Skip to main content

Deploying the Immunological Garrison

  • Chapter
  • First Online:
Doves, Diplomats, and Diabetes
  • 942 Accesses

Abstract

Many of the comorbidities of the metabolic syndrome are now known to be due to inflammatory changes [1–4]. There is said to be a low-grade chronic systemic inflammation, and serum levels of various inflammatory cytokines, chemokines, and inflammatory markers including TNF-α; interleukins IL-1β, IL-8, and IL-10; monocyte chemoattractant protein-1 (MCP-1); macrophage inflammatory protein-1α (MIP-1α); growth-regulating oncogene-α (GRO-α); inducible protein-10 (IP-10); and C-reactive protein (CRP) are increased. Adipocytes are active secretors of various inflammatory and chemotactic cytokines, and a substantial portion, if not all, of the raised serum levels are contributed by the adipose tissue [5–7]. Obesity, systemic inflammation, and insulin resistance are linked in such a way that it is difficult to decide what comes first. Perhaps the three are in an autocatalytic loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tracy RP (1998) Inflammation in cardiovascular disease: cart, horse, or both? Circulation 97:2000–2002

    PubMed  CAS  Google Scholar 

  2. Andersson SE, Edvinsson M-L, Edvinsson L (2003) Cutaneous vascular reactivity is reduced in aging and in heart failure: association with inflammation. Clin Sci 105:699

    PubMed  CAS  Google Scholar 

  3. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    PubMed  CAS  Google Scholar 

  4. Festa A et al (2000) Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS). Circulation 102:42–47

    PubMed  CAS  Google Scholar 

  5. Berg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96:939–949

    PubMed  CAS  Google Scholar 

  6. Lyon CJ, Law RE, Hsueh WA (2003) Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 144:2195–2200

    PubMed  CAS  Google Scholar 

  7. Weisberg SP (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  8. Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27:813–823

    PubMed  Google Scholar 

  9. Fernández-Real JM, Ricart W (1999) Insulin resistance and inflammation in an evolutionary perspective: the contribution of cytokine genotype/phenotype to thriftiness. Diabetologia 42:1367–1374

    PubMed  Google Scholar 

  10. Speakman JR (2006) Thrifty genes for obesity and the metabolic syndrome–time to call off the search? Diab Vasc Dis Res 3:7–11

    PubMed  Google Scholar 

  11. Speakman JR (2008) Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the/‘drifty gene/’ hypothesis. Int J Obes 32:1611–1617

    CAS  Google Scholar 

  12. Dogra S, Kumar B, Bhansali A, Chakrabarty A (2002) Epidemiology of onychomycosis in patients with diabetes mellitus in India. Int J Dermatol 41:647–651

    PubMed  Google Scholar 

  13. Joshi N, Caputo GM, Weitekamp MR, Karchmer AW (1999) Infections in patients with diabetes mellitus. N Engl J Med 341:1906–1912

    PubMed  CAS  Google Scholar 

  14. Violante R et al (2005) Obesity risk factors in the ISAAC (International study of asthma and allergies in childhood) in Mexico city. Rev Alerg Mex 52:141–145

    PubMed  Google Scholar 

  15. Plouffe JF, Silva J, Fekety R, Allen JL (1978) Cell-mediated immunity in diabetes mellitus. Infect Immun 21:425–429

    PubMed  CAS  Google Scholar 

  16. Diepersloot RJ, Bouter KP, Beyer WE, Hoekstra JB, Masurel N (1987) Humoral immune response and delayed type hypersensitivity to influenza vaccine in patients with diabetes mellitus. Diabetologia 30:397–401

    PubMed  CAS  Google Scholar 

  17. Maruyama K et al (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170:1178–1191

    PubMed  Google Scholar 

  18. Diaz BL et al (1996) Alloxan diabetes reduces pleural mast cell numbers and the subsequent eosinophil influx induced by allergen in sensitized rats. Int Arch Allergy Immunol 111:36–43

    PubMed  CAS  Google Scholar 

  19. Trabucchi E et al (1988) The role of mast cells in wound healing. Int J Tissue React 10:367–372

    PubMed  CAS  Google Scholar 

  20. Noli C, Miolo A (2001) The mast cell in wound healing. Vet Dermatol 12:303–313

    PubMed  CAS  Google Scholar 

  21. Trautmann A, Toksoy A, Engelhardt E, Bröcker E, Gillitzer R (2000) Mast cell involvement in normal human skin wound healing: expression of monocyte chemoattractant protein‐1 is correlated with recruitment of mast cells which synthesize interleukin‐4 in vivo. J Pathol 190:100–106

    PubMed  CAS  Google Scholar 

  22. Hebda PA, Collins MA, Tharp MD (1993) Mast cell and myofibroblast in wound healing. Dermatol Clin 11:685–696

    PubMed  CAS  Google Scholar 

  23. Weisberg SP et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  24. Curat CA et al (2006) Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49:744–747

    PubMed  CAS  Google Scholar 

  25. Kanda H (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505

    PubMed  CAS  Google Scholar 

  26. Curat CA et al (2004) From blood monocytes to adipose tissue-resident macrophages. Diabetes 53:1285–1292

    PubMed  CAS  Google Scholar 

  27. Hellman B, Larsson S, Westman S (1963) Mast cell content and fatty acid metabolism in the epididymal fat pad of obese mice. Acta Physiol Scand 58:255–262

    PubMed  CAS  Google Scholar 

  28. Stary HC et al (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 14:840–856

    Google Scholar 

  29. Czepluch FS, Bergler A, Waltenberger J (2007) Hypercholesterolaemia impairs monocyte function in CAD patients. J Intern Med 261:201–204

    PubMed  CAS  Google Scholar 

  30. Waltenberger J, Lange J, Kranz A (2000) Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: a potential predictor for the individual capacity to develop collaterals. Circulation 102: 185–190

    PubMed  CAS  Google Scholar 

  31. Sannomiya P, Pereira MAA, Garcia-Leme J (1990) Inhibition of leukocyte chemotaxis by serum factor in diabetes mellitus: selective depression of cell responses mediated by complement-derived chemoattractants. Agents Actions 30:369–376

    PubMed  CAS  Google Scholar 

  32. Alba-Loureiro TC et al (2007) Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res 40:1037–1044

    PubMed  CAS  Google Scholar 

  33. Braude S, Tang-Martinez Z, Taylor GT (1999) Stress, testosterone, and the immunoredistribution hypothesis. Behav Ecol 10:345–350

    Google Scholar 

  34. Laaksonen D et al (2003) Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur J Endocrinol 149:601–608

    PubMed  CAS  Google Scholar 

  35. Muller M, Grobbee DE, den Tonkelaar I, Lamberts SWJ, van der Schouw YT (2005) Endogenous sex hormones and metabolic syndrome in aging men. J Clin Endocrinol Metab 90:2618–2623

    PubMed  CAS  Google Scholar 

  36. Ashcroft GS, Mills SJ (2002) Androgen receptor-mediated inhibition of cutaneous wound healing. J Clin Invest 110:615–624

    PubMed  CAS  Google Scholar 

  37. Gilliver SC, Wu F, Ashcroft GS (2003) Regulatory roles of androgens in cutaneous wound healing. Thromb Haemost 90:978–985

    PubMed  CAS  Google Scholar 

  38. Gilliver SC, Ashworth JJ, Mills SJ, Hardman MJ, Ashcroft GS (2006) Androgens modulate the inflammatory response during acute wound healing. J Cell Sci 119:722–732

    PubMed  CAS  Google Scholar 

  39. Moller DE, Berger JP (2003) Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obes Relat Metab Disord 27:S17–S21

    PubMed  CAS  Google Scholar 

  40. Friedmann PS, Cooper HL, Healy E (2005) Peroxisome proliferator-activated receptors and their relevance to dermatology. Acta Derm Venereol 85:194–202

    PubMed  CAS  Google Scholar 

  41. Tan N, Michalik L, Di-Poi N, Desvergne B, Wahli W (2004) Critical roles of the nuclear receptor PPARβ (peroxisome-proliferator-activated receptor β) in skin wound healing. Biochem Soc Trans 32:97–102

    PubMed  CAS  Google Scholar 

  42. Quattrini C, Jeziorska M, Malik RA (2004) Small fiber neuropathy in diabetes: clinical consequence and assessment. Int J Low Extrem Wounds 3:16–21

    PubMed  CAS  Google Scholar 

  43. Luger TA (2002) Neuromediators–a crucial component of the skin immune system. J Dermatol Sci 30:87–93

    PubMed  CAS  Google Scholar 

  44. Misery L (1997) Skin, immunity and the nervous system. Br J Dermatol 137:843–850

    PubMed  CAS  Google Scholar 

  45. Delgado AV, McManus AT, Chambers JP (2003) Production of tumor necrosis factor-α, interleukin 1-β, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 37:355–361

    PubMed  CAS  Google Scholar 

  46. Said G (2007) Diabetic neuropathy–a review. Nat Clin Pract Neurol 3:331–340

    PubMed  Google Scholar 

  47. Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    PubMed  CAS  Google Scholar 

  48. Pelletier AJ et al (2000) Presentation of chemokine SDF-1 α by fibronectin mediates directed migration of T cells. Blood 96:2682–2690

    PubMed  CAS  Google Scholar 

  49. Rothenberg ME (1999) Eotaxin. An essential mediator of eosinophil trafficking into mucosal tissues. Am J Respir Cell Mol Biol 21:291–295

    PubMed  CAS  Google Scholar 

  50. Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69:513–521

    PubMed  CAS  Google Scholar 

  51. Mooney DP, O’Reilly M, Gamelli RL (1990) Tumor necrosis factor and wound healing. Ann Surg 211:124–129

    PubMed  CAS  Google Scholar 

  52. Bastard JP et al (2000) Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 85:3338–3342

    PubMed  CAS  Google Scholar 

  53. Chu X et al (1999) In vitro alteration of macrophage phenotype and function by serum lipids. Cell Tissue Res 296:331–337

    PubMed  CAS  Google Scholar 

  54. Doxey DL et al (1998) Diabetes-induced impairment of macrophage cytokine release in a rat model: Potential role of serum lipids. Life Sci 63:1127–1136

    PubMed  CAS  Google Scholar 

  55. Zykova SN et al (2000) Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes 49:1451–1458

    PubMed  CAS  Google Scholar 

  56. Naguib G, Al-Mashat H, Desta T, Graves DT (2003) Diabetes prolongs the inflammatory response to a bacterial stimulus through cytokine dysregulation. J Invest Dermatol 123:87–92

    Google Scholar 

  57. Ford ES (2003) The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis 168: 351–358

    PubMed  CAS  Google Scholar 

  58. Johnsen SH et al (2005) Monocyte count is a predictor of novel plaque formation: a 7-year follow-up study of 2610 persons without carotid plaque at baseline the Tromso study. Stroke 36:715–719

    PubMed  Google Scholar 

  59. Chapman CML, Beilby JP, McQuillan BM, Thompson PL, Hung J (2004) Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk marker for subclinical carotid atherosclerosis. Stroke 35:1619–1624

    PubMed  CAS  Google Scholar 

  60. Zouaouiboudjeltia K et al (2006) Fibrinolysis and cardiovascular risk factors: association with fibrinogen, lipids, and monocyte count. Eur J Intern Med 17:102–108

    CAS  Google Scholar 

  61. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270

    PubMed  CAS  Google Scholar 

  62. Ferron M et al (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    PubMed  CAS  Google Scholar 

  63. Kanazawa I et al (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94:45–49

    PubMed  CAS  Google Scholar 

  64. Rached M-T et al (2010) FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest 120: 357–368

    PubMed  CAS  Google Scholar 

  65. Saleem U, Mosley TH, Kullo IJ (2010) Serum osteocalcin is associated with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler Thromb Vasc Biol 30: 1474–1478

    PubMed  CAS  Google Scholar 

  66. Fulzele K et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319

    PubMed  CAS  Google Scholar 

  67. Brandt C, Pedersen BK (2010) The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 2010:1–7

    Google Scholar 

  68. Pedersen BK, Åkerström TCA, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098

    PubMed  CAS  Google Scholar 

  69. Pedersen BK (2006) The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem 42:105–117

    PubMed  CAS  Google Scholar 

  70. Fehr H-G, Lotzerich H, Michna H (1989) Human macrophage function and physical exercise: phagocytic and histochemical studies. Eur J Appl Physiol Occup Physiol 58:613–617

    PubMed  CAS  Google Scholar 

  71. Fehr H-G, Lötzerich H, Michna H (2008) The influence of physical exercise on peritoneal macrophage functions: histochemical and phagocytic studies. Int J Sports Med 09:77–81

    Google Scholar 

  72. Bruun JM, Helge JW, Richelsen B, Stallknecht B (2006) Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am J Physiol Endocrinol Metab 290:E961–E967

    PubMed  CAS  Google Scholar 

  73. Davis JM et al (1997) Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol 83:1461–1466

    PubMed  CAS  Google Scholar 

  74. Woods J, Lu Q, Lowder T (2000) Exercise-induced modulation of macrophage function. Immunol Cell Biol 78:545–553

    PubMed  CAS  Google Scholar 

  75. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126

    PubMed  CAS  Google Scholar 

  76. Barnes PJ, Adcock I, Spedding M, Vanhoutte PM (1993) Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci 14: 436–441

    PubMed  CAS  Google Scholar 

  77. Cline MJ, Melmon KL (1966) Plasma kinins and cortisol: a possible explanation of the anti-inflammatory action of cortisol. Science 153: 1135–1138

    PubMed  CAS  Google Scholar 

  78. Saldanha C, Tougas G, Grace E (1986) Evidence for anti-inflammatory effect of normal circulating plasma cortisol. Clin Exp Rheumatol 4:365–366

    PubMed  CAS  Google Scholar 

  79. Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci 94:557–572

    PubMed  CAS  Google Scholar 

  80. Walker BR, Soderberg S, Lindahl B, Olsson T (2000) Independent effects of obesity and cortisol in predicting cardiovascular risk factors in men and women. J Intern Med 247:198–204

    PubMed  CAS  Google Scholar 

  81. Dekker MJHJ et al (2008) Salivary cortisol is related to atherosclerosis of carotid arteries. J Clin Endocrinol Metab 93:3741–3747

    PubMed  CAS  Google Scholar 

  82. Smith GD et al (2005) Cortisol, testosterone, and coronary heart disease: prospective evidence from the Caerphilly study. Circulation 112:332–340

    PubMed  CAS  Google Scholar 

  83. Nashel DJ (1986) Is atherosclerosis a complication of long-term corticosteroid treatment? Am J Med 80:925–929

    PubMed  CAS  Google Scholar 

  84. Troxler RG, Sprague EA, Albanese RA, Fuchs R, Thompson AJ (1977) The association of elevated plasma cortisol and early atherosclerosis as demonstrated by coronary angiography. Atherosclerosis 26:151–162

    PubMed  CAS  Google Scholar 

  85. Malkin C, Pugh P, Jones R, Jones T, Channer K (2003) Testosterone as a protective factor against atherosclerosis–immunomodulation and influence upon plaque development and stability. J Endocrinol 178:373–380

    PubMed  CAS  Google Scholar 

  86. Jones RD, Nettleship JE, Kapoor D, Jones HT, Channer KS (2005) Testosterone and atherosclerosis in aging men: purported association and clinical implications. Am J Cardiovasc Drugs 5:141–154

    PubMed  CAS  Google Scholar 

  87. Fukui M et al (2003) Association between serum testosterone concentration and carotid atherosclerosis in men with type 2 diabetes. Diabetes Care 26:1869–1873

    PubMed  CAS  Google Scholar 

  88. Svartberg J et al (2006) Low testosterone levels are associated with carotid atherosclerosis in men. J Intern Med 259:576–582

