Skip to main content

Long-Range Mechanical Force Enables Self-Assembly of Epithelial Tubules

  • Conference paper
  • First Online:
Mechanics of Biological Systems and Materials, Volume 5

Abstract

Spatiotemporal coordination of cell positioning and differentiation is critical in morphogenesis. Loss of coordination is often a hallmark of tissue abnormality and tumorigenesis. Recent studies indicate the importance of mechanical force in morphogenesis such as tubular pattern formation. However, how cells coordinate mechanical interactions between each other and with extracellular matrix (ECM), to initiate, regulate, or maintain long-range tubular patterns is unclear. Using a two-step process to quantitatively control cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various patterns resembling those observed in tubulo-lobular organs. In contrast with conventional thought, these patterns arise through mechanical interactions between cells, but not through gradients of diffusible biochemical factors. Remarkably, a very large spatial scale of tubular patterns is found by cell-COL self-organization in the liquid phase, leading to the formation of long-range (~1 cm) epithelial tubule. Our results suggest a potential mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate tubular organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin-Belmonte F, Yu W, Rodriguez-Fraticelli AE et al (2008) Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr Biol 18(7):507–513

    Article  Google Scholar 

  2. Horowitz A, Simons M (2008) Branching morphogenesis. Circ Res 103(8):784–795

    Article  Google Scholar 

  3. Shah MM, Sampogna RV, Sakurai H et al (2004) Branching morphogenesis and kidney disease. Development 131(7):1449–1462

    Article  Google Scholar 

  4. Warburton D, Schwarz M, Tefft D et al (2000) The molecular basis of lung morphogenesis. Mech Dev 92(1):55–81

    Article  Google Scholar 

  5. Gjorevski N, Nelson CM (2010) Branch formation during organ development. Wiley Interdiscip Rev Syst Biol Med 2(6):734–741

    Article  Google Scholar 

  6. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18(5):698–712

    Article  Google Scholar 

  7. Horowitz A, Simons M (2009) Branching morphogenesis. Circ Res 104(2):e21

    Article  Google Scholar 

  8. Bridgewater D, Rosenblum ND (2009) Stimulatory and inhibitory signaling molecules that regulate renal branching morphogenesis. Pediatr Nephrol 24(9):1611–1619

    Article  Google Scholar 

  9. Sternlicht MD, Kouros-Mehr H, Lu P et al (2006) Hormonal and local control of mammary branching morphogenesis. Differentiation 74(7):365–381

    Article  Google Scholar 

  10. Yevtodiyenko A, Schmidt JV (2006) Dlk1 expression marks developing endothelium and sites of branching morphogenesis in the mouse embryo and placenta. Dev Dyn Off Publ Am Assoc Anat 235(4):1115–1123

    Google Scholar 

  11. Patel VN, Rebustini IT, Hoffman MP (2006) Salivary gland branching morphogenesis. Differentiation 74(7):349–364

    Article  Google Scholar 

  12. Moore KA, Polte T, Huang S et al (2005) Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn 232(2):268–281

    Article  Google Scholar 

  13. Fata JE, Werb Z, Bissell MJ (2004) Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6(1):1–11

    Google Scholar 

  14. Bush KT, Sakurai H, Steer DL et al (2004) TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 266(2):285–298

    Article  Google Scholar 

  15. Berdichevsky F, Alford D, D’Souza B et al (1994) Branching morphogenesis of human mammary epithelial cells in collagen gels. J Cell Sci 107(Pt 12):3557–3568

    Google Scholar 

  16. Fratzl P (2008) Collagen: structure and mechanics. Springer, New York

    Google Scholar 

  17. Paulsson M (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27(1–2):93–127

    Google Scholar 

  18. Hinck L, Silberstein GB (2005) Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 7(6):245–251

    Article  Google Scholar 

  19. Silberstein GB, Strickland P, Coleman S et al (1990) Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol 110(6):2209–2219

    Article  Google Scholar 

  20. Wicha MS, Liotta LA, Vonderhaar BK et al (1980) Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev Biol 80(2):253–256

    Article  Google Scholar 

  21. Dhimolea E, Maffini MV, Soto AM et al (2010) The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model. Biomaterials 31(13):3622–3630

    Article  Google Scholar 

  22. Wozniak MA, Desai R, Solski PA et al (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163(3):583–595

    Article  Google Scholar 

  23. Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  Google Scholar 

  24. Muthuswamy SK, Li D, Lelievre S et al (2001) ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3(9):785–792

    Article  Google Scholar 

  25. Blaschke RJ, Howlett AR, Desprez PY et al (1994) Cell differentiation by extracellular matrix components. Methods Enzymol 245:535–556

    Article  Google Scholar 

  26. Kim SH, Park S, Mostov K et al (2009) Computational investigation of epithelial cell dynamic phenotype in vitro. Theor Biol Med Model 6:8

    Article  Google Scholar 

  27. Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4(4):359–365

    Article  Google Scholar 

  28. Martin-Belmonte F, Mostov K (2008) Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 20(2):227–234

    Article  Google Scholar 

  29. Bellusci S, Furuta Y, Rush MG et al (1997) Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124(1):53–63

    Google Scholar 

  30. Bellusci S, Grindley J, Emoto H et al (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124(23):4867–4878

    Google Scholar 

  31. Chuang PT, McMahon AP (2003) Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol 13(2):86–91

    Article  Google Scholar 

  32. Grosberg A, Kuo PL, Guo CL et al (2011) Self-organization of muscle cell structure and function. PLoS Comput Biol 7(2):e1001088

    Article  Google Scholar 

  33. Garner OB, Bush KT, Nigam KB, Yamaguchi Y, Xu D, Esko JD, Nigam SK (2011) Stage-dependent regulation of mammary ductal branching by heparan sulfate and HGF-cMet signaling. Dev Biol 355(2):394–403

    Google Scholar 

  34. Lu P, Werb Z (2008) Patterning mechanisms of branched organs. Science 322(5907):1506–1509

    Article  Google Scholar 

  35. Ozdamar B, Bose R, Barrios-Rodiles M et al (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609

    Article  Google Scholar 

  36. Coleman S, Silberstein GB, Daniel CW (1988) Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev Biol 127(2):304–315

    Article  Google Scholar 

  37. Affolter M, Zeller R, Caussinus E (2009) Tissue remodelling through branching morphogenesis. Nat Rev Mol Cell Biol 10(12):831–842

    Article  Google Scholar 

  38. Wolf K, Wu YI, Liu Y et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9(8):893–904

    Article  Google Scholar 

  39. Friedl P, Maaser K, Klein CE et al (1997) Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res 57(10):2061–2070

    Google Scholar 

  40. Pathak A, Kumar S (2011) Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr Biol (Camb) 3(4):267–278

    Article  Google Scholar 

  41. Daniel CW, Silberstein GB, Van Horn K et al (1989) TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol 135(1):20–30

    Article  Google Scholar 

  42. Vogel WF, Aszodi A, Alves F et al (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21(8):2906–2917

    Article  Google Scholar 

  43. Jakab K, Norotte C, Marga F et al (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001

    Article  Google Scholar 

  44. Proulx S, d’Arc Uwamaliya J, Carrier P et al (2010) Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Mol Vis 16:2192–2201

    Google Scholar 

  45. Bryant DM, Datta A, Rodriguez-Fraticelli AE et al (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12(11):1035–1045

    Article  Google Scholar 

  46. Chung WJ, Oh JW, Kwak K et al (2011) Biomimetic self-templating supramolecular structures. Nature 478(7369):364–368

    Article  Google Scholar 

  47. Aufderheide AC, Athanasiou KA (2007) Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng 13(9):2195–2205

    Article  Google Scholar 

  48. Steinberg MS (1962) Mechanism of tissue reconstruction by dissociated cells. II. Time-course of events. Science 137(3532):762–763

    Article  Google Scholar 

  49. Wei C, Larsen M, Hoffman MP et al (2007) Self-organization and branching morphogenesis of primary salivary epithelial cells. Tissue Eng 13(4):721–735

    Article  Google Scholar 

  50. Chanson L, Brownfield D, Garbe JC et al (2011) Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells. Proc Natl Acad Sci USA 108(8):3264–3269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Lin Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Guo, CL., Ouyang, M., Yu, JY. (2013). Long-Range Mechanical Force Enables Self-Assembly of Epithelial Tubules. In: Prorok, B., et al. Mechanics of Biological Systems and Materials, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4427-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4427-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4426-8

  • Online ISBN: 978-1-4614-4427-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics