Skip to main content

Linear Embedding via Green’s Operators

  • Chapter
  • First Online:
Computational Electromagnetics

Abstract

Linear embedding via Green’s operators (LEGO) is a domain decomposition method specifically devised for the efficient solution of electromagnetic (EM) scattering and propagation problems that involve either “large” or “complex” structures or possibly both. LEGO is based on the conceptual separation of the local (near-field) interaction from the mutual (distant) ones between parts of a structure. Said separation is obtained by dividing the structure in pieces (dubbed “bricks”) which are described by means of scattering operators of equivalent surface currents. The multiple scattering occurring between the bricks is accounted for by transfer operators of equivalent surface currents. Thanks to this approach, intrinsically different EM problems can be formulated in terms of integral equations which invariably take the same form. The numerical solution is then carried out by combining the baseline Method of Moments and sub-domain div-conforming basis functions with two types of macro basis functions: (1) eigencurrents and (2) Arnoldi basis functions. The features of these macro basis functions are discussed in details with the aid of selected numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The statement is valid as long as we preclude the eventuality of elementary sources within an object (medium \(\bigcirc \!\!\!\!\!3\ \)), an occurrence we have not contemplated up to date, and, hence, have intentionally left out from the sample structure of Fig. 7.1.

References

  1. Addamo G (2008) Electromagnetic waves in loaded cylindrical structures: a radial transmission line approach. Ph.D. thesis, Technische Universiteit Eindhoven

    Google Scholar 

  2. Arnoldi WE (1951) The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q Appl Math 9:17–29

    MathSciNet  MATH  Google Scholar 

  3. Balanis CA (1997) Antenna theory: analysis and design, 2nd edn. Wiley, New York

    Google Scholar 

  4. Bau III D, Trefethen LN (1997) Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  5. Bekers DJ, van Eijndhoven SJL, Tijhuis AG (2009) An eigencurrent approach for the analysis of finite antenna arrays. IEEE Trans Antennas Propag 58(12):3772–3782

    Article  Google Scholar 

  6. Chew WC, Lu C (1993) The use of Huygens’ equivalence principle for solving the volume integral equation of scattering. IEEE Trans Antennas Propag 41(7):897–904

    Article  Google Scholar 

  7. Collin RE (1992) Foundations for microwave engineering. McGraw-Hill, New York

    Google Scholar 

  8. Duque D, Lancellotti V, de Hon BP, Tijhuis AG (2012) Scattering from truncated cylinders with a mixed 2-D/3-D domain decomposition scheme. In: 6th European conference on antennas and propagation (EuCAP ’12), Prague, pp 2660–2663. doi:10.1109/EuCAP.2012.6206196

    Google Scholar 

  9. Engheta N, Murphy WD, Rokhlin V, Vassiliou MS (1992) The fast multipole method (FMM) for electromagnetic problems. IEEE Trans Antennas Propag 40(7):634–641

    Article  MathSciNet  MATH  Google Scholar 

  10. Felsen LB, Marcuvitz N (2001) Radiation and scattering of waves. IEEE, Piscataway

    Google Scholar 

  11. Harrington RF (1961) Time-harmonic electromagnetic fields. McGraw-Hill, London

    Google Scholar 

  12. Harrington RF (1968) Field computation by moment methods. MacMillan, New York

    Google Scholar 

  13. Hu L, Li LW, Mittra R (2010) Electromagnetic scattering by finite periodic arrays using the characteristic basis function and adaptive integral methods. IEEE Trans Antennas Propag 58(9):3086–3090. doi:10.1109/TAP.2010.2052563

    Article  MathSciNet  Google Scholar 

  14. Lancellotti V, Tijhuis AG (2012) Convergence properties of a diakoptics method for electromagnetic scattering from 3-D complex structures. Prog Electromagn Res M 24:127–140. doi:10.2528/PIERM12030805

    Google Scholar 

  15. Lancellotti V, Tijhuis AG (2012) Solving wave propagation within finite-sized composite media with linear embedding via Green’s operators. Prog Electromagn Res M 25:127–140. doi:10.2528/PIERM12061404

    Google Scholar 

  16. Lancellotti V, Tijhuis AG (2012) A surface-integral-equation approach to the propagation of waves in ebg-based devices. In: 14th International conference on electromagnetics in advanced applications (ICEAA ’12), Cape Town. Invited paper

    Google Scholar 

  17. Lancellotti V, Milanesio D, Maggiora R, Vecchi G, Kyrytsya V (2006) Topica: an accurate and efficient numerical tool for analysis and design of ICRF antennas. Nucl Fusion 46(7):S476–S499

    Article  Google Scholar 

  18. Lancellotti V, de Hon BP, Tijhuis AG (2009) An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green’s operators. IEEE Trans Antennas Propag 57(11):3575–3585. doi:10.1109/TAP.2009.2027616

    Article  Google Scholar 

  19. Lancellotti V, de Hon BP, Tijhuis AG (2009) Electromagnetic modelling of large complex 3-D structures with LEGO and the eigencurrent expansion method. In: AP/URSI international symposium, Charleston

    Google Scholar 

  20. Lancellotti V, de Hon BP, Tijhuis AG (2009) A total inverse scattering operator formulation for solving large structures with LEGO. In: 11th international conference on electromagnetics in advanced applications (ICEAA ’09), Turin, pp 335–338. doi:10.1109/ICEAA.2009.5297424. Invited paper

    Google Scholar 

  21. Lancellotti V, de Hon BP, Tijhuis AG (2010) Analysis of antennas in the presence of large composite 3-D structures with linear embedding via Green’s operators LEGO and a modified EFIE. In: 4th European conference on antennas and propagation (EuCAP ’10), Barcelon. Invited paper

    Google Scholar 

  22. Lancellotti V, de Hon BP, Tijhuis AG (2010) Linear embedding via Green’s operators for 3-D scattering from piecewise homogeneous bodies. In: 12th international conference on electromagnetics in advanced applications (ICEAA ’10), Sydney, pp 349–352. doi:10.1109/ICEAA.2010.5651114. Invited paper

    Google Scholar 

  23. Lancellotti V, de Hon BP, Tijhuis AG (2010) On the convergence of the eigencurrent expansion method applied to linear embedding via Green’s operators LEGO. IEEE Trans Antennas Propag 58(10):3231–3238. doi:10.1109/TAP.2010.2055804

    Article  Google Scholar 

  24. Lancellotti V, de Hon BP, Tijhuis AG (2010) Scattering from large 3-D piecewise homogeneous bodies through linear embedding via Green’s operators and Arnoldi basis functions. Prog Electromagn Res 103:305–322

    Article  Google Scholar 

  25. Lancellotti V, de Hon BP, Tijhuis AG (2010) Sensitivity analysis of 3-D composite structures through linear embedding via Green’s operators. Prog Electromagn Res 100:309–325

    Article  Google Scholar 

  26. Lancellotti V, de Hon BP, Tijhuis AG (2011) A domain decomposition method for solving 3-D complex structures. In: 13th International conference on electromagnetics in advanced applications (ICEAA ’11), Turin, pp 195–198. doi:10.1109/ICEAA.2011.6046347. Invited paper

  27. Lancellotti V, de Hon BP, Tijhuis AG (2011) Linear embedding via Green’s operators and Arnoldi basis functions for analyzing complex structures. In: 5th European conference on antennas and propagation (EuCAP ’11), Rome, pp 3363–3367. Invited paper

    Google Scholar 

  28. Lancellotti V, de Hon BP, Tijhuis AG (2011) Scattering from a random distribution of numerous bodies with linear embedding via Green’s operators. In: IEEE International symposium on antennas and propagation (APSURSI), Spokane, Washington, pp 650–653. doi:10.1109/APS.2011.5996795

    Google Scholar 

  29. Lancellotti V, de Hon BP, Tijhuis AG (2011) Wave scattering from random sets of closely spaced objects through linear embedding via Green’s operators. Waves Random Complex Media 21(3):434–455

    Article  MathSciNet  Google Scholar 

  30. Lancellotti V, de Hon BP, Tijhuis AG (2012) A domain decomposition approach to the radiation from sources localized within complex structures. In: 6th European conference on antennas and propagation (EuCAP ’12), Prague, pp 269–273. doi:10.1109/EuCAP.2012.6205932. Invited paper

    Google Scholar 

  31. Lancellotti V, de Hon BP, Tijhuis AG (2012) Wave propagation in complex structures with LEGO. In: IEEE International symposium on antennas and propagation (APSURSI), Chicago

    Google Scholar 

  32. Laviada J, Las-Heras F, Pino MR, Mittra R (2009) Solution of electrically large problems with multilevel characteristic basis functions. IEEE Trans Antennas Propag 57(10):3189–3198