    PubMed  CAS  Google Scholar 

  89. Bhasin S (2003) Effects of testosterone administration on fat distribution, insulin sensitivity, and ­atherosclerosis progression. Clin Infect Dis 37: S142–S149

    PubMed  CAS  Google Scholar 

  90. Simon D et al (1997) Association between plasma total testosterone and cardiovascular risk factors in healthy adult men: the Telecom study. J Clin Endocrinol Metab 82:682–685

    PubMed  CAS  Google Scholar 

  91. Khaw K-T et al (2007) Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) prospective population study. Circulation 116:2694–2701

    PubMed  CAS  Google Scholar 

  92. Shabsigh R, Katz M, Yan G, Makhsida N (2005) Cardiovascular issues in hypogonadism and testosterone therapy. Am J Cardiol 96:67–72

    Google Scholar 

  93. Forman HJ, Torres M (2002) Reactive oxygen ­species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:S4–S8

    PubMed  Google Scholar 

  94. Li J, Zhang Y, Kirsner RS (2003) Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 60:107–114

    PubMed  CAS  Google Scholar 

  95. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422

    PubMed  CAS  Google Scholar 

  96. Koch A, Polverini P, Leibovich S (1986) Induction of neovascularization by activated human monocytes. J Leukoc Biol 39:233–238

    PubMed  CAS  Google Scholar 

  97. Knighton D et al (1983) Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221:1283–1285

    PubMed  CAS  Google Scholar 

  98. Koch A et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    PubMed  CAS  Google Scholar 

  99. Rupnick MA et al (2002) Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA 99:10730–10735

    PubMed  CAS  Google Scholar 

  100. Hausman GJ, Richardson RL (2004) Adipose tissue angiogenesis. J Anim Sci 82:925–934

    PubMed  CAS  Google Scholar 

  101. Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92:347–355

    PubMed  CAS  Google Scholar 

  102. Galeano M et al (2004) Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetes 53:2509–2517

    PubMed  CAS  Google Scholar 

  103. Altavilla D et al (2001) Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse. Diabetes 50:667–674

    PubMed  CAS  Google Scholar 

  104. Galiano RD et al (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164:1935–1947

    PubMed  CAS  Google Scholar 

  105. Rivard A et al (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with Adeno-VEGF. Am J Pathol 154:355–363

    PubMed  CAS  Google Scholar 

  106. Häggström S, Lissbrant IF, Bergh A, Damber JE (1999) Testosterone induces vascular endothelial growth factor synthesis in the ventral prostate in castrated rats. J Urol 161:1620–1625

    PubMed  Google Scholar 

  107. Belsare PV et al (2010) Metabolic syndrome: aggression control mechanisms gone out of control. Med Hypotheses 74:578–589

    PubMed  CAS  Google Scholar 

  108. Yamamoto Y et al (2004) Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 53:1831–1840

    PubMed  CAS  Google Scholar 

  109. Cha DR et al (2000) Role of vascular endothelial growth factor in diabetic nephropathy. Kidney Int 58:S104–S112

    Google Scholar 

  110. Nakagawa T (2007) Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of VEGF in renal disease. Am J Physiol Renal Physiol 292:1665–1672

    Google Scholar 

  111. Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH (2004) Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int 65:116–128

    PubMed  CAS  Google Scholar 

  112. Nguyen D et al (2006) Macrophage accumulation in human progressive diabetic nephropathy. Nephrology 11:226–231

    PubMed  Google Scholar 

  113. Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH (2004) Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrol DialTransplant 19:2987–2996

    CAS  Google Scholar 

  114. Harbuz MS, Marti O, Lightman SL, Jessop DS (1998) Alteration of central serotonin modifies onset and severity of adjuvant-induced arthritis in the rat. Br J Rheumatol 37:1077–1083

    PubMed  CAS  Google Scholar 

  115. Harbuz MS et al (1996) The role of endogenous serotonin in adjuvant-induced arthritis in the rat. Br J Rheumatol 35:112–116

    PubMed  CAS  Google Scholar 

  116. Bendele AM, Spaethe SM, Benslay DN, Bryant HU (1991) Anti-inflammatory activity of pergolide, a dopamine receptor agonist. J Pharmacol Exp Ther 259:169–175

    PubMed  CAS  Google Scholar 

  117. Karanjia ND, Widdison AL, Lutrin FJ, Chang YB, Reber HA (1991) The antiinflammatory effect of dopamine in alcoholic hemorrhagic pancreatitis in cats. Studies on the receptors and mechanisms of action. Gastroenterology 101:1635–1641

    PubMed  CAS  Google Scholar 

  118. Esposito E, Cuzzocrea S (2010) Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 8:228–242

    PubMed  CAS  Google Scholar 

  119. Ambriz-Tututi M, Rocha-González HI, Cruz SL, Granados-Soto V (2009) Melatonin: a hormone that modulates pain. Life Sci 84:489–498

    PubMed  CAS  Google Scholar 

  120. Cuzzocrea S et al (2000) 17β-estradiol antiinflammatory activity in carrageenan-induced pleurisy. Endocrinology 141:1455–1463

    PubMed  CAS  Google Scholar 

  121. Vegeto E et al (2003) Estrogen receptor-α mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci USA 100:9614–9619

    PubMed  CAS  Google Scholar 

  122. Bodel P, Dillard GM Jr, Kaplan SS, Malawista SE (1972) Anti-inflammatory effects of estradiol on human blood leukocytes. J Lab Clin Med 80: 373–384

    PubMed  CAS  Google Scholar 

  123. Josefsson E, Tarkowski A, Caristen H (1992) Anti-inflammatory properties of estrogen: I. In vivo suppression of leukocyte production in bone marrow and redistribution of peripheral blood neutrophils. Cell Immunol 142:67–78

    PubMed  CAS  Google Scholar 

  124. Straub RH, Scholmerich JJ, Zietz B (2000) Replacement therapy with DHEA plus corticosteroids in patients with chronic inflammatory diseases - substitutes of adrenal and sex hormones. Z Rheumatol 59:II108–II118

    Google Scholar 

  125. Leowattana W (2001) DHEA(S): the fountain of youth. J Med Assoc Thai 84:S605–S612

    PubMed  Google Scholar 

  126. Lopez-Marure R, Huesca-Gomez C, Ibarra-Sanchez Mde J, Zentella A, Perez-Mendez O (2007) Dehydroepiandrosterone delays LDL oxidation in vitro and attenuates several oxLDL-induced inflammatory responses in endothelial cells. Inflamm Allergy Drug Targets 6:174–182

    PubMed  CAS  Google Scholar 

  127. Varet J et al (2004) Dose-dependent effect of dehydroepiandrosterone, but not of its sulphate ester, on angiogenesis. Eur J Pharmacol 502:21–30

    PubMed  CAS  Google Scholar 

  128. Liu D et al (2008) Dehydroepiandrosterone stimulates endothelial proliferation and angiogenesis through extracellular signal-regulated kinase 1/2-mediated mechanisms. Endocrinology 149:889–898

    PubMed  CAS  Google Scholar 

  129. Mills SJ, Ashworth JJ, Gilliver SC, Hardman MJ, Ashcroft GS (2005) The sex steroid precursor DHEA accelerates cutaneous wound healing via the estrogen receptors. J Invest Dermatol 125:1053–1062

    PubMed  CAS  Google Scholar 

  130. Kwon YB et al (2002) The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci 71:191–204

    PubMed  CAS  Google Scholar 

  131. Yoon S-Y et al (2007) Peripheral bee venom’s anti-inflammatory effect involves activation of the coeruleospinal pathway and sympathetic preganglionic neurons. Neurosci Res 59:51–59

    PubMed  CAS  Google Scholar 

  132. Chang Y-H, Bliven ML (1979) Anti-arthritic effect of bee venom. Agents Actions 9:205–211

    PubMed  CAS  Google Scholar 

  133. Yoon S-Y et al (2008) Bee venom injection produces a peripheral anti-inflammatory effect by activation of a nitric oxide-dependent spinocoeruleus pathway. Neurosci Lett 430:163–168

    PubMed  CAS  Google Scholar 

  134. Mirshafiey A (2007) Venom therapy in multiple sclerosis. Neuropharmacology 53:353–361

    PubMed  CAS  Google Scholar 

  135. Petricevich V (2006) L. Balance between pro- and anti-inflammatory cytokines in mice treated with Centruroides noxius scorpion venom, Mediators Inflamm (2006)

    Google Scholar 

  136. Petricevich VL, Hernández Cruz A, Coronas FIV, Possani LD (2007) Toxin gamma from Tityus serrulatus scorpion venom plays an essential role in immunomodulation of macrophages. Toxicon 50:666–675

    PubMed  CAS  Google Scholar 

  137. Zijlstra FJ, van den Berg-de Lange I, Huygen FJPM, Klein J (2003) Anti-inflammatory actions of acupuncture. Mediators Inflamm 12:59–69

    PubMed  CAS  Google Scholar 

  138. Kavoussi B, Ross BE (2007) The neuroimmune basis of anti-inflammatory acupuncture. Integr Cancer Ther 6:251–257

    PubMed  CAS  Google Scholar 

  139. Wheat LJ (1980) Infection and diabetes mellitus. Diabetes Care 3:187–197

    PubMed  CAS  Google Scholar 

  140. Masataka N et al (1990) Dominance and immunity in chimpanzees (Pan troglodytes). Ethology 85: 147–155

    Google Scholar 

  141. Benfield T, Jensen JS, Nordestgaard BG (2006) Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome. Diabetologia 50:549–554

    PubMed  Google Scholar 

  142. Muller LMAJ et al (2005) Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis 41:281–288

    PubMed  CAS  Google Scholar 

  143. Jeon CY, Murray MB (2008) Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med 5:e152

    PubMed  Google Scholar 

  144. Ofulue AF, Kida K, Thurlbeck WM (1988) Experimental diabetes and the lung. I. Changes in growth, morphometry, and biochemistry. Am Rev Respir Dis 137:162–166

    PubMed  CAS  Google Scholar 

  145. Kida K, Utsuyama M, Takizawa T, Thurlbeck WM (1983) Changes in lung morphologic features and elasticity caused by streptozotocin-induced diabetes mellitus in growing rats. Am Rev Respir Dis 128:125–131

    PubMed  CAS  Google Scholar 

  146. Sandler M (1990) Is the lung a ‘target organ’ in diabetes mellitus? Arch Intern Med 150:1385–1388

    PubMed  CAS  Google Scholar 

  147. Matsubara T, Hara F (1991) The pulmonary function and histopathological studies of the lung in diabetes mellitus. Nippon Ika Daigaku Zasshi 58:528–536

    PubMed  CAS  Google Scholar 

  148. Marvisi M, Marani G, Brianti M, Della Porta R (1996) Pulmonary complications in diabetes mellitus. Recenti Prog Med 87:623–627

    PubMed  CAS  Google Scholar 

  149. Zheng W et al (2011) Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med 364:719–729

    PubMed  CAS  Google Scholar 

  150. Linares C, Su D (2005) Body mass index and health among Union Army veterans: 1891–1905. Econ Hum Biol 3:367–387

    PubMed  Google Scholar 

  151. Lawniczak MK, Begun DJ (2004) A genome-wide analysis of courting and mating responses in Drosophila melanogaster females. Genome 47: 900–910

    PubMed  CAS  Google Scholar 

  152. Peng J, Zipperlen P, Kubli E (2005) Drosophila sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr Biol 15:1690–1694

    PubMed  CAS  Google Scholar 

  153. Fedorka KM, Linder JE, Winterhalter W, Promislow D (2007) Post-mating disparity between potential and realized immune response in Drosophila melanogaster. Proc R Soc B 274:1211–1217

    PubMed  Google Scholar 

  154. McLean JM, Shaya EI, Gibbs ACC (1980) Immune response to first mating in the female rat. J Reprod Immunol 1:285–295

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watve, M. (2012). Deploying the Immunological Garrison. In: Doves, Diplomats, and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4409-1_8

Download citation

Publish with us

Policies and ethics