Skip to main content

Diabetes in an Undergraduate Class

  • Chapter
  • First Online:
Doves, Diplomats, and Diabetes
  • 1004 Accesses

Abstract

I am an undergraduate teacher and that is what my first love has been. Over the years, learning from others as well as by my own experience, I could figure out that the best method to teach concepts in science to the young minds is the method of doubt and challenge. Doubting and challenging everything that a textbook has or a class teacher says pay large dividends. This way, students learn inferential logic, nature of evidence, experimental designs, hypothesis testing, alternative interpretations, resolving between alternative interpretations, and the required openness of mind to do so in a much more robust and sound way than the conventional “textbook as bible” approach. In the doubt and challenge approach, students are encouraged to contest prevalent concepts and come up with alternative interpretations of the same experiments and data on which the textbook concepts are based. Further, if any of their alternative interpretations look promising even at a speculative level, they are encouraged to suggest experiments that could distinguish between the conventional and alternative explanations of the phenomenon. In order to satisfy ourselves we then have to go beyond textbooks and explore what is happening in that field currently, see whether the experiments that we visualized have been done or are being done anywhere and, if so, what they imply. Most often, the textbook “wins,” but not uncommonly we identify significant gaps in the knowledge, some logical inconsistencies that need to be addressed, many unanswered questions, and more frequently many unquestioned answers! It is just too common to find that although the frontiers of research are expanding rapidly, some simple fundamental questions remain not only unanswered but knowingly or unknowingly trivialized and ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104:531–543

    PubMed  CAS  Google Scholar 

  2. Lustig RH (2006) Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the First Law of Thermodynamics. Nat Clin Pract Endocrinal Metab 2:447–458

    CAS  Google Scholar 

  3. Wells JCK, Siervo M (2011) Obesity and energy balance: is the tail wagging the dog[quest]. Eur J Clin Nutr 65:1173–1189

    PubMed  CAS  Google Scholar 

  4. Gary T (2008) The great diet scandal. The New Scientist, vol 197:p. 17

    Google Scholar 

  5. Speakman JR (1998) The history and theory of the doubly labeled water technique. Am J Clin Nutr 68:932S–938S

    PubMed  CAS  Google Scholar 

  6. Westerterp KR, Speakman JR (2008) Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int J Obes (Lond) 32:1256–1263

    CAS  Google Scholar 

  7. Heini A, Weinsier R (1997) Divergent trends in obesity and fat intake patterns: the American paradox. Am J Med 102:259–264

    PubMed  CAS  Google Scholar 

  8. Gibney MJ, Burstyn PG (1980) Milk, serum cholesterol, and the Maasai: a hypothesis. Atherosclerosis 35:339–343

    PubMed  CAS  Google Scholar 

  9. Brown GW (1993) Maasai diet. Lancet 341:377

    PubMed  CAS  Google Scholar 

  10. Mann GV, Spoerry A (1974) Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutr 27:464–469

    PubMed  CAS  Google Scholar 

  11. Hall KD, Guo J, Dore M, Chow CC (2009) The progressive increase of food waste in America and its environmental impact. PLoS ONE 4:e7940

    PubMed  Google Scholar 

  12. Chow CC (2010) Summary of SIAM talk. http://sciencehouse.wordpress.com/2010/07/23/summary-of-siam-talk/

  13. Stanley S, Wynne K, McGowan B, Bloom S (2005) Hormonal regulation of food intake. Physiol Rev 85:1131–1158

    PubMed  CAS  Google Scholar 

  14. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    PubMed  CAS  Google Scholar 

  15. Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117:13–23

    PubMed  CAS  Google Scholar 

  16. Friedman JM (2000) Obesity in the new millennium. Nature 404:632–634

    PubMed  CAS  Google Scholar 

  17. Kraly FS, Carty WJ, Resnick S, Smith GP (1978) Effect of cholecystokinin on meal size and intermeal interval in the sham-feeding rat. J Comp Physiol Psychol 92:697–707

    PubMed  CAS  Google Scholar 

  18. Young RC et al (1974) Absence of satiety during sham feeding in the rat. J Comp Physiol Psychol 87:795–800

    PubMed  CAS  Google Scholar 

  19. Rayner DV (1992) Gastrointestinal satiety in animals other than man. Proc Nutr Soc 51:1–6

    PubMed  CAS  Google Scholar 

  20. Vanderweele DA, Deems RO, Kanarek RB (1990) Insulin modifies flavor aversions and preferences in real- and sham-feeding rats. Am J Physiol 259: 823–828

    Google Scholar 

  21. Oetting RL, Vanderweele DA (1985) Insulin suppresses intake without inducing illness in sham feeding rats. Physiol Behav 34:557–562

    PubMed  CAS  Google Scholar 

  22. Martin CF, Gibbs J (1980) Bombesin elicits satiety in sham feeding rats. Peptides 1:131–134

    PubMed  CAS  Google Scholar 

  23. McGinty D, Epstein AN, Teitelbaum P (1965) The contribution of oropharyngeal sensations to hypothalamic hyperphagia. Anim Behav 13:413–418

    PubMed  CAS  Google Scholar 

  24. Epstein AN, Teitelbaum P (1962) Regulation of food intake in the absence of taste, smell, and other oropharyngeal sensations. J Comp Physiol Psychol 55:753–759

    Google Scholar 

  25. Hill RG, Ison EC, Jones WW, Archdeacon JW (1952) The small intestine as a factor in regulation of eating. Am J Physiol 170:201–205

    PubMed  CAS  Google Scholar 

  26. Mutch DM, Clément K (2006) Unraveling the genetics of human obesity. PLoS Genet 2:e188

    PubMed  Google Scholar 

  27. Kraegen EW et al (1991) Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40:1397–1403

    PubMed  CAS  Google Scholar 

  28. Storlien LH et al (1991) Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 40:280–289

    PubMed  CAS  Google Scholar 

  29. Guerre-Millo M et al (2001) PPAR-α-null mice are protected from high-fat diet-induced insulin resistance. Diabetes 50:2809–2814

    PubMed  CAS  Google Scholar 

  30. West CE, Sullivian DR, Katan MB, Halferkamps IL, Van Der Torre HW (1990) Boys from populations with high carbohydrate intake have higher fasting triglyceride levels than boys from populations with high fat intake. Am J Epidemiol 131:271–282