    Article  MathSciNet  Google Scholar 

  33. Li MK, Chew WC (2007) Wave-field interaction with complex structures using equivalence principle algorithm. IEEE Trans Antennas Propag 55(1):130–138. doi:10.1109/TAP.2006.888453

    Article  Google Scholar 

  34. Li MK, Chew WC (2008) Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme. IEEE Trans Antennas Propag 56(8):2389–2397. doi:10.1109/TAP.2008.926785

    Article  MathSciNet  Google Scholar 

  35. Lindell I (1996) Huygens’ principle in electromagnetics. IEE Proc Sci Meas Technol 143(2):103–105

    Article  MathSciNet  Google Scholar 

  36. Maaskant R, Mittra R, Tijhuis AG (2008) Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm. IEEE Trans Antennas Propag 56(11):3440–3451

    Article  Google Scholar 

  37. Matekovitz L, Laza VA, Vecchi G (2007) Analysis of large complex structures with the synthetic-functions approach. IEEE Trans Antennas Propag 55(9):2509–2521

    Article  Google Scholar 

  38. Peterson AF, Ray SL, Mittra R (1998) Computational methods for electromagnetics. IEEE, Piscataway

    Google Scholar 

  39. Poggio AJ, Miller EK (1973) Integral equation solutions of three dimensional scattering problems. In: Computer techniques for electromagnetics. Oxford, Pergamon

    Google Scholar 

  40. Pozar D (1998) Microwave engineering. Wiley, New York

    Google Scholar 

  41. Rao SM, Wilton DR, Glisson AW (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag 30(3):409–418

    Article  Google Scholar 

  42. Redheffer R (1962) On the relation of transmission-line theory to scattering and transfer. J Math Phys 41:1–41

    MathSciNet  MATH  Google Scholar 

  43. Rothwell EJ, Cloud MJ (2001) Electromagnetics. CRC, London

    Book  Google Scholar 

  44. Song JM, Lu CC, Chew WC (1997) MLFMA for electromagnetic scattering from large complex objects. IEEE Trans Antennas Propag 45:1488–1493

    Article  Google Scholar 

  45. van de Water AM (2007) LEGO: Linear Embedding via Green’s Operators. Ph.D. thesis, Technische Universiteit Eindhoven

    Google Scholar 

  46. van de Water AM, de Hon BP, van Beurden MC, Tijhuis AG, de Maagt P (2005) Linear embedding via Green’s operators: a modeling technique for finite electromagnetic band-gap structures. Phys Rev E 72(5):1–11

    Google Scholar 

  47. Xiao G, Mao JF, Yuan B (2009) A generalized surface integral equation formulation for analysis of complex electromagnetic systems. IEEE Trans Antennas Propag 57(3):701–710. doi:10.1109/TAP.2009.2013425

    Article  Google Scholar 

  48. Yeo J, Prakash VVS, Mittra R (2003) Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM). Microw Opt Technol Lett 39(6):456–464

    Article  Google Scholar 

  49. Ylä-Oijala P, Taskinen M (2005) Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Trans Antennas Propag 53(10):3316–3323

    Article  Google Scholar 

  50. Ylä-Oijala P, Taskinen M (2009) Electromagnetic scattering by large and complex structures with surface equivalence principle algorithm. Waves Random Complex Media 19(1):105–125

    Article  MATH  Google Scholar 

  51. Yuan HW, Gong SX, Guan Y, Su DY (2009) Scattering analysis of the large array antennas using the synthetic basis functions method. J Electromagn Waves Appl 23(2–3):309–320

    Article  Google Scholar 

  52. Yuan J, Gu C, Han G (2009) A hybrid equivalent dipole moment and adaptive modified characteristic basis function method for electromagnetic scattering by multilayered dielectric bodies. Int J RF Microw Comput Aided Eng 19(6):685–691. doi:10.1002/mmce.20392

    Article  Google Scholar 

  53. Zhang B, Xiao G, Mao J, Wang Y (2010) Analyzing large-scale non-periodic arrays with synthetic basis functions. IEEE Trans Antennas Propag 58(11):3576–3584. doi:10.1109/TAP.2010.2071331

    Google Scholar 

  54. Zhao K, Vouvakis M, Lee JF (2005) The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems. IEEE Trans Electromag Compat 47(4):763–773. doi:10.1109/TEMC.2005.857898

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Lancellotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lancellotti, V., Tijhuis, A.G. (2014). Linear Embedding via Green’s Operators. In: Mittra, R. (eds) Computational Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4382-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4382-7_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4381-0

  • Online ISBN: 978-1-4614-4382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics