMed  CAS  Google Scholar 

  • Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103:738–743

    Article  PubMed  CAS  Google Scholar 

  • Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 6:859–868

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Martin TD, Carrington M, KewalRamani VN (2004) Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 318:17–23

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Martin TD, Vazeux R, Unutmaz D, KewalRamani VN (2002) Functional evaluation of DC-SIGN monoclonal antibodies reveals DC-SIGN interactions with ICAM-3 do not promote human immunodeficiency virus type 1 transmission. J Virol 76:5905–5914

    Article  PubMed  CAS  Google Scholar 

  • Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog 4:e1000134

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Wu laboratory for helpful discussions and Tim Vojt for illustration. The research in the Wu laboratory was supported by grants (AI068493, AI078762, and AI098524) to L.W. from the National Institutes of Health and by the program of Public Health Preparedness for Infectious Diseases of The Ohio State University. The authors apologize to all whose work has not been cited as a result of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coleman, C.M., Gelais, C.S., Wu, L. (2012). Cellular and Viral Mechanisms of HIV-1 Transmission Mediated by Dendritic Cells. In: Wu, L., Schwartz, O. (eds) HIV Interactions with Dendritic Cells. Advances in Experimental Medicine and Biology, vol 762. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4433-6_4

Download citation

Publish with us

Policies and ethics