    PubMed  CAS  Google Scholar 

  31. Atkins Facts – American Heart Association (2011) http://www.atkinsexposed.org/atkins/100/American_Heart_Association.htm

  32. Teuscher T, Rosman JB, Baillod P, Teuscher A (1987) Absence of diabetes in a rural West African population with a high carbohydrate/cassava diet. Lancet 329:765–768

    Google Scholar 

  33. Taubes G (2004) The diet delusion: challenging the conventional wisdom on diet, weight loss and disease. Vermillion, London

    Google Scholar 

  34. Grande F, Anderson JT, Keys A (1970) Comparison of effects of palmitic and stearic acids in the diet on serum cholesterol in man. Am J Clin Nutr 23:1184–1193

    PubMed  CAS  Google Scholar 

  35. Keys A (1957) Diet and the epidemiology of coronary heart disease. J Am Med Assoc 164:1912–1919

    PubMed  CAS  Google Scholar 

  36. Keys A, Anderson JT, Grande F (1965) Serum cholesterol response to changes in the diet: IV. Particular saturated fatty acids in the diet. Metabolism 14:776–787

    CAS  Google Scholar 

  37. Yancy WS, Olsen MK, Guyton JR, Bakst RP, Westman EC (2004) A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia. Ann Intern Med 140:769–777

    PubMed  Google Scholar 

  38. Samaha FF et al (2003) A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 348:2074–2080

    PubMed  CAS  Google Scholar 

  39. Bray GA, Paeratakul S, Popkin BM (2004) Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol Behav 83:549–555

    PubMed  CAS  Google Scholar 

  40. Lissner L, Heitmann BL (1995) Dietary fat and obesity: evidence from epidemiology. Eur J Clin Nutr 49:79–90

    PubMed  CAS  Google Scholar 

  41. Tremblay F, Marette A (2001) Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. J Biol Chem 276:38052–38060

    PubMed  CAS  Google Scholar 

  42. Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005:pe4

    PubMed  Google Scholar 

  43. Venn-Watson SK, Ridgway SH (2007) Big brains and blood glucose: common ground for diabetes mellitus in humans and healthy dolphins. Comp Med 57:390–395

    PubMed  CAS  Google Scholar 

  44. Zoppi CC et al (2010) Insulin release, peripheral insulin resistance and muscle function in protein malnutrition: a role of tricarboxylic acid cycle anaplerosis. Br J Nutr 103:1237–1250

    PubMed  CAS  Google Scholar 

  45. Grace CJ, Swenne I, Kohn PG, Strain AJ, Milner RD (1990) Protein-energy malnutrition induces changes in insulin sensitivity. Diabete Metab 16:484–491

    PubMed  CAS  Google Scholar 

  46. Schteingart DE, McKenzie AK, Victoria RS, Tsao HS (1979) Suppression of insulin secretion by protein deprivation in obesity. Adv Exp Med Biol 119:125–135

    PubMed  CAS  Google Scholar 

  47. Wells JCK (2009) The evolutionary biology of human body fatness. Cambridge University Press, Cambridge

    Google Scholar 

  48. Adequate Nutrients Within Calorie Needs. In: Dietary guidelines for Americans 2005 USDA. http://www.health.gov/dietaryguidelines/dga2005/document/html/chapter2.htm

  49. Diet and Weight Loss Products|CaloriesPerHour.com. http://www.caloriesperhour.com/products.php

  50. Cordain L, Eaton SB, Miller JB, Mann N, Hill K (2002) The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic. Eur J Clin Nutr 56(Suppl 1):S42–S52

    PubMed  Google Scholar 

  51. Nelson L (1996) Diet composition related to body fat in a multivariate study of 203 men. J Am Diet Assoc 96:771–777

    PubMed  CAS  Google Scholar 

  52. Atkin L-M, Davies PS (2000) Diet composition and body composition in preschool children. Am J Clin Nutr 72:15–21

    PubMed  CAS  Google Scholar 

  53. Boyce VL, Swinburn BA (1993) The traditional pima Indian diet. Composition and adaptation for use in a dietary intervention study. Diabetes Care 16:369–371

    PubMed  CAS  Google Scholar 

  54. Story M et al (1999) The epidemic of obesity in American Indian communities and the need for childhood obesity-prevention programs. Am J Clin Nutr 69:747S–754S

    PubMed  CAS  Google Scholar 

  55. Bang H, Dyerberg J, Sinclair H (1980) The composition of the Eskimo food in north western Greenland. Am J Clin Nutr 33:2657–2661

    PubMed  CAS  Google Scholar 

  56. Manners J (1997) Kenya’s running tribe. Sports Hist 17:14–27

    Google Scholar 

  57. Cordain L et al (2000) Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am J Clin Nutr 71:682–692

    PubMed  CAS  Google Scholar 

  58. Masai Tribe Diet | LIVESTRONG.COM. http://www.livestrong.com/article/293306-masai-tribe-diet/

  59. Macronutrient Ratios | CaloriesPerHour.com. http://www.caloriesperhour.com/tutorial_ratios.php

  60. Milton K (2000) Hunter-gatherer diets – a different perspective. Am J Clin Nutr 71:665–667

    PubMed  CAS  Google Scholar 

  61. Beis LY et al (2011) Food and macronutrient intake of elite Ethiopian distance runners. J Int Soc Sports Nutr 8:7

    PubMed  CAS  Google Scholar 

  62. Vidal FS (1954) Date culture in the oasis of Al-hasa. Middle East J 8:417–428

    Google Scholar 

  63. Cooking Practices and Health of Hunter-Gatherers/!Kung San. http://www.beyondveg.com/tu-j-l/raw-cooked/raw-cooked-3f.shtml

  64. Gordon R (1999) Hopper changing food production and quality of diet in India, 1947-98. Popul Dev Rev 25:443–477

    Google Scholar 

  65. Atkins Facts – American Heart Association. http://www.atkinsexposed.org/atkins/100/American_Heart_Association.htm

  66. Eaton SB, Konner M, Shostak M (1988) Stone agers in the fast lane: chronic degenerative diseases in ­evolutionary perspective. Am J Med 84:739–749

