Skip to main content

The Rise and Fall of Thrift

  • Chapter
  • First Online:
Doves, Diplomats, and Diabetes
  • 988 Accesses

Abstract

If we are set to search for an alternative picture, where do we need to begin our search? There is a simple and universal answer to all such questions in biology. Whenever any seemingly paradoxical and intuitively difficult phenomenon is observed in biology, we need to ask why and how it might have originated in evolution. Evolution is fundamental to biology, and as rightly put by the evolutionary geneticist Dobzinski, “Nothing in biology makes sense except in the light of evolution.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neel JV (1999) Diabetes mellitus: a ‘thrifty’ genotype rendered detrimental by ‘progress’? 1962. Bull World Health Organ 77:694–693

    PubMed  CAS  Google Scholar 

  2. Steinberg AG, Wilder RM (1952) A study of the genetics of diabetes mellitus. Am J Hum Genet 4:113–135

    PubMed  CAS  Google Scholar 

  3. Steinberg AG (1959) The genetics of diabetes: a review. Ann N Y Acad Sci 82:197–207

    Article  PubMed  CAS  Google Scholar 

  4. Allan W (1933) Heredity in diabetes. Ann Intern Med 6:1272–1274

    Google Scholar 

  5. Nørretranders T (1998) The user illusion: cutting consciousness down to size. Viking, NY, USA

    Google Scholar 

  6. Hales CN et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. Brit Med J 303:1019–1022

    Article  PubMed  CAS  Google Scholar 

  7. Davies DP, Matthes J (1991) Fetal and infant growth and impaired glucose tolerance. Brit Med J 303:1474

    Article  Google Scholar 

  8. Barker D (1998) In utero programming of chronic disease. Clin Sci 95:115–128

    Article  PubMed  CAS  Google Scholar 

  9. Drake AJ, Walker BR (2004) The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol 180:1–16

    Article  PubMed  CAS  Google Scholar 

  10. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    Article  PubMed  CAS  Google Scholar 

  11. Stein CE et al (1996) Fetal growth and coronary heart disease in south India. Lancet 348:1269–1273

    Article  PubMed  CAS  Google Scholar 

  12. Yajnik CS (2001) The insulin resistance epidemic in india: fetal origins, later lifestyle, or both? Nutr Rev 59:1–9

    Article  PubMed  CAS  Google Scholar 

  13. Yajnik CS (2004) Early life origins of insulin resistance and Type 2 diabetes in India and other Asian countries. J Nutr 134:205–210

    PubMed  CAS  Google Scholar 

  14. Williams MA, Emanuel I, Kimpo C, Leisenring WM, Hale CB (1999) A population-based cohort study of the relation between maternal birthweight and risk of gestational diabetes mellitus in four racial/ethnic groups. Paediatr Perinat Epidemiol 13:452–465

    Article  PubMed  CAS  Google Scholar 

  15. McNeely MJ, Fujimoto WY, Leonetti DL, Tsai EC, Boyko EJ (2007) The association between birth weight and visceral fat in middle-age adults. Obesity 15:816–819

    Article  PubMed  Google Scholar 

  16. Pettitt DJ, Jovanovic L (2007) Low birth weight as a risk factor for gestational diabetes, diabetes, and impaired glucose tolerance during pregnancy. Diabetes Care 30:S147–S149

    Article  PubMed  Google Scholar 

  17. Li C, Johnson MS, Goran MI (2001) Effects of low birth weight on insulin resistance syndrome in caucasian and African–American children. Diabetes Care 24:2035–2042

    Article  PubMed  CAS  Google Scholar 

  18. Gluckman PD, Hanson MA, Spencer HG (2005) Predictive adaptive responses and human evolution. Trends Ecol Evol (Amst) 20:527–533

    Article  Google Scholar 

  19. Speakman JR (2007) A nonadaptive scenario explaining the genetic predisposition to obesity: the ‘predation release’ hypothesis. Cell Metab 6:5–12

    Article  PubMed  CAS  Google Scholar 

  20. Speakman JR (2006) Thrifty genes for obesity and the metabolic syndrome–time to call off the search? Diab Vasc Dis Res 3:7–11

    Article  PubMed  Google Scholar 

  21. Speakman JR (2008) Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the/`drifty gene/’ hypothesis. Int J Obes 32:1611–1617

    Article  CAS  Google Scholar 

  22. Benyshek DC, Watson JT (2006) Exploring the thrifty genotype’s food-shortage assumptions: a cross-cultural comparison of ethnographic accounts of food security among foraging and agricultural societies. Am J Phys Anthropol 131:120–126

    Article  PubMed  Google Scholar 

  23. Watve MG, Yajnik CS (2007) Evolutionary origins of insulin resistance: a behavioral switch hypothesis. BMC Evol Biol 7:61

    Article  PubMed  Google Scholar 

  24. Wells JCK (2007) Flaws in the theory of predictive adaptive responses. Trends Endocrinol Metab 18:331–337

    Article  PubMed  CAS  Google Scholar 

  25. Wells JCK (2010) Maternal capital and the metabolic ghetto: an evolutionary perspective on the transgenerational basis of health inequalities. Am J Hum Biol 22:1–17

    Article  PubMed  Google Scholar 

  26. Wells JCK (2007) The thrifty phenotype as an adaptive maternal effect. Biol Rev Camb Philos Soc 82:143–172

    Article  PubMed  Google Scholar 

  27. Wells JCK (2009) Thrift a guide to thrifty genes, thrifty phenotypes and thrifty norms. Int J Obes 33:1331–1338

    Article  CAS  Google Scholar 

  28. Wells JCK (2003) The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J Theor Biol 221:143–161

    Article  PubMed  Google Scholar 

  29. Baig U, Belsare P, Watve M, Jog M (2011) Can thrifty gene(s) or predictive fetal programming for thriftiness lead to obesity? J Obes 2011:1–11

    Article  Google Scholar 

  30. Yilmaz N, Kilic S, Kanat-Pektas M, Gulerman C, Mollamahmutoglu L (2009) The relationship between obesity and fecundity. J Womens Health (Larchmt) 18:633–636

    Article  Google Scholar 

  31. Gesink Law DC, Maclehose RF, Longnecker MP (2007) Obesity and time to pregnancy. Hum Reprod 22:414–420

    Article  PubMed  CAS  Google Scholar 

  32. Sallmén M, Sandler DP, Hoppin JA, Blair A, Baird DD (2006) Reduced fertility among overweight and obese men. Epidemiology 17:520–523

    Article  PubMed  Google Scholar 

  33. Ramlau-Hansen CH et al (2007) Subfecundity in overweight and obese couples. Hum Reprod 22: 1634–1637

    Article  PubMed  CAS  Google Scholar 

  34. Sahlins M. The Original Affluent Society—Marshall Sahlins. http://www.primitivism.com/original-affluent.htm

  35. Sahlins M (1974) Stone age economics. Tavistock Publications, London, http://trove.nla.gov.au/work/21605237?selectedversion=NBD347965

    Google Scholar 

  36. Cohen MN (1984) Paleopathology at the origins of agriculture. Academic, San Diego, CA

    Google Scholar 

  37. Lukacs JR, Walimbe SR (1998) Physiological stress in prehistoric india: new data on localized hypoplasia of primary canines linked to climate and subsistence change. J Archaeol Sci 25:571–585

    Article  Google Scholar 

  38. Manning R (2004) Against the grain: how agriculture has hijacked civilization. North Point Press, New York, NY

    Google Scholar 

  39. O’Dea K (1991) Westernisation, insulin resistance and diabetes in Australian aborigines. Med J Aust 155:258–264

    PubMed  Google Scholar 

  40. Pasquali R, Gambineri A, Pagotto U (2006) Review article: the impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG: An Int J Obstet Gynaecol 113:1148–1159

    Article  CAS  Google Scholar 

  41. Norman RJ, Clark AM (1998) Obesity and reproductive disorders: a review. Reprod Fertil Dev 10:55–63

    Article  PubMed  CAS  Google Scholar 

  42. Kensara OA et al (2006) Substrate-energy metabolism and metabolic risk factors for cardiovascular disease in relation to fetal growth and adult body composition. Am J Physiol Endocrinol Metab 291: E365–E371

    Article  PubMed  CAS  Google Scholar 

  43. Eriksson J, Forsén T, Tuomilehto J, Osmond C, Barker D (2002) Size at birth, fat-free mass and resting metabolic rate in adult life. Horm Metab Res 34:72–76

    Article  PubMed  CAS  Google Scholar 

  44. Molnár D, Schutz Y (1997) The effect of obesity, age, puberty and gender on resting metabolic rate in children and adolescents. Eur J Pediat 156:376–381

    Article  Google Scholar 

  45. Huang K-C, Kormas N, Steinbeck K, Loughnan G, Caterson ID (2004) Resting metabolic rate in severely obese diabetic and nondiabetic subjects. Obes Res 12:840–845

    Article  PubMed  Google Scholar 

  46. Zunquin G, Theunynck D, Sesboüé B, Arhan P, Bouglé D (2009) Comparison of fat oxidation during exercise in lean and obese pubertal boys: clinical implications. Brit J Sports Med 43:869–870

    Article  CAS  Google Scholar 

  47. Frisancho AR (2003) Reduced rate of fat oxidation: a metabolic pathway to obesity in the developing nations. Am J Hum Biol 15:522–532

    Article  PubMed  Google Scholar 

  48. Rogge MM (2009) The role of impaired mitochondrial lipid oxidation in obesity. Biol Res Nurs 10:356–373

    Article  PubMed  CAS  Google Scholar 

  49. Zurlo F et al (1990) Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol Endocrinol Metab 259:650–657

    Google Scholar 

  50. Sawaya AL, Verreschi I, Tucker KL, Roberts SB, Hoffman DJ (2000) Why are nutritionally stunted children at increased risk of obesity? Studies of metabolic rate and fat oxidation in shantytown children from São Paulo, Brazil. Am J Clin Nutr 72:702–707

    PubMed  Google Scholar 

  51. Speakman JR (1998) The history and theory of the doubly labeled water technique. Am J Clin Nutr 68:932S–938S

    PubMed  CAS  Google Scholar 

  52. Westerterp KR, Speakman JR (2008) Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int J Obes (Lond) 32:1256–1263

    Article  CAS  Google Scholar 

  53. Farooqi IS, O’Rahilly S (2007) Genetic factors in human obesity. Obes Rev 8:37–40

    Article  PubMed  Google Scholar 

  54. Pasquet P et al (1992) Massive overfeeding and energy balance in men: the Guru Walla model. Am J Clin Nutr 56:483–490

    PubMed  CAS  Google Scholar 

  55. Pond CM (1998) The fats of life. Cambridge University Press, Cambridge

    Book  Google Scholar 

  56. Maes HH, Neale MC, Eaves LJ (1997) Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 27:325–351

    Article  PubMed  CAS  Google Scholar 

  57. Rankinen T et al (2006) The human obesity gene map: the 2005 update. Obesity (Silver Spring) 14:529–644

    Article  Google Scholar 

  58. Thorleifsson G et al (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41:18–24

    Article  PubMed  CAS  Google Scholar 

  59. Li S et al (2010) Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am J Clin Nutr 91:184–190

    Article  PubMed  CAS  Google Scholar 

  60. Mutch DM, Clément K (2006) Unraveling the genetics of human obesity. PLoS Genet 2(12):e188

    Article  PubMed  Google Scholar 

  61. McCarthy MI, Zeggini E (2009) Genome-wide association studies in type 2 diabetes. Curr Diab Rep 9:164–171

    Article  PubMed  CAS  Google Scholar 

  62. Sladek R et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    Article  PubMed  CAS  Google Scholar 

  63. Scott LJ et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  PubMed  CAS  Google Scholar 

  64. Kilpelainen TO et al (2011) Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 43:753–760

    Article  PubMed  CAS  Google Scholar 

  65. Reed D, Lawer M, Tordoff M (2008) Reduced body weight is a common effect of gene knockout in mice. BMC Genet 9:4

    Article  PubMed  Google Scholar 

  66. Stöger R (2008) The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes? Bioessays 30:156–166

    Article  PubMed  Google Scholar 

  67. Tosh DN et al (2010) Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol 299:G1023–G1029

    Article  PubMed  CAS  Google Scholar 

  68. McCance DR et al (1994) Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? Brit Med J 308:942–945

    Article  PubMed  CAS  Google Scholar 

  69. Boyko EJ (2000) Proportion of type 2 diabetes cases resulting from impaired fetal growth. Diabetes Care 23:1260–1264

    Article  PubMed  CAS  Google Scholar 

  70. Swinburn BA (1996) The thrifty genotype hypothesis: how does it look after 30 years? Diabet Med 13:695–699

    Article  PubMed  CAS  Google Scholar 

  71. Beck-Nielsen H (1999) General characteristics of the insulin resistance syndrome: prevalence and heritability. European Group for the study of Insulin Resistance (EGIR). Drugs 58(suppl 1):7–10 (discussion 75–82)

    Article  PubMed  CAS  Google Scholar 

  72. Vilbergsson S, Sigurdsson G, Sigvaldason H, Hreidarsson ÁB, Sigfusson N (1997) Prevalence and incidence of NIDDM in Iceland: evidence for stable incidence among males and females 1967–1991—the Reykjavik Study. Diabet Med 14:491–498

    Article  PubMed  CAS  Google Scholar 

  73. Mouratoff GJ, Scott EM (1973) Diabetes mellitus in Eskimos after a decade. J Am Med Assoc 226:1345–1346

    Article  CAS  Google Scholar 

  74. Vaz M et al (1999) Body fat topography in Indian and Tibetan males of low and normal body mass index. Indian J Physiol Pharmacol 43:179–185

    PubMed  CAS  Google Scholar 

  75. Yudkin JS (1996) Non-insulin-dependent diabetes mellitus (NIDDM) in Asians in the UK. Diabet Med 13:S16–S18

    Article  PubMed  CAS  Google Scholar 

  76. Egeland GM, Cao Z, Young TK (2011) Hypertriglyceridemic-waist phenotype and glucose intolerance among Canadian Inuit: the International Polar Year Inuit Health Survey for Adults 2007–2008. Can Med Assoc J 183:E553–E558

    Article  Google Scholar 

  77. Diamond J (2003) The double puzzle of diabetes. Nature 423:599–602

    Article  PubMed  CAS  Google Scholar 

  78. Zhang DD et al (2011) The causality analysis of climate change and large-scale human crisis. Proc Natl Acad Sci USA 108:17296–17301

    Article  PubMed  CAS  Google Scholar 

  79. Koshiyama H, Ogawa Y, Tanaka K, Tanaka I (2008) Diabetes mellitus as dysfunction of interactions among all organs: “ominous orchestra of organs”. Clin Med Endocrinol Diabet 1:1–6

    CAS  Google Scholar 

  80. Fernández-Real JM, Pickup JC (2008) Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab 19:10–16

    Article  PubMed  Google Scholar 

  81. Fernández-Real JM, Ricart W (1999) Insulin resistance and inflammation in an evolutionary perspective: the contribution of cytokine genotype/phenotype to thriftiness. Diabetologia 42:1367–1374

    Article  PubMed  Google Scholar 

  82. Terauchi Y, Kadowaki T (2002) Insights into molecular pathogenesis of type 2 diabetes from knockout mouse models. Endocr J 49:247–263

    Article  PubMed  CAS  Google Scholar 

  83. Wells JCK (2011) An evolutionary perspective on the trans-generational basic of obesity. Ann Hum Biol 38:400–409

    Article  PubMed  Google Scholar 

  84. Corbett SJ, McMichael AJ, Prentice AM (2009) Type 2 diabetes, cardiovascular disease, and the evolutionary paradox of the polycystic ovary syndrome: a fertility first hypothesis. Am J Hum Biol 21:587–598

    Article  PubMed  Google Scholar 

  85. Moalem S, Storey KB, Percy ME, Peros MC, Perl DP (2005) The sweet thing about Type 1 diabetes: a cryoprotective evolutionary adaptation. Med Hypotheses 65:8–16

    Article  PubMed  CAS  Google Scholar 

  86. Hattersley AT, Tooke JE (1999) The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 353:1789–1792

    Article  PubMed  CAS  Google Scholar 

  87. Watve M (1993) Why man has no predator. Curr Sci 65:120–122

    Google Scholar 

  88. Simmons RA, Templeton LJ, Gertz SJ (2001) Intrauterine Growth Retardation Leads to the Development of Type 2 Diabetes in the Rat. Diabetes 50:2279–2286

    Article  PubMed  CAS  Google Scholar 

  89. Martin JF, Johnston CS, Han CT, Benyshek DC (2000) Nutritional origins of insulin resistance: a rat model for diabetes-prone human populations. J Nutr 130: 741–744

    PubMed  CAS  Google Scholar 

  90. Johnson JA (1987) Dominance rank in juvenile olive baboons, Papio anubis: the influence of gender, size, maternal rank and orphaning. Anim Behav 35: 1694–1708

    Article  Google Scholar 

  91. Holekamp KE, Smale L (1991) Dominance Acquisition During Mammalian Social Development: The ‘Inheritance’ of Maternal Rank. Am Zool 31:306–317

    Google Scholar 

  92. Wagner JE et al (2006) Old world nonhuman primate models of type 2 diabetes mellitus. ILAR J 47: 259–271

    PubMed  CAS  Google Scholar 

  93. Venn-Watson SK, Ridgway SH (2007) Big brains and blood glucose: common ground for diabetes mellitus in humans and healthy dolphins. Comp Med 57:390–395

    PubMed  CAS  Google Scholar 

  94. Darleen S (2008) CNS GLP-1 regulation of peripheral glucose homeostasis. Physiol Behav 94:670–674

    Article  Google Scholar 

  95. Knauf C et al (2008) Brain glucagon-like peptide 1 signaling controls the onset of high-fat diet-induced insulin resistance and reduces energy expenditure. Endocrinology 149:4768–4777

    Article  PubMed  CAS  Google Scholar 

  96. Knauf C et al (2005) Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 115:3554–3563

    Article  PubMed  CAS  Google Scholar 

  97. Chowdhury KK, Legare DJ, Lautt WW (2011) Insulin sensitization by voluntary exercise in aging rats is mediated through hepatic insulin sensitizing substance (HISS). Exp Gerontol 46:73–80

    Article  PubMed  CAS  Google Scholar 

  98. Lautt WW (2004) A new paradigm for diabetes and obesity: the hepatic insulin sensitizing substance (HISS) hypothesis. J Pharmacol Sci 95:9–17

    Article  PubMed  CAS  Google Scholar 

  99. Lautt WW et al (2001) Hepatic parasympathetic (HISS) control of insulin sensitivity determined by feeding and fasting. Am J Physiol Gastroint Liver Physiol 281:G29–G36

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watve, M. (2012). The Rise and Fall of Thrift. In: Doves, Diplomats, and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4409-1_4

Download citation

Publish with us

Policies and ethics