Skip to main content

Abstract

Dual-specificity kinases (DSK; or Ser/Thr/Tyr kinases) phosphorylate their substrates on serine, threonine, and/or tyrosine residues. Dual-specificity kinases intervene in the regulation of cell growth, differentiation, and apoptosis. Dual-specificity kinases include, at least, members of the superfamily of mitogen-activated protein kinases as well as those of the family of glycogen synthase kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Protein Tau is a component of neurofibrillary tangles that is involved in Alzheimer’s disease. Six Tau isoforms exist in brain that differ by number of binding domains. Protein Tau interacts with tubulin to stabilize microtubules and promotes tubulin assembly into microtubules.

  2. 2.

    A.k.a. dimerization cofactor of hepatocyte nuclear factor HNF1α from muscle (DCoHM).

  3. 3.

    CDC-like kinase-1 is also called LAMMER, as it possesses a sequence of LAMMER motif.

  4. 4.

    Scottish: small. Kinase Wee1 was discovered in fission yeast Schizosaccharomyces pombe. Schizosaccharomyces pombe is a unicellular, rod-shaped organism used as a model organism in biology. Fission and budding yeasts (Saccharomyces cerevisiae) remains in phases G2 and G1 of the cell cycle for an extended period, respectively, as G2–M and G1–S transitions are tightly controlled, respectively.

  5. 5.

    Kinase PKMYT1 is also known as MYT1. However, the MYT1 alias is also used to designate myelin transcription factor-1 (MyT1 according to the rules defined in this book).

  6. 6.

    A.k.a. phosphatidyl ethanolamine-binding protein-2 (PEBP2).

References

  1. Ezkurdia I, Del Pozo A, Frankish A, Rodriguez JM, Harrow J, Ashman K, Valencia A, Tress ML (2012) Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Molecular Biology and Evolution(mbe.oxfordjournals.org/content/early/2012/03/22/molbev.mss100.abstract)

    Google Scholar 

  2. Chavent G (2010) Nonlinear Least Squares for Inverse Problems, Theoretical Foundations and Step-by-Step Guide for Applications. Springer, New York

    Book  Google Scholar 

  3. Bensoussan A (1971) Filtrage optimal des systèmes linéaires [Optimal filtering of linear systems] Dunod, Paris

    Google Scholar 

  4. Bertoglio C, Moireau P, Gerbeau JF (2012) Sequential parameter estimation for fluid-structure problems. Application to hemodynamics. International Journal for Numerical Methods in Biomedical Engineering 28:434–455

    Article  MathSciNet  Google Scholar 

  5. Lombardi D, Iollo A, Colin T, Saut O (2009) Inverse problems in tumor growth modelling (communication at CEMRACS summer school)

    Google Scholar 

  6. Lagaert JB (2011) Modélisation de la croissance tumorale [Tumor Growth Modeling], PhD thesis, Bordeaux University

    Google Scholar 

  7. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nature Reviews – Molecular Cell Biology 9:112–124

    Google Scholar 

  8. D’Arrigo P, Servi S (2010) Synthesis of lysophospholipids. Molecules 15:1354–1377

    Article  Google Scholar 

  9. Voet D, Voet JG (2011) Signal Transduction (Chap 19). Biochemistry (4th edition), Wiley, Hoboken, New Jersey

    Google Scholar 

  10. Berridge MJ (2009) Module 2: Cell Signalling Pathways. Cell Signalling Biology. Biochemical Journal’s Signal Knowledge Environment Portland Press Ltd., London, UK (www.biochemj.org/csb/002/csb002.pdf)

  11. Delon C, Manifava M, Wood E, Thompson D, Krugmann S, Pyne S, Ktistakis NT (2004) Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. Journal of Biological Chemistry 279:44763–44774

    Article  Google Scholar 

  12. Carricaburu V, Lamia KA, Lo E, Favereaux L, Payrastre B, Cantley LC, Rameh LE (2003) The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proceedings of the National Academy of Sciences of the United States of America 100:9867–9872

    Article  ADS  Google Scholar 

  13. Maag D, Maxwell MJ, Hardesty DA, Boucher KL, Choudhari N, Hanno AG, Ma JF, Snowman AS, Pietropaoli JW, Xu R, Storm PB, Saiardi A, Snyder SH, Resnick AC (2011) Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proceedings of the National Academy of Sciences of the United States of America 108: 1391–1396

    Article  ADS  Google Scholar 

  14. Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K (2006) Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature – Cell Biology 8:668–676

    Google Scholar 

  15. Alcázar-Román AR, Tran EJ, Guo S, Wente SR (2006) Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nature – Cell Biology 8: 711–716

    Google Scholar 

  16. Macbeth MR, Schubert HL, VanDemark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309:1534–1539

    Article  ADS  Google Scholar 

  17. Huang YH, Grasis JA, Miller AT, Xu R, Soonthornvacharin S, Andreotti AH, Tsoukas CD, Cooke MP, Sauer K (2007) Positive regulation of Itk PH domain function by soluble IP4. Science 316:886–889

    Article  ADS  Google Scholar 

  18. Shen X, Xiao H, Ranallo R, Wu WH, Wudagger C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114

    Article  ADS  Google Scholar 

  19. Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316:106–109

    Article  ADS  Google Scholar 

  20. Lee YS, Mulugu S, York JD, O’Shea EK (2007) Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 316:109–112

    Article  ADS  Google Scholar 

  21. Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306:2101–2105

    Article  ADS  Google Scholar 

  22. Chakraborty A, Koldobskiy MA, Sixt KM, Juluri KR, Mustafa AK, Snowman AM, van Rossum DB, Patterson RL, Snyder SH (2008) HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proceedings of the National Academy of Sciences of the United States of America 105:1134-1139

    Article  ADS  Google Scholar 

  23. Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Söderberg O, Bootman MD, Roderick HL (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proceedings of the National Academy of Sciences of the United States of America 105: 2427–2432

    Article  ADS  Google Scholar 

  24. Otto JC, Kelly P, Chiou ST, York JD (2007) Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases. Proceedings of the National Academy of Sciences of the United States of America 104:15653–15658

    Article  ADS  Google Scholar 

  25. Zhang C, Majerus PW, Wilson MP (2012) Regulation of inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) by reversible lysine acetylation. Proceedings of the National Academy of Sciences of the United States of America 109:2290–2295

    Article  ADS  Google Scholar 

  26. Ohnishi T, Ohba H, Seo KC, Im J, Sato Y, Iwayama Y, Furuichi T, Chung SK, Yoshikawa T (2007) Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1. Journal of Biological Chemistry 282: 637–646

    Article  Google Scholar 

  27. Berggard T, Szczepankiewicz O, Thulin E, Linse S (2002) Myo-inositol monophosphatase is an activated target of calbindin D28k. Journal of Biological Chemistry 277:41954–41959

    Article  Google Scholar 

  28. Irvine RF (2002) Nuclear lipid signaling. Science Signaling 150:re13

    Google Scholar 

  29. Schouten A, Agianian B, Westerman J, Kroon J, Wirtz KWA, Gros P (2002) Structure of apo-phosphatidylinositol transfer protein α provides insight into membrane association. EMBO Journal 21:2117–2121

    Article  Google Scholar 

  30. Woodcock EA, Kistler PM, Ju YK (2009) Phosphoinositide signalling and cardiac arrhythmias. Cardiovascular Research 82:286–295

    Article  Google Scholar 

  31. Jao CY, Roth M, Welti R, Salic A (2009) Metabolic labeling and direct imaging of choline phospholipids in vivo. Proceedings of the National Academy of Sciences of the United States of America 106:15332–15337

    Article  ADS  Google Scholar 

  32. Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS, Weissman JS (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463:1048–1053

    Article  ADS  Google Scholar 

  33. Pavoine C, Pecker F (2009) Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovascular Research 82:175–183

    Article  Google Scholar 

  34. Cogolludo A, Moreno L, Frazziano G, Moral-Sanz J, Menendez C, Castañeda J, González C, Villamor E, Perez-Vizcaino F (2009) Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovascular Research 82:296–302

    Article  Google Scholar 

  35. Karliner JS (2009) Sphingosine kinase regulation and cardioprotection. Cardiovascular Research 82:184–192

    Article  Google Scholar 

  36. Means CK, Brown JH (2009) Sphingosine-1-phosphate receptor signalling in the heart. Cardiovascular Research 82:193–200

    Article  Google Scholar 

  37. Gellings Lowe N, Swaney JS, Moreno KM, Sabbadini RA (2009) Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-beta-stimulated collagen production by cardiac fibroblasts. Cardiovascular Research 82:303–312

    Article  Google Scholar 

  38. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T (2007) Induction of vascular permeability by the sphingosine 1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arteriosclerosis, Thrombosis, and Vascular Biology 27:1312–1318

    Article  Google Scholar 

  39. Sattler K, Levkau B (2009) Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovascular Research 82:201–211

    Article  Google Scholar 

  40. Igarashi J, Michel T (2009) Sphingosine-1-phosphate and modulation of vascular tone. Cardiovascular Research 82:212-220

    Article  Google Scholar 

  41. Frias MA, James RW, Gerber-Wicht C, Lang U (2009) Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: Role of sphingosine-1-phosphate. Cardiovascular Research 82:313–323

    Article  Google Scholar 

  42. Ke Y, Lei M, Solaro RJ (2008) Regulation of cardiac excitation and contraction by p21 activated kinase-1. Progress in Biophysics and Molecular Biology 98:238–250

    Article  Google Scholar 

  43. Jenkins CM, Cedars A, Gross RW (2009) Eicosanoid signalling pathways in the heart. Cardiovascular Research 82:240–249

    Article  Google Scholar 

  44. Zhao J, O’Donnell VB, Balzar S, St Croix CM, Trudeau JB, Wenzel SE (2011) 15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells. Proceedings of the National Academy of Sciences of the United States of America 108:14246–14251

    Article  ADS  Google Scholar 

  45. Jacobs ER, Zeldin DC (2001) The lung HETEs (and EETs) up. American Journal of Physiology – Heart and Circulatory Physiology 280:H1–H10

    Google Scholar 

  46. Watanabe K (2011) Recent reports about enzymes related to the synthesis of prostaglandin (PG) F2 (PGF2α and 9α, 11β-PGF2). Journal of Biochemistry 150:593–596

    Article  Google Scholar 

  47. Yeaman SJ (2004) Hormone-sensitive lipase – new roles for an old enzyme. Biochemical Journal 379:11–22

    Article  Google Scholar 

  48. Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, Takase S, Takanashi M, Ohta K, Tamura Y, Okazaki S, Yahagi N, Ohashi K, Amemiya-Kudo M, Nakagawa Y, Nagai R, Kadowaki T, Osuga J, Ishibashi S (2008) Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. Journal of Biological Chemistry 283:33357–33364