    PubMed  CAS  Google Scholar 

  67. Miller W, Lindeman A, Wallace J, Niederpruem M (1990) Diet composition, energy intake, and exercise in relation to body fat in men and women. Am J Clin Nutr 52:426–430

    PubMed  CAS  Google Scholar 

  68. Day J, Carruthers M, Bailey A, Robinson D (1976) Anthropometric, physiological and biochemical ­differences between urban and rural Maasai. Atherosclerosis 23:357–361

    Google Scholar 

  69. Schaefer O (1971) When the Eskimo comes to town: nutrition today. Nutr Today 6:8–16

    Google Scholar 

  70. Yu CHY, Zinman B (2007) Type 2 diabetes and impaired glucose tolerance in aboriginal populations: a global perspective. Diabetes Res Clin Pract 78:159–170

    PubMed  CAS  Google Scholar 

  71. O’Dea K, Patel M, Kubisch D, Hopper J, Traianedes K (1993) Obesity, diabetes, and hyperlipidemia in a central Australian aboriginal community with a long history of acculturation. Diabetes Care 16:1004–1010

    PubMed  Google Scholar 

  72. Eaton C (1977) Part two: diabetes, culture change, and acculturation: a biocultural analysis 1. Med Anthropol 1:41–63

    Google Scholar 

  73. Joffe BI et al (1971) Metabolic responses to oral glucose in the Kalahari Bushmen. Br Med J 4:206–208

    PubMed  CAS  Google Scholar 

  74. Pond CM (1998) The fats of life. Cambridge University Press, Cambridge

    Google Scholar 

  75. Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362

    PubMed  CAS  Google Scholar 

  76. Brüning JC et al (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2:559–569

    PubMed  Google Scholar 

  77. Kadowaki T (2000) Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 106:459–465

    PubMed  CAS  Google Scholar 

  78. Terauchi Y, Kadowaki T (2002) Insights into molecular pathogenesis of type 2 diabetes from knockout mouse models. Endocr J 49:247–263

    PubMed  CAS  Google Scholar 

  79. Isganaitis E, Lustig RH (2005) Fast food, central nervous system insulin resistance, and obesity. Arterioscler Thromb Vasc Biol 25:2451–2462

    PubMed  CAS  Google Scholar 

  80. Lustig RH, Sen S, Soberman JE, Velasquez-Mieyer PA (2004) Obesity, leptin resistance, and the effects of insulin reduction. Int J Obes Relat Metab Disord 28:1344–1348

    PubMed  CAS  Google Scholar 

  81. Ruderman N, Chisholm D, Pi-Sunyer X, Schneider S (1998) The metabolically obese, normal-weight individual revisited. Diabetes 47:699–713

    PubMed  CAS  Google Scholar 

  82. Conus F et al (2004) Metabolic and behavioral characteristics of metabolically obese but normal-weight women. J Clin Endocrinol Metab 89:5013–5020

    PubMed  CAS  Google Scholar 

  83. Succurro E et al (2008) Insulin secretion in metabolically obese, but normal weight, and in metabolically healthy but obese individuals. Obesity 16:1881–1886

    PubMed  CAS  Google Scholar 

  84. Zheng W et al (2011) Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med 364:719–729

    PubMed  CAS  Google Scholar 

  85. Virtue S, Vidal-Puig A (2008) It’s not how fat you are, It’s what you do with it that counts. PLoS Biol 6:e237

    PubMed  Google Scholar 

  86. Nesto RW (2005) Obesity. Tex Heart Inst J 32:387–389

    PubMed  Google Scholar 

  87. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Tokunaga K (1994) Pathophysiology and pathogenesis of visceral fat obesity. Diabet Res Clin Pract 24(Suppl):S111–S116

    Google Scholar 

  88. Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278:E941–E948

    PubMed  CAS  Google Scholar 

  89. Cnop M et al (2002) The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations. Diabetes 51:1005–1015

    PubMed  CAS  Google Scholar 

  90. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE (1997) Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 46:1579–1585

    PubMed  CAS  Google Scholar 

  91. Pecioska S et al (2010) Association between type 2 diabetes loci and measures of fatness. PLoS One 5:e8541

    PubMed  Google Scholar 

  92. Kilpelainen TO et al (2011) Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 43:753–760

    PubMed  CAS  Google Scholar 

  93. Garland PB, Newsholme EA, Randle PJ (1964) Regulation of glucose uptake by muscle. 9. Effects of fatty acids and ketone bodies, and of alloxan-diabetes and starvation, on pyruvate metabolism and on lactate/pyruvate and l-glycerol 3-phosphate/dihydroxyacetone phosphate concentration ratios in rat heart and rat diaphragm muscles. Biochem J 93:665–678

    PubMed  CAS  Google Scholar 

  94. Randle PJ, Priestman DA, Mistry SC, Halsall A (1994) Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem 55(Suppl):1–11

    PubMed  CAS  Google Scholar 

  95. Turner N et al (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle. Diabetes 56:2085–2092

    PubMed  CAS  Google Scholar 

  96. Bajaj M et al (2007) Paradoxical changes in muscle gene expression in insulin-resistant subjects after sustained reduction in plasma free fatty acid concentration. Diabetes 56:743–752

    PubMed  CAS  Google Scholar 

  97. Morino K (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593

    PubMed  CAS  Google Scholar 

  98. Kadowaki T (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    PubMed  CAS  Google Scholar 

  99. Berg AH, Combs TP, Scherer PE (2002) ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trend Endocrinol Metab 13: 84–89

    CAS  Google Scholar 

  100. Goldstein BJ, Scalia R (2004) Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 89:2563–2568

    PubMed  CAS  Google Scholar 

  101. Viengchareun S, Zennaro M-C, Pascual-Le Tallec L, Lombes M (2002) Brown adipocytes are novel sites of expression and regulation of adiponectin and resistin. FEBS Lett 532:345–350

    PubMed  CAS  Google Scholar 

  102. Ouchi N et al (2010) Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329:454–457

    PubMed  CAS  Google Scholar 

  103. Mori MA et al (2010) A systems biology approach identifies inflammatory abnormalities between mouse strains prior to development of metabolic disease. Diabetes 59:2960–2971

    PubMed  CAS  Google Scholar 

  104. Poirier B et al (2005) The anti‐obesity effect of rimonabant is associated with an improved serum lipid profile. Diabetes Obes Metab 7:65–72

    PubMed  CAS  Google Scholar 

  105. Qi Y et al (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10:524–529

    PubMed  CAS  Google Scholar 

  106. Margetic S, Gazzola C, Pegg GG, Hill RA (2002) Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 26:1407–1433

    PubMed  CAS  Google Scholar 

  107. Buettner C et al (2008) Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med 14:667–675

    PubMed  CAS  Google Scholar 

  108. Munzberg H, Myers MG (2005) Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 8:566–570

    PubMed  Google Scholar 

  109. Andrews R, Walker BR (1999) Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci 96:513–523

    PubMed  CAS  Google Scholar 

  110. Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim Biophys Acta 1801:338–349

    PubMed  CAS  Google Scholar 

  111. Goodpaster BH, Theriault R, Watkins S, Kelley DE (2000) Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism 49:467–472

    PubMed  CAS  Google Scholar 

  112. Kelley DE, Goodpaster BH, Storlien LH (2002) Muscle triglyceride and insulin resistance. Annu Rev Nutr 22:325–346

    PubMed  CAS  Google Scholar 

  113. He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50:817–823

    PubMed  CAS  Google Scholar 

  114. He J, Kelley DE (2004) Muscle glycogen content in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 287:1002–1007

    Google Scholar 

  115. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46:983–988

    PubMed  CAS  Google Scholar 

  116. Dubé JJ et al (2008) Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete’s paradox revisited. Am J Physiol Endocrinol Metab 294:E882–E888

    PubMed  Google Scholar 

  117. Stannard SR, Johnson NA (2004) Insulin resistance and elevated triglyceride in muscle: more important for survival than “thrifty” genes? J Physiol 554:595–607

    PubMed  CAS  Google Scholar 

  118. van Loon LJ et al (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287:E558–E565

    PubMed  Google Scholar 

  119. Tarnopolsky MA et al (2007) Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 292:R1271–R1278

    PubMed  CAS  Google Scholar 

  120. Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86:5755–5761

    PubMed  CAS  Google Scholar 

  121. Jauch-Chara K, Schmoller A, Oltmanns KM (2011) Impaired glucose tolerance in healthy men with low body weight. Nutr J 10:16

    PubMed  Google Scholar 

  122. Pardini VC et al (1998) Leptin levels, {β}-cell function, and insulin sensitivity in families with congenital and acquired generalized lipoatropic diabetes. J Clin Endocrinol Metab 83:503–508

    PubMed  CAS  Google Scholar 

  123. Rao RH (1988) Diabetes in the undernourished: coincidence or consequence? Endocr Rev 9:67–87

    PubMed  CAS  Google Scholar 

  124. Unger RH, Scherer PE (2010) Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab 21:345–352

    PubMed  CAS  Google Scholar 

  125. Franckhauser S et al (2002) Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes 51:624–630

    PubMed  CAS  Google Scholar 

  126. Dubuc PU (1976) The development of obesity, hyperinsulinemia, and hyperglycemia in ob/ob mice. Metabolism 25:1567–1574

    PubMed  CAS  Google Scholar 

  127. Dubuc PU (1981) Non-essential role of dietary factors in the development of diabetes in ob/ob mice. J Nutr 111:1742–1748

    PubMed  CAS  Google Scholar 

  128. Le Stunff C, Bougnères P (1994) Early changes in postprandial insulin secretion, not in insulin sensitivity, characterize juvenile obesity. Diabetes 43:696–702

    PubMed  Google Scholar 

  129. Wagner JE et al (2006) Old world nonhuman primate models of type 2 diabetes mellitus. ILAR J 47:259–271

    PubMed  CAS  Google Scholar 

  130. Duvanel CB, Fawer CL, Cotting J, Hohlfeld P, Matthieu JM (1999) Long-term effects of neonatal hypoglycemia on brain growth and psychomotor development in small-for-gestational-age preterm infants. J Pediatr 134:492–498

    PubMed  CAS  Google Scholar 

  131. Nankervis A, Proietto J, Aitken P, Alford F (1985) Hyperinsulinaemia and insulin insensitivity: studies in subjects with insulinoma. Diabetologia 28:427–431

    PubMed  CAS  Google Scholar 

  132. Sawicki P, Baba T, Berger M, Starke A (1992) Normal blood pressure in patients with insulinoma despite hyperinsulinemia and insulin resistance. J Am Soc Nephrol 3:S64–S68

    PubMed  CAS  Google Scholar 

  133. Pontiroli AE, Alberetto M, Pozza G (1992) Patients with insulinoma show insulin resistance in the absence of arterial hypertension. Diabetologia 35: 294–295

    PubMed  CAS  Google Scholar 

  134. Liu J et al (2000) The intracellular mechanism of insulin resistance in pancreatic cancer patients. J Clin Endocrinol Metab 85:1232–1238

    PubMed  CAS  Google Scholar 

  135. Leonetti F et al (1993) Absence of clinically overt atherosclerotic vascular disease and adverse changes in cardiovascular risk factors in 70 patients with insulinoma. J Endocrinol Invest 16:875–880

    PubMed  CAS  Google Scholar 

  136. Del Prato S et al (1993) Mechanisms of fasting hypoglycemia and concomitant insulin resistance in insulinoma patients. Metab Clin Exp 42:24–29

    PubMed  Google Scholar 

  137. Kim JK et al (2000) Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J Clin Invest 105:1791–1797

    PubMed  CAS  Google Scholar 

  138. Kulkarni RN et al (1999) Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    PubMed  CAS  Google Scholar 

  139. Yakar S et al (2001) Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 50:1110–1118

    PubMed  CAS  Google Scholar 

  140. Chakravarthy MV et al (2008) Decreased fetal size is associated with β-cell hyperfunction in early life and failure with age. Diabetes 57:2698–2707

    PubMed  CAS  Google Scholar 

  141. Weyer C, Hanson RL, Tataranni PA, Bogardus C, Pratley RE (2000) A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for a pathogenic role of relative hyperinsulinemia. Diabetes 49:2094–2101

    PubMed  CAS  Google Scholar 

  142. Jetton TL et al (2005) Mechanisms of compensatory β-cell growth in insulin-resistant rats. Diabetes 54:2294–2304

    PubMed  CAS  Google Scholar 

  143. Garvey WT, Olefsky JM, Marshall S (1986) Insulin induces progressive insulin resistance in cultured rat adipocytes. Sequential effects at receptor and multiple postreceptor sites. Diabetes 35:258–267

    PubMed  CAS  Google Scholar 

  144. Koopmans SJ et al (1991) Amylin-induced in vivo insulin resistance in conscious rats: the liver is more sensitive to amylin than peripheral tissues. Diabetologia 34:218–224

    PubMed  CAS  Google Scholar 

  145. Frontoni S, Choi SB, Banduch D, Rossetti L (1991) In vivo insulin resistance induced by amylin primarily through inhibition of insulin-stimulated glycogen synthesis in skeletal muscle. Diabetes 40:568–573

    PubMed  CAS  Google Scholar 

  146. Molina JM, Cooper GJ, Leighton B, Olefsky JM (1990) Induction of insulin resistance in vivo by amylin and calcitonin gene-related peptide. Diabetes 39:260–265

    PubMed  CAS  Google Scholar 

  147. Marzban L, Park K, Verchere CB (2003) Islet amyloid polypeptide and type 2 diabetes. Exp Gerontol 38:347–351

    PubMed  CAS  Google Scholar 

  148. Tabata H et al (1992) Islet amyloid polypeptide (IAPP/amylin) causes insulin resistance in perfused rat hindlimb muscle. Diabetes Res Clin Pract 15:57–61

    PubMed  CAS  Google Scholar 

  149. Sowa R et al (1990) Islet amyloid polypeptide amide causes peripheral insulin resistance in vivo in dogs. Diabetologia 33:118–120

    PubMed  CAS  Google Scholar 

  150. Ye J-M et al (2001) Evidence that amylin stimulates lipolysis in vivo: a possible mediator of induced insulin resistance. Am J Physiol Endocrinol Metab 280:E562–E569

    PubMed  CAS  Google Scholar 

  151. Chen C-D, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA 104:19796–19801

    PubMed  CAS  Google Scholar 

  152. Kurosu H et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    PubMed  CAS  Google Scholar 

  153. Bartke A (2006) Long-lived Klotho mice: new insights into the roles of IGF-1 and insulin in aging. Trends Endocrinol Metab 17:33–35

    PubMed  CAS  Google Scholar 

  154. Fernstrom JD, Wurtman RJ (1971) Brain serotonin content: increase following ingestion of carbohydrate diet. Science 174:1023–1025

    PubMed  CAS  Google Scholar 

  155. Luo S, Luo J, Cincotta AH (1999) Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology 70:460–465

    PubMed  CAS  Google Scholar 

  156. Tzotzas T, Papazisis K, Perros P, Krassas GE (2008) Use of somatostatin analogues in obesity. Drugs 68:1963–1973

    PubMed  CAS  Google Scholar 

  157. Shanik MH et al (2008) Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 31(Suppl 2):S262–S268

    PubMed  CAS  Google Scholar 

  158. Ratzmann KP, Ruhnke R, Kohnert KD (1983) Effect of pharmacological suppression of insulin secretion on tissue sensitivity to insulin in subjects with moderate obesity. Int J Obes 7:453–458

    PubMed  CAS  Google Scholar 

  159. Prentki M (2006) Islet cell failure in type 2 diabetes. J Clin Invest 116:1802–1812

    PubMed  CAS  Google Scholar 

  160. Alemzadeh R, Holshouser S, Massey P, Koontz J (2002) Chronic suppression of insulin by diazoxide alters the activities of key enzymes regulating hepatic gluconeogenesis in Zucker rats. Eur J Endocrinol 146:871–879

    PubMed  CAS  Google Scholar 

  161. Alemzadeh R, Karlstad M, Tushaus K, Buchholz M (2008) Diazoxide enhances basal metabolic rate and fat oxidation in obese Zucker rats. Metabolism 57:1597–1607

    PubMed  CAS  Google Scholar 

  162. Alemzadeh R, Tushaus KM (2004) Modulation of adipoinsular axis in prediabetic zucker diabetic fatty rats by diazoxide. Endocrinology 145:5476–5484

    PubMed  CAS  Google Scholar 

  163. Schreuder T et al (2005) Diazoxide‐mediated insulin suppression in obese men: a dose‐response study. Diabetes Obes Metab 7:239–245

    PubMed  CAS  Google Scholar 

  164. Velasquez-Mieyer P et al (2003) Suppression of insulin secretion is associated with weight loss and altered macronutrient intake and preference in a subset of obese adults. Int J Obes Relat Metab Disord 27:219–226

    PubMed  CAS  Google Scholar 

  165. Lustig RH et al (2005) A multicenter, randomized, double-blind, placebo-controlled, dose-finding trial of a long-acting formulation of octreotide in promoting weight loss in obese adults with insulin hypersecretion. Int J Obes Relat Metab Disord 30:331–341

    Google Scholar 

  166. Lustig RH et al (2003) Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. J Clin Endocrinol Metab 88:2586–2592

    PubMed  CAS  Google Scholar 

  167. Hwang DY et al (2007) Significant change in insulin production, glucose tolerance and ER stress signaling in transgenic mice coexpressing insulin-siRNA and human IDE. Int J Mol Med 19:65–73

    PubMed  CAS  Google Scholar 

  168. Zisman A et al (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6:924–928

    PubMed  CAS  Google Scholar 

  169. Michael MD et al (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97

    PubMed  CAS  Google Scholar 

  170. Hermans MP, Lambert MJ (2002) HOMA-modelling of insulin sensitivity and β‐cell function in anorexia nervosa. Eur Eat Disord Rev 10:41–50

    Google Scholar 

  171. Kumai M, Tamai H, Fujii S, Nakagawa T, Aoki T (1988) Glucagon secretion in anorexia nervosa. Am J Clin Nutr 47:239–242

    PubMed  CAS  Google Scholar 

  172. Nestel PJ (1974) Cholesterol metabolism in anorexia nervosa and hypercholesterolemia. J Clin Endocrinol Metab 38:325–328

    PubMed  CAS  Google Scholar 

  173. Mordasini R, Klose G, Greten H (1978) Secondary type II hyperlipoproteinemia in patients with anorexia nervosa. Metabolism 27:71–79

    PubMed  CAS  Google Scholar 

  174. Feillet F et al (2000) Plasma cholesterol and endogenous cholesterol synthesis during refeeding in anorexia nervosa. Clin Chim Acta 294:45–56

    PubMed  CAS  Google Scholar 

  175. Rice B, Janssen I, Hudson R, Ross R (1999) Effects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care 22:684–691

    PubMed  CAS  Google Scholar 

  176. Kirwan JP, Kohrt WM, Wojta DM, Bourey RE, Holloszy JO (1993) Endurance exercise training reduces glucose-stimulated insulin levels in 60- to 70-year-old men and women. J Gerontol 48:M84–M90

    PubMed  CAS  Google Scholar 

  177. Ligibel JA et al (2008) Impact of a mixed strength and endurance exercise intervention on insulin levels in breast cancer survivors. J Clin Oncol 26:907–912

    PubMed  CAS  Google Scholar 

  178. Ivy JL (1997) Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports Med 24: 321–336

    PubMed  CAS  Google Scholar 

  179. Heath GW et al (1983) Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J Appl Physiol 55:512–517

    PubMed  CAS  Google Scholar 

  180. Goodyear LJ, Kahn BB (1998) Exercise, glucose transport and insulin sensitivity. Annu Rev Med 49:235–261

    PubMed  CAS  Google Scholar 

  181. Kahn SE et al (1990) Effect of exercise on insulin action, glucose tolerance, and insulin secretion in aging. Am J Physiol Endocrinol Metab 258: E937–E943

    CAS  Google Scholar 

  182. Hull RL et al (2005) Long-term treatment with rosiglitazone and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes 54:2235–2244

    PubMed  CAS  Google Scholar 

  183. Cuff DJ et al (2003) Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care 26:2977–2982

    PubMed  Google Scholar 

  184. Burcelin R, Dolci W, Thorens B (2000) Portal glucose infusion in the mouse induces hypoglycemia: evidence that the hepatoportal glucose sensor stimulates glucose utilization. Diabetes 49:1635–1642

    PubMed  CAS  Google Scholar 

  185. Ono T, Steffens AB, Sasaki K (1983) Influence of peripheral and intracerebroventricular glucose and insulin infusions on peripheral and cerebrospinal fluid glucose and insulin levels. Physiol Behav 30:301–306

    PubMed  CAS  Google Scholar 

  186. Karnani MM, Burdakov D (2010) Multiple hypothalamic circuits sense and regulate glucose levels. Am J Physiol Regul Integr Comp Physiol 300:R47–R55

    PubMed  Google Scholar 

  187. Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI (1997) Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest 99:361–365

    PubMed  CAS  Google Scholar 

  188. Borg MA, Tamborlane WV, Shulman GI, Sherwin RS (2003) Local lactate perfusion of the ventromedial hypothalamus suppresses hypoglycemic counterregulation. Diabetes 52:663–666

    PubMed  CAS  Google Scholar 

  189. Fabris SE, Thorburn A, Litchfield A, Proietto J (1996) Effect of parasympathetic denervation of liver and pancreas on glucose kinetics in man. Metab Clin Exp 45:987–991

    PubMed  CAS  Google Scholar 

  190. Perseghin G et al (1997) Regulation of glucose homeostasis in humans with denervated livers. J Clin Invest 100:931–941

    PubMed  CAS  Google Scholar 

  191. Rohner-Jeanrenaud F, Jeanrenaud B (1983) The central nervous system-endocrine pancreas axis. Ann Endocrinol (Paris) 44:217–227

    CAS  Google Scholar 

  192. Orland MJ, Chyn R, Permutt MA (1985) Modulation of proinsulin messenger RNA after partial pancreatectomy in rats. Relationships to glucose homeostasis. J Clin Invest 75:2047–2055

    PubMed  CAS  Google Scholar 

  193. Kahn SE (2001) The importance of β-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab 86:4047–4058

    PubMed  CAS  Google Scholar 

  194. Clark A, Jones L, de Koning E, Hansen BC, Matthews DR (2001) Decreased insulin secretion in type 2 diabetes: a problem of cellular mass or function? Diabetes 50:169S–171S

    Google Scholar 

  195. Deng S et al (2004) Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 53:624–632

    PubMed  CAS  Google Scholar 

  196. Ward WK, Bolgiano DC, McKnight B, Halter JB, Porte D (1984) Diminished Β cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest 74:1318–1328

    PubMed  CAS  Google Scholar 

  197. Bernard C et al (1998) Pancreatic β-cell regeneration after 48-h glucose infusion in mildly diabetic rats is not correlated with functional improvement. Diabetes 47:1058–1065

    PubMed  CAS  Google Scholar 

  198. Del Prato S, Tiengo A (2001) The importance of first-phase insulin secretion: implications for the therapy of type 2 diabetes mellitus. Diabetes Metab Res Rev 17:164–174

    PubMed  Google Scholar 

  199. Bruttomesso D et al (1999) Restoration of early rise in plasma insulin levels improves the glucose tolerance of type 2 diabetic patients. Diabetes 48:99–105

    PubMed  CAS  Google Scholar 

  200. Del Prato S, Marchetti P, Bonadonna RC (2002) Phasic insulin release and metabolic regulation in type 2 diabetes. Diabetes 51(Suppl 1):S109–S116

    PubMed  Google Scholar 

  201. Berthoud HR, Bereiter DA, Trimble ER, Siegel EG, Jeanrenaud B (1981) Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization. Diabetologia 20(Suppl):393–401

    PubMed  CAS  Google Scholar 

  202. Berthoud HR, Jeanrenaud B (1982) Sham feeding-induced cephalic phase insulin release in the rat. Am J Physiol Endocrinol Metab 242:E280–E285

    CAS  Google Scholar 

  203. Mattes RD, Engelman K, Mattern J, Teff KL (1993) Cephalic-phase insulin in obese and normal-weight men: relation to postprandial insulin. Metab Clin Exp 42:1600–1608

    PubMed  Google Scholar 

  204. Teff KL (2010) Cephalic phase pancreatic polypeptide responses to liquid and solid stimuli in humans. Physiol Behav 99:317–323

    PubMed  CAS  Google Scholar 

  205. Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 46:1954–1962

    PubMed  CAS  Google Scholar 

  206. Ahrén B, Winzell MS, Pacini G (2008) The augmenting effect on insulin secretion by oral versus intravenous glucose is exaggerated by high-fat diet in mice. J Endocrinol 197:181–187

    PubMed  Google Scholar 

  207. Calhoun P et al (1986) Evaluation of insulin secretion after pancreas autotransplantation by oral or intravenous glucose challenge. Ann Surg 204:585–593

    PubMed  CAS  Google Scholar 

  208. de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18:143–150

    PubMed  Google Scholar 

  209. Diaz B, Serna J, De Pablo F, de la Rosa EJ (2000) In vivo regulation of cell death by embryonic (pro)insulin and the insulin receptor during early retinal neurogenesis. Development 127:1641–1649

    PubMed  CAS  Google Scholar 

  210. Hernández-Sánchez C, Mansilla A, Rosa EJ, Pablo F (2006) Proinsulin in development: new roles for an ancient prohormone. Diabetologia 49:1142–1150

    PubMed  Google Scholar 

  211. Kern W et al (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280

    PubMed  CAS  Google Scholar 

  212. Nef S et al (2003) Testis determination requires insulin receptor family function in mice. Nature 426:291–295

    PubMed  CAS  Google Scholar 

  213. Park CR (2001) Cognitive effects of insulin in the central nervous system. Neurosci Biobehav Rev 25:311–323

    PubMed  CAS  Google Scholar 

  214. Bloomgarden ZT (2004) Diabetes complications. Diabetes Care 27:1506–1514

    PubMed  Google Scholar 

  215. Hussain MA, Theise ND (2004) Stem-cell therapy for diabetes mellitus. Lancet 364:203–205

    PubMed  Google Scholar 

  216. Ryan EA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069

    PubMed  CAS  Google Scholar 

  217. Bouwens L (2006) Beta cell regeneration. Curr Diabetes Rev 2:3–9

    PubMed  Google Scholar 

  218. Suarez-Pinzon WL, Lakey JRT, Brand SJ, Rabinovitch A (2005) Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β-cells from pancreatic duct cells and an increase in functional β-cell mass. J Clin Endocrinol Metab 90:3401–3409

    PubMed  CAS  Google Scholar 

  219. Tuch BE, Kannangara K (2008) [β] cell regeneration. Drug Discov Today Ther Strateg 5:215–221

    Google Scholar 

  220. Bonner-Weir S, Weir GC (2005) New sources of pancreatic β-cells. Nat Biotechnol 23:857–861

    PubMed  CAS  Google Scholar 

  221. Baeyens L et al (2005) In vitro generation of insulin-producing β cells from adult exocrine pancreatic cells. Diabetologia 48:49–57

    PubMed  CAS  Google Scholar 

  222. Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained β cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228

    PubMed  CAS  Google Scholar 

  223. Klein R, Klein BEK, Moss SE (1996) Relation of glycemic control to diabetic microvascular complications in diabetes mellitus. Ann Intern Med 124:90–96

    PubMed  CAS  Google Scholar 

  224. Klein R, Klein BE (1998) Relation of glycemic control to diabetic complications and health outcomes. Diabetes Care 21(Suppl 3):C39–C43

    PubMed  Google Scholar 

  225. Klein R, Klein BEK, Moss SE, Cruickshanks KJ (1994) Relationship of hyperglycemia to the long-term incidence and progression of diabetic retinopathy. Arch Intern Med 154:2169–2178

    PubMed  CAS  Google Scholar 

  226. Gaster B, Hirsch IB (1998) The effects of improved glycemic control on complications in type 2 diabetes. Arch Intern Med 158:134–140

    PubMed  CAS  Google Scholar 

  227. Skyler JS et al (2009) Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. Circulation 119: 351–357

    PubMed  Google Scholar 

  228. Lacherade J-C et al (2007) Failure to achieve glycemic control despite intensive insulin therapy in a medical ICU: incidence and influence on ICU mortality. Intensive Care Med 33:814–821

    PubMed  CAS  Google Scholar 

  229. Holman RR, Prospective UK (1988) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837–853

    Google Scholar 

  230. The ADVANCE (2008) Collaborative group intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572

    Google Scholar 

  231. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589

    PubMed  CAS  Google Scholar 

  232. Dluhy RG, McMahon GT (2008) Intensive glycemic control in the ACCORD and ADVANCE trials. N Engl J Med 358:2630–2633

    PubMed  CAS  Google Scholar 

  233. Cefalu WT, Watson K (2008) Intensive glycemic control and cardiovascular disease observations from the ACCORD study. Diabetes 57:1163–1165

    PubMed  CAS  Google Scholar 

  234. Duckworth W et al (2009) Glucose control and ­vascular complications in veterans with type 2 diabetes. N Engl J Med 360:129–139

    PubMed  CAS  Google Scholar 

  235. Turnbull FM et al (2009) Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 52:2288–2298

    PubMed  CAS  Google Scholar 

  236. Nissen SE (2010) The rise and fall of rosiglitazone. Eur Heart J 31:773–776

    PubMed  CAS  Google Scholar 

  237. Montori VM, Fernández-Balsells M (2009) Glycemic control in type 2 diabetes: time for an evidence-based about-face? Ann Intern Med 150:803–808

    PubMed  Google Scholar 

  238. Schrier RW, Estacio RO, Esler A, Mehler P (2002) Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int 61:1086–1097

    PubMed  Google Scholar 

  239. Brownlee M et al (2011) Complications of diabetes mellitus. In: Kronenberg HM, Melmed S, Polonsky KS, Reed Larsen P (eds) Williams textbook of endocrinology, 12th edn. Saunders/Elsevier, Philadelphia, PA

    Google Scholar 

  240. Vijan S, Hofer TP, Hayward RA (1997) Estimated benefits of glycemic control in microvascular complications in type 2 diabetes. Ann Intern Med 127:788–795

    PubMed  CAS  Google Scholar 

  241. Mather KJ, Verma S, Anderson TJ (2001) Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol 37:1344–1350

    PubMed  CAS  Google Scholar 

  242. Jager J et al (2005) Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial. J Intern Med 257:100–109

    PubMed  Google Scholar 

  243. Pistrosch F et al (2004) In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care 27:484–490

    PubMed  CAS  Google Scholar 

  244. Yamagishi T et al (2001) Troglitazone improves endothelial function and augments renal klotho mRNA expression in Otsuka Long-Evans Tokushima Fatty (OLETF) rats with multiple atherogenic risk factors. Hypertens Res 24:705–709

    PubMed  CAS  Google Scholar 

  245. Romeo JH, Seftel AD, Madhun ZT, Aron DC (2000) Sexual function in men with diabetes type 2: association with glycemic control. J Urol 163:788–791

    PubMed  CAS  Google Scholar 

  246. Yaman O, Akand M, Gursoy A, Erdogan MF, Anafarta K (2006) The effect of diabetes mellitus treatment and good glycemic control on the erectile function in Men with diabetes mellitus-induced erectile dysfunction: a pilot study. J Sex Med 3:344–348

    PubMed  Google Scholar 

  247. Ayala JE et al (2007) Chronic treatment with sildenafil improves energy balance and insulin action in high fat–fed conscious mice. Diabetes 56:1025–1033

    PubMed  CAS  Google Scholar 

  248. Tooke J, Hannemann M (2000) Adverse endothelial function and the insulin resistance syndrome. J Intern Med 247:425–431

    PubMed  CAS  Google Scholar 

  249. Tooke JE, Goh KL (1999) Vascular function in Type 2 diabetes mellitus and pre-diabetes: the case for intrinsic endotheliopathy. Diabet Med 16:710–715

    PubMed  CAS  Google Scholar 

  250. Tooke JE, Goh KL (1998) Endotheliopathy precedes type 2 diabetes. Diabetes Care 21:2047–2049

    PubMed  CAS  Google Scholar 

  251. Leeson CPM, Kattenhorn M, Morley R, Lucas A, Deanfield JE (2001) Impact of Low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 103:1264–1268

    PubMed  CAS  Google Scholar 

  252. Meigs JB, Hu FB, Rifai N, Manson JE (2004) Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. J Am Med Assoc 291: 1978–1986

    CAS  Google Scholar 

  253. Miller AW, Sims JJ, Canavan A, Hsu T, Ujhelyi MR (1999) Impaired vagal reflex activity in insulin-resistant rats. J Cardiovasc Pharmacol 33:698–702

    PubMed  CAS  Google Scholar 

  254. Carnethon MR, Jacobs DR, Sidney S, Liu K (2003) Influence of autonomic nervous system dysfunction on the development of type 2 diabetes. Diabetes Care 26:3035–3041

    PubMed  Google Scholar 

  255. Ribeiro RT, Afonso RA, Guarino MP, Macedo MP (2008) Loss of postprandial insulin sensitization during aging. J Gerontol A Biol Sci Med Sci 63: 560–565

    PubMed  Google Scholar 

  256. Ribeiro RT, Lautt WW, Legare DJ, Macedo MP (2005) Insulin resistance induced by sucrose feeding in rats is due to an impairment of the hepatic parasympathetic nerves. Diabetologia 48:976–983

    PubMed  CAS  Google Scholar 

  257. Lindmark S, Wiklund U, Bjerle P, Eriksson JW (2003) Does the autonomic nervous system play a role in the development of insulin resistance? A study on heart rate variability in first-degree relatives of Type 2 diabetes patients and control subjects. Diabet Med 20:399–405

    PubMed  CAS  Google Scholar 

  258. Xie H, Lautt WW (1996) Insulin resistance caused by hepatic cholinergic interruption and reversed by acetylcholine administration. Am J Physiol Endocrinol Metab 271:E587–E592

    CAS  Google Scholar 

  259. Xie H, Tsybenko VA, Johnson MV, Lautt WW (1993) Insulin resistance of glucose response produced by hepatic denervations. Can J Physiol Pharmacol 71:175–178

    PubMed  CAS  Google Scholar 

  260. Leahy JL, Cooper HE, Deal DA, Weir GC (1986) Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J Clin Invest 77:908–915

    PubMed  CAS  Google Scholar 

  261. Maedler K et al (2002) Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860

    PubMed  CAS  Google Scholar 

  262. Kahn SE, Bergman RN, Schwartz MW, Taborsky GJ, Porte D (1992) Short-term hyperglycemia and hyperinsulinemia improve insulin action but do not alter glucose action in normal humans. Am J Physiol Endocrinol Metab 262:E518–E523

    CAS  Google Scholar 

  263. Ward WK, Halter JB, Beard JC, Porte D (1984) Adaptation of B and A cell function during prolonged glucose infusion in human subjects. Am J Physiol Endocrinol Metab 246:E405–E411

    CAS  Google Scholar 

  264. Altavilla D et al (2001) Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse. Diabetes 50:667–674

    PubMed  CAS  Google Scholar 

  265. Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117:1219–1222

    PubMed  CAS  Google Scholar 

  266. Crawford TN, Alfaro DV III, Kerrison JB, Jablon EP (2009) Diabetic retinopathy and angiogenesis. Curr Diabetes Rev 5:8–13

    PubMed  CAS  Google Scholar 

  267. Yamamoto Y et al (2004) Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 53:1831–1840

    PubMed  CAS  Google Scholar 

  268. Zent R, Pozzi A (2007) Angiogenesis in diabetic nephropathy. Semin Nephrol 27:161–171

    PubMed  CAS  Google Scholar 

  269. Gill G (1991) Insulin dependent diabetes mellitus. In: Pickup J, Williams G (eds) Textbook of diabetes, vol 1. Blackwell Scientific, Oxford

    Google Scholar 

  270. Brown JB, Nichols GA, Perry A (2004) The burden of treatment failure in type 2 diabetes. Diabetes Care 27:1535

    PubMed  Google Scholar 

  271. Koro CE, Bowlin SJ, Bourgeois N, Fedder DO (2004) Glycemic control from 1988 to 2000 among U.S. adults diagnosed with type 2 diabetes. Diabetes Care 27:17–20

    PubMed  Google Scholar 

  272. Lehrer J (2010) The truth wears off: Is there something wrong with the scientific method? The New Yorker, December 13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watve, M. (2012). Diabetes in an Undergraduate Class. In: Doves, Diplomats, and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4409-1_3

Download citation

Publish with us

Policies and ethics