    Article  Google Scholar 

  49. Jaye M, Lynch KJ, Krawiec J, Marchadier D, Maugeais C, Doan K, South V, Amin D, Perrone M, Rader DJ (1999) A novel endothelial-derived lipase that modulates HDL metabolism. Nature – Genetics 21:424–428

    Google Scholar 

  50. Strauss JG, Zimmermann R, Hrzenjak A, Zhou Y, Kratky D, Levak-Frank S, Kostner GM, Zechner R, Frank S (2002) Endothelial cell-derived lipase mediates uptake and binding of high-density lipoprotein (HDL) particles and the selective uptake of HDL-associated cholesterol esters independent of its enzymic activity. Biochemical Journal 368:69–79

    Article  Google Scholar 

  51. Kojima Y, Ishida T, Sun L, Yasuda T, Toh R, Rikitake Y, Fukuda A, Kume N, Koshiyama H, Taniguchi A, Hirata KI (2010) Pitavastatin decreases the expression of endothelial lipase both in vitro and in vivo. Cardiovascular Research 87:385–393

    Article  Google Scholar 

  52. Yano M, Matsumura T, Senokuchi T, Ishii N, Murata Y, Taketa K, Motoshima H, Taguchi T, Sonoda K, Kukidome D, Takuwa Y, Kawada T, Brownlee M, Nishikawa T, Araki E (2007) Statins activate peroxisome proliferator-activated receptor γthrough extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circulation Research 100:1442–1451

    Article  Google Scholar 

  53. Favari E, Zanotti I, Zimetti F, Ronda N, Bernini F, Rothblat GH (2004) Probucol inhibits ABCA1-mediated cellular lipid efflux. Arteriosclerosis, Thrombosis, and Vascular Biology 24:2345–2350

    Article  Google Scholar 

  54. Aoki J, Inoue A, Makide K, Saiki N, Arai H (2007) Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89:197–204

    Article  Google Scholar 

  55. Aoki J, Nagai Y, Hosono H, Inoue K, Arai H (2002) Structure and function of phosphatidylserine-specific phospholipase A1. Biochimica et Biophysica Acta 1582:26–32

    Article  Google Scholar 

  56. Wassum KM, Ostlund SB, Maidment NT, Balleine BW (2009) Distinct opioid circuits determine the palatability and the desirability of rewarding events. Proceedings of the National Academy of Sciences of the United States of America 106:12512–12517

    Article  ADS  Google Scholar 

  57. D’Agostino D, Lowe ME (2004) Pancreatic lipase-related protein 2 is the major colipase-dependent pancreatic lipase in suckling mice. Journal of Nutrition 134:132–134

    Google Scholar 

  58. Alexander SPH, Mathie A, Peters JA (2009) Guide to Receptors and Channels (GRAC), 4th edn., British Journal of Pharmacology 158:S1–S254 (www3.interscience.wiley.com/ journal/122684220/issue)

    Google Scholar 

  59. Burke JE, Dennis EA (2009) Phospholipase A2 structure/function, mechanism, and signaling. Journal of Lipid Research 50:S237–S242

    Article  Google Scholar 

  60. Schaloske RH, Dennis EA (2006) The phospholipase A2 superfamily and its group numbering system. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids 1761:1246–1259

    Google Scholar 

  61. Rosa AO, Rapoport SI (2009) Intracellular- and extracellular-derived Ca2 +  influence phospholipase A2-mediated fatty acid release from brain phospholipids. Biochimica et Biophysica Acta 1791:697–705

    Article  Google Scholar 

  62. Murakami M, Taketomi Y, Sato H, Yamamoto K (2011) Secreted phospholipase-A2 revisited. Journal of Biochemistry 150:233–255

    Article  Google Scholar 

  63. Lee JC, Simonyi A, Sun AY, Sun GY (2011) Phospholipases A2 and neural membrane dynamics: implications for Alzheimer’s disease. Journal of Neurochemistry 116:813–819

    Article  Google Scholar 

  64. Perrin-Cocon L, Agaugué S, Coutant F, Masurel A, Bezzine S, Lambeau G, André P, Lotteau V (2004) Secretory phospholipase A2 induces dendritic cell maturation. European Journal of Immunology 34:2293–2302

    Article  Google Scholar 

  65. Ancian P, Lambeau G, Mattéi MG, Lazdunski M (1995) The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. Journal of Biological Chemistry 270:8963–8970

    Article  Google Scholar 

  66. Triggiani M, Granata F, Oriente A, De Marino V, Gentile M, Calabrese C, Palumbo C, Marone G (2000) Secretory phospholipase A2 induce β-glucuronidase release and IL-6 production from human lung macrophages. Journal of Immunology 164:4908–4915

    Google Scholar 

  67. Tada K, Murakami M, Kambe T, Kudo I (1998) Induction of cyclooxygenase-2 by secretory phospholipases A2 in nerve growth factor-stimulated rat serosal mast cells is facilitated by interaction with fibroblasts and mediated by a mechanism independent of their enzymatic functions. Journal of Immunology 161:5008–5015

    Google Scholar 

  68. Ibeas E, Fuentes L, Martin R, Hernandez M, Nieto ML (2009) Secreted phospholipase A2 type IIA as a mediator connecting innate and adaptive immunity: new role in atherosclerosis. Cardiovascular Research 81(1):54-63

    Article  Google Scholar 

  69. Murakami M, Kudo I (2003) New phospholipase A2 isozymes with a potential role in atherosclerosis. Current Opinion in Lipidology 14:431–436

    Article  Google Scholar 

  70. Kuksis A, Pruzanski W (2008) Phase composition of lipoprotein SM/cholesterol/PtdCho affects FA specificity of sPLA2s. Journal of Lipid Research 49:2161–2168

    Article  Google Scholar 

  71. The HUGO Gene Nomenclature Committee (HGNC; www.genenames.org/genefamilies/ PNPLA) Phospholipases

  72. Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ (2006) Characterization of the human patatin-like phospholipase family. Journal of Lipid Research 47:1940–1949

    Article  Google Scholar 

  73. Kienesberger PC, Oberer M, Lass A, Zechner R (2009) Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. Journal of Lipid Research 50:S63–S68

    Article  Google Scholar 

  74. Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A (2010) Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Medicine 12:133–148

    Article  Google Scholar 

  75. Ohto T, Uozumi N, Hirabayashi T, Shimizu T (2005) Identification of novel cytosolic phospholipase A2s, murine cPLA2δ, ε, and ζ, which form a gene cluster with cPLA2β. Journal of Biological Chemistry 280:24576–24583

    Article  Google Scholar 

  76. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nature – Genetics 36:664 (Information Hyperlinked over Proteins www.ihop-net.org/)

  77. Alberghina M (2010) Phospholipase-A2: new lessons from endothelial cells. Microvascular Research 80:280–285

    Article  Google Scholar 

  78. Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S, Ryu SH (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Reports 41:415–434

    Article  Google Scholar 

  79. Waldo GL, Ricks TK, Hicks SN, Cheever ML, Kawano T, Tsuboi K, Wang X, Montell C, Kozasa T, Sondek J, Harden TK (2010) Kinetic scaffolding mediated by a phospholipase C-β and Gq signaling complex. Science 330:974–980

    Article  ADS  Google Scholar 

  80. Gutman O, Walliser C, Piechulek T, Gierschik P, Henis YI (2010) Differential regulation of phospholipase C-β2 activity and membrane interaction by Gαq, Gβ1γ2, and Rac2. Journal of Biological Chemistry 285:3905–3915

    Article  Google Scholar 

  81. Hunter I, Mascall KS, Ramos JW, Nixon GF (2011) A phospholipase Cγ1-activated pathway regulates transcription in human vascular smooth muscle cells. Cardiovascular Research 90:557–564

    Article  Google Scholar 

  82. von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C (2010) Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nature – Immunology 11:344–349

    Google Scholar 

  83. Kobayashi M, Lomasney JW (2010) Phospholipase C δ4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  84. Wing MR, Bourdon DM, Harden TK (2003) PLC-ε: a shared effector protein in Ras-, Rho-, and Gαβγ-mediated signaling. Molecular Interventions 3:273–280

    Article  Google Scholar 

  85. Hu L, Edamatsu H, Takenaka N, Ikuta S, Kataoka T (2010) Crucial role of phospholipase Cepsilon in induction of local skin inflammatory reactions in the elicitation stage of allergic contact hypersensitivity. Journal of Immunology 184:993–1002

    Article  Google Scholar 

  86. Stewart AJ, Morgan K, Farquharson C, Millar RP (2007) Phospholipase C-η enzymes as putative protein kinase C and Ca2 +  signalling components in neuronal and neuroendocrine tissues. Neuroendocrinology 86:243–248

    Article  Google Scholar 

  87. Nomikos M, Blayney LM, Larman MG, Campbell K, Rossbach A, Saunders CM, Swann K, Lai FA (2005) Role of phospholipase C-ζdomains in Ca2 + -dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and cytoplasmic Ca2 +  oscillations. Journal of Biological Chemistry 280:31011–31018

    Article  Google Scholar 

  88. Martinson EA, Scheible S, Greinacher A, Presek P (1995) Platelet phospholipase D is activated by protein kinase C via an integrin α2b β3-independent mechanism. Biochemical Journal 310:623–628

    Google Scholar 

  89. Gironcel D, Racaud-Sultan C, Payrastre B, Haricot M, Borchert G, Kieffer N, Breton M, Chap H (1996) α2b β3-integrin mediated adhesion of human platelets to a fibrinogen matrix triggers phospholipase C activation and phosphatidylinositol 3’,4’-biphosphate accumulation. FEBS Letters 389:253–256

    Article  Google Scholar 

  90. Elvers M, Stegner D, Hagedorn I, Kleinschnitz C, Braun A, Kuijpers ME, Boesl M, Chen Q, Heemskerk JW, Stoll G, Frohman MA, Nieswandt B (2010) Impaired α2b β3 integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Science Signaling 3:ra1

    Google Scholar 

  91. Mahankali M, Peng HJ, Henkels KM, Dinauer MC, Gomez-Cambronero J (2011) Phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for the GTPase Rac2. Proceedings of the National Academy of Sciences of the United States of America 108:19617–19622

    Article  ADS  Google Scholar 

  92. Medina-Tato DA, Ward SG, Watson ML (2007) Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond. Immunology 121:448–461

    Article  Google Scholar 

  93. Foster FM, Traer CJ, Abraham SM, Fry MJ (2003) The phosphoinositide (PI) 3-kinase family. Journal of Cell Science 116:3037–3040

    Article  Google Scholar 

  94. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilange B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nature Reviews – Molecular Cell Biology 11:329–341

    Google Scholar 

  95. Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J, Frangioni JV, Cantley LC (2008) Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America 105:9739–9744

    Article  ADS  Google Scholar 

  96. Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B (2010) Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proceedings of the National Academy of Sciences of the United States of America 107:11381–11386

    Article  ADS  Google Scholar 

  97. Kurig B, Shymanets A, Bohnacker T, Prajwal, Brock C, Ahmadian MR, Schaefer M, Gohla A, Harteneck C, Wymann MP, Jeanclos E, Nürnberg B (2009) Ras is an indispensable coregulator of the class IB phosphoinositide 3-kinase p87/p110γ. Proceedings of the National Academy of Sciences of the United States of America 106:20312–20317

    Article  ADS  Google Scholar 

  98. Shinohara M, Terada Y, Iwamatsu A, Shinohara A, Mochizuki N, Higuchi M, Gotoh Y, Ihara S, Nagata S, Itoh H, Fukui Y, Jessberger R (2002) SWAP-70 is a guanine-nucleotide-exchange factor that mediates signalling of membrane ruffling. Nature 416:759–763

    Article  ADS  Google Scholar 

  99. Ihara S, Oka T, Fukui Y (2006) Direct binding of SWAP-70 to non-muscle actin is required for membrane ruffling. Journal of Cell Science 119:500–507

    Article  Google Scholar 

  100. Donald S, Humby T, Fyfe I, Segonds-Pichon A, Walker SA, Andrews SR, Coadwell WJ, Emson P, Wilkinson LS, Welch HC (2008) P-Rex2 regulates Purkinje cell dendrite morphology and motor coordination. Proceedings of the National Academy of Sciences of the United States of America 105:4483–4488

    Article  ADS  Google Scholar 

  101. Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovascular Research 82:250–260

    Article  Google Scholar 

  102. Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, Sancho S, Smith AJ, Withers DJ, Vanhaesebroeck B (2006) Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366–370

    Article  ADS  Google Scholar 

  103. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125:647–649

    Article  Google Scholar 

  104. Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM, Zhao JJ (2008) Essential roles of PI(3)K-p110β in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    ADS  Google Scholar 

  105. Kumar A, Fernadez-Capetillo O, Carrera AC (2010) Nuclear phosphoinositide 3-kinase β controls double-strand break DNA repair. Proceedings of the National Academy of Sciences of the United States of America 107:7491–7496

    Article  ADS  Google Scholar 

  106. Hawkins PT, Stephens LR (2007) PI3Kγ is a key regulator of inflammatory responses and cardiovascular homeostasis. Science 318:64–66

    Article  ADS  Google Scholar 

  107. Park SJ, Lee KS, Kim SR, Min KH, Moon H, Lee MH, Chung CR, Han HJ, Puri KD, Lee YC (2010) Phosphoinositide 3-kinase δ inhibitor suppresses IL-17 expression in a murine asthma model. European Respiratory Journal (doi:10.1183/09031936.00106609)

    Google Scholar 

  108. Marwick JA, Caramori G, Casolari P, Mazzoni F, Kirkham PA, Adcock IM, Chung KF, Papi A (2010) A role for phosphoinositol 3-kinase δ in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology 125:1146–1153

    Article  Google Scholar 

  109. Beltran L, Chaussade C, Vanhaesebroeck B, Cutillas PR (2011) Calpain interacts with class IA phosphoinositide 3-kinases regulating their stability and signaling activity. Proceedings of the National Academy of Sciences of the United States of America 108:16217–16222

    Article  ADS  Google Scholar 

  110. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM, Williams RL (2010) Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638–1642

    Article  ADS  Google Scholar 

  111. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature – Cell Biology 11:385–396

    Google Scholar 

  112. Yan Y, Flinn RJ, Wu H, Schnur RS, Backer JM (2009) hVps15, but not Ca2 + /CaM, is required for the activity and regulation of hVps34 in mammalian cells. Biochemical Journal 417: 747–755

    Article  Google Scholar 

  113. Okada M, Jang SW, Ye K (2008) Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proceedings of the National Academy of Sciences of the United States of America 105:8649–8654

    Article  ADS  Google Scholar 

  114. Platanias LC (2005) Mechanisms of type-I and type-II-interferon-mediated signalling. Nature Reviews – Immunology 5:375–386

    Google Scholar 

  115. Higuchi M, Onishi K, Kikuchi C, Gotoh Y (2008) Scaffolding function of PAK in the PDK1–Akt pathway. Nature – Cell Biology 10:1356–1364

    Google Scholar 

  116. Park SW, Zhou Y, Lee J, Lu A, Sun C, Chung J, Ueki K, Ozcan U (2010) The regulatory subunits of PI3K, p85α and p85β, interact with XBP-1 and increase its nuclear translocation. Nature – Medicine 16:429–437

    Google Scholar 

  117. Morello F, Perino A, Hirsch E (2009) Phosphoinositide 3-kinase signalling in the vascular system. Cardiovascular Research 82:261–271

    Article  Google Scholar 

  118. Blero D, Payrastre B, Schurmans S, Erneux C (2007) Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Archiv – European Journal of Physiology 455: 31–44

    Google Scholar 

  119. Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE, Goldowitz D, Meisler MH, Weisman LS (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO Journal 27:3221–3234

    Article  Google Scholar 

  120. Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends in Cell Biology 16:351–361

    Article  Google Scholar 

  121. Hsuan J, Waugh MG, Minogue S (2008) Phosphatidylinositol 4-kinase type 2α. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  122. Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME (1997) A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. Journal of Biological Chemistry 272:2595–2598

    Article  Google Scholar 

  123. Nishikawa K, Toker A, Wong K, Marignani PA, Johannes FJ, Cantley LC (1998) Association of protein kinase Cμ with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase. Journal of Biological Chemistry 273: 23126–23133

    Article  Google Scholar 

  124. Kauffmann-Zeh A, Thomas GM, Ball A, Prosser S, Cunningham E, Cockcroft S, Hsuan JJ (1995) Requirement for phosphatidylinositol transfer protein in epidermal growth factor signaling. Science 268:1188–1190

    Article  ADS  Google Scholar 

  125. Minogue S, Hsuan J (2008) Phosphatidylinositol 4-kinase type IIβ. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  126. Kakuk A, Friedländer E, Vereb G Jr, Kása A, Balla A, Balla T, Heilmeyer LM Jr, Gergely P, Vereb G (2006) Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytometry A 69:1174–1183

    Google Scholar 

  127. Balla A, Tuymetova G, Tsiomenko A, Várnai P, Balla T (2005) A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-IIIα: studies with the PH domains of the oxysterol binding protein and FAPP1. Molecular Biology of the Cell 16:1282–1295

    Article  Google Scholar 

  128. Balla A, Kim YJ, Varnai P, Szentpetery Z, Knight Z, Shokat KM, Balla T (2008) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIα. Molecular Biology of the Cell 19:711–721

    Article  Google Scholar 

  129. Trotard M, Lepère-Douard C, Régeard M, Piquet-Pellorce C, Lavillette D, Cosset FL, Gripon P, Le Seyec J (2009) Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening. FASEB Journal

    Google Scholar 

  130. Guerriero CJ, Weixel KM, Bruns JR, Weisz OA (2006) Phosphatidylinositol 5-kinase stimulates apical biosynthetic delivery via an Arp2/3-dependent mechanism. Journal of Biological Chemistry 281:15376–15384

    Article  Google Scholar 

  131. Clarke JH, Emson PC, Irvine RF (2008) Localization of phosphatidylinositol phosphate kinase IIγin kidney to a membrane trafficking compartment within specialized cells of the nephron. American Journal of Physiology – Renal Physiology 295:F1422–F1430

    Google Scholar 

  132. Loijens JC, Anderson RA (2006) Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. Journal of Biological Chemistry 271: 32937–32943

    Google Scholar 

  133. Chao WT, Daquinag AC, Ashcroft F, Kunz J (2010) Type I PIPK-α regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation. Journal of Cell Biology 190:247–262

    Article  Google Scholar 

  134. Nakano-Kobayashi A, Yamazaki M, Unoki T, Hongu T, Murata C, Taguchi R, Katada T, Frohman MA, Yokozeki T, Kanaho Y (2007) Role of activation of PIP5Kγ661 by AP-2 complex in synaptic vesicle endocytosis. EMBO Journal 26:1105–1116

    Article  Google Scholar 

  135. Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN (2009) A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proceedings of the National Academy of Sciences of the United States of America 106:480–485

    Article  ADS  Google Scholar 

  136. Yu J, Zhang SS, Saito K, Williams S, Arimura Y, Ma Y, Ke Y, Baron V, Mercola D, Feng GS, Adamson E, Mustelin T (2009) PTEN regulation by Akt–EGR1–ARF–PTEN axis. EMBO Journal 28:21–33

    Article  Google Scholar 

  137. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network. Nature 455:813–817

    Article  ADS  Google Scholar 

  138. Sigal YJ, McDermott MI, Morris AJ (2005) Integral membrane lipid phosphatases/ phosphotransferases: common structure and diverse functions.

    Google Scholar 

  139. Begley MJ, Dixon JE (2005) The structure and regulation of myotubularin phosphatases. Current Opinion in Structural Biology 15:614–620

    Article  Google Scholar 

  140. Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, Chida S, Tsuya Y, Takasuga S, Eguchi S, Asanuma K, Horie Y, Miura K, Davies EM, Mitchell C, Yamazaki M, Hirai H, Takenawa T, Suzuki A, Sasaki T (2010) The PtdIns(3,4)P2 phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Natur 465:497–501

    Article  ADS  Google Scholar 

  141. Munday AD, Norris FA, Caldwell KK, Brown S, Majerus PW, Mitchell CA (1999) The inositol polyphosphate 4-phosphatase forms a complex with phosphatidylinositol 3-kinase in human platelet cytosol. Proceedings of the National Academy of Sciences of the United States of America 96:3640–3645

    Article  ADS  Google Scholar 

  142. Minagawa T, Ijuin T, Mochizuki Y, Takenawa T (2001) Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. Journal of Biological Chemistry 276:22011–22015

    Article  Google Scholar 

  143. Symons MH, Chuang Y (2011) Synaptojanin 2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  144. Nemoto Y, De Camilli P (1999) Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO Journal 18:2991–3006

    Article  Google Scholar 

  145. Liu Y, Boukhelifa M, Tribble E, Morin-Kensicki E, Uetrecht A, Bear JE, Bankaitis VA (2008) The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals. Molecular Biology of the Cell 19:3080–3096

    Article  Google Scholar 

  146. Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE, Goldowitz D, Meisler MH, Weisman LS (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO Journal 27:3221–3234

    Article  Google Scholar 

  147. Rudge SA, Anderson DM, Emr SD (2004) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Molecular Biology of the Cell 15:24–36

    Article  Google Scholar 

  148. Harris SJ, Parry RV, Westwick J, Ward SG (2008) Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes. Journal of Biological Chemistry 283:2465–2469

    Article  Google Scholar 

  149. Halaszovich CR, Schreiber DN, Oliver D (2009) Ci-VSP is a depolarization-activated phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate 5’-phosphatase. Journal of Biological Chemistry 284:2106–2113

    Article  Google Scholar 

  150. Brindley DN (2004) Lipid phosphate phosphatases and related proteins: Signaling functions in development, cell division, and cancer. Journal of Cellular Biochemistry 92:900–912

    Article  Google Scholar 

  151. Nakanaga K, Hama K, Aoki J (2010) Autotaxin: an LPA producing enzyme with diverse functions. Journal of Biochemistry 148:13–24

    Article  Google Scholar 

  152. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochimica et Biophysica Acta 1638:1–19

    Article  Google Scholar 

  153. Ubersax JA, Ferrell JE (2007) Mechanisms of specificity in protein phosphorylation. Nature Reviews – Molecular Cell Biology 8:530–541

    Google Scholar 

  154. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934 (www.kinase.com/human/kinome)

    Google Scholar 

  155. Manning BD, Cantley LC (2002) Hitting the target: emerging technologies in the search for kinase substrates. Science STKE 2002:pe49

    Google Scholar 

  156. Phylogenetic tree of the human kinome in Signal Transduction Knowledge Environment (www.stke.org and stke.sciencemag.org)

  157. Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L, Okamoto M (2004) Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Molecular and Cellular Endocrinology 217:109–112

    Article  Google Scholar 

  158. LaRonde-LeBlanc N, Wlodawer A (2005) The RIO kinases: An atypical protein kinase family required for ribosome biogenesis and cell cycle progression. Biochimica et Biophysica Acta – Proteins and Proteomics 1754:14–24

    Google Scholar 

  159. Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rötig A (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. American Journal of Human Genetics 82:623–630

    Article  Google Scholar 

  160. Macinga DR, Cook GM, Poole RK, Rather PN (1998) Identification and characterization of aarF, a locus required for production of ubiquinone in Providencia stuartii and Escherichia coli and for expression of 2-N-acetyltransferase in P. stuartii. Journal of Bacteriology 180: 128–135

    Google Scholar 

  161. Sargent CA, Anderson MJ, Hsieh SL, Kendall E, Gomez-Escobar N, Campbell RD (1994) Characterisation of the novel gene G11 lying adjacent to the complement C4A gene in the human major histocompatibility complex. Human Molecular Genetics 3:481–488

    Article  Google Scholar 

  162. Fraser RA, Heard DJ, Adam S, Lavigne AC, Le Douarin B, Tora L, Losson R, Rochette-Egly C, Chambon P (1998) The putative cofactor TIF1α is a protein kinase that is hyperphosphorylated upon interaction with liganded nuclear receptors. Journal of Biological Chemistry 273:16199–16204

    Article  Google Scholar 

  163. Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, Qin J, Bergmann A, Johnson RL, Barton MC (2009) Trim24 targets endogenous p53 for degradation. Proceedings of the National Academy of Sciences of the United States of America 106:11612–11616

    Article  ADS  Google Scholar 

  164. Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, Piccolo S (2005) Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121:87–99

    Article  Google Scholar 

  165. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136:123–135

    Article  Google Scholar 

  166. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massagué J (2006) Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell 125:929–941

    Article  Google Scholar 

  167. Forrest AR, Taylor DF, Crowe ML, Chalk AM, Waddell NJ, Kolle G, Faulkner GJ, Kodzius R, Katayama S, Wells C, Kai C, Kawai J, Carninci P, Hayashizaki Y, Grimmond SM (2006) Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases. Genome Biology 7:R5

    Article  Google Scholar 

  168. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (2006) Emerging roles of pseudokinases. Trends in Cell Biology 16:443–452

    Article  Google Scholar 

  169. Lange A, Wickström SA, Jakobson M, Zent R, Sainio K, Fässler R (2009) Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461:1002–1006

    Article  ADS  Google Scholar 

  170. Dougherty MK, Ritt DA, Zhou M, Specht SI, Monson DM, Veenstra TD, Morrison DK (2009) KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals. Molecular Cell 34:652–662

    Article  Google Scholar 

  171. Rajakulendran T, Sicheri F (2010) Allosteric protein kinase regulation by pseudokinases: insights from STRAD. Science Signaling 3:pe8

    Google Scholar 

  172. Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA, Alessi DR, Clevers HC (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO Journal 22:3062–3072

    Article  Google Scholar 

  173. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of Biology 2:28

    Article  Google Scholar 

  174. Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO Journal 23:833–843

    Article  Google Scholar 

  175. Kiss-Toth E, Bagstaff SM, Sung HY, Jozsa V, Dempsey C, Caunt JC, Oxley KM, Wyllie DH, Polgar T, Harte M, O’Neill LA, Qwarnstrom EE, Dower SK (2004) Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. Journal of Biological Chemistry 279:42703–42708

    Article  Google Scholar 

  176. Kiss-Toth E (2007) Trb1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  177. Hegedus Z, Czibula A, Kiss-Toth E (2006) Tribbles: novel regulators of cell function; evolutionary aspects. Cellular and Molecular Life Sciences 63:1632–1641

    Article  Google Scholar 

  178. Sung HY, Guan H, Czibula A, King AR, Eder K, Heath E, Suvarna SK, Dower SK, Wilson AG, Francis SE, Crossman DC, Kiss-Toth E (2007) Human tribbles-1 controls proliferation and chemotaxis of smooth muscle cells via MAPK signaling pathways. Journal of Biological Chemistry 282:18379–18387

    Article  Google Scholar 

  179. Kiss-Toth E, Docherty LM (2007) Trb2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  180. Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S (2008) Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134:793–803

    Article  Google Scholar 

  181. Pendergast AM, Zipfel P (2006) Abl; Arg. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  182. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652–665

    Article  Google Scholar 

  183. Wang B, Golemis EA, Kruh GD (1997) ArgBP2, a multiple Src homology 3 domain-containing, Arg/Abl-interacting protein, is phosphorylated in v-Abl-transformed cells and localized in stress fibers and cardiocyte Z-disks. Journal of Biological Chemistry 272: 17542–17550

    Article  Google Scholar 

  184. Galisteo ML, Yang Y, Ureña J, Schlessinger J (2006) Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proceedings of the National Academy of Sciences of the United States of America 103:9796–9801

    Article  ADS  Google Scholar 

  185. Satoh T (2005) Ack1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  186. Crompton MR (2005) Brk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  187. Qiu H, Zappacosta F, Su W, Annan RS, Miller WT (2005) Interaction between Brk kinase and insulin receptor substrate-4. Oncogene 24:5656–5664

    Article  Google Scholar 

  188. Vang T, Methi T, Veillette A, Mustelin T, Tasken K (2006) Csk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  189. Zhao M, Janas JA, Niki M, Pandolfi PP, Van Aelst L (2006) Dok-1 independently attenuates Ras/mitogen-activated protein kinase and Src/c-myc pathways to inhibit platelet-derived growth factor-induced mitogenesis. Molecular and Cellular Biology 26:2479–2489

    Article  Google Scholar 

  190. Lemay S, Davidson D, Latour S, Veillette A (2000) Dok-3, a novel adapter molecule involved in the negative regulation of immunoreceptor signaling. Molecular and Cellular Biology 20:2743–2754

    Article  Google Scholar 

  191. Frame MC, Patel H, Serrels B, Lietha D, Eck MJ (2010) The FERM domain: organizing the structure and function of FAK. Nature Reviews – Molecular Cell Biology 11:802–814

    Google Scholar 

  192. Cooper J, Li W, You L, Schiavon G, Pepe-Caprio A, Zhou L, Ishii R, Giovannini M, Hanemann CO, Long SB, Erdjument-Bromage H, Zhou P, Tempst P, Giancotti FG (2011) Merlin/NF2 functions upstream of the nuclear E3 ubiquitin ligase CRL4DCAF1 to suppress oncogenic gene expression. Science Signaling 4:pt6

    Google Scholar 

  193. Koshman YE, Engman SJ, Kim T, Iyengar R, Henderson KK, Samarel AM (2010) Role of FRNK tyrosine phosphorylation in vascular smooth muscle spreading and migration. Cardiovascular Research 85:571–581

    Article  Google Scholar 

  194. Hauck CR, Hsia DA, Schlaepfer DD (2002) The focal adhesion kinase – a regulator of cell migration and invasion. IUBMB Life 53:115–119

    Article  Google Scholar 

  195. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nature Reviews – Molecular Cell Biology 6:56–68

    Google Scholar 

  196. Dalla Costa AP, Clemente CF, Carvalho HF, Carvalheira JB, Nadruz W Jr, Franchini KG (2010) FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovascular Research 86:421–431

    Article  Google Scholar 

  197. Seko Y, Takahashi N, Sabe H, Tobe K, Kadowaki T, Nagai R (1999) Hypoxia induces activation and subcellular translocation of focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes. Biochemical and Biophysical Research Communications 262:290–296

    Article  Google Scholar 

  198. Pawson T, Letwin K, Lee T, Hao QL, Heisterkamp N, Groffen J (1989) The FER gene is evolutionarily conserved and encodes a widely expressed member of the FPS/FES protein-tyrosine kinase family. Molecular and Cellular Biology 9:5722–5725

    Google Scholar 

  199. Greer P (2002) Closing in on the biological functions of Fps/Fes and Fer. Nature Reviews – Molecular Cell Biology 3:278–289

    Google Scholar 

  200. Itoh T, Hasegawa J, Tsujita K, Kanaho Y, Takenawa T (2009) The tyrosine kinase Fer is a downstream target of the PLD-PA pathway that regulates cell migration. Science Signaling 2:ra52

    Google Scholar 

  201. Kapus A, Di Ciano C, Sun J, Zhan X, Kim L, Wong TW, Rotstein OD (2000) Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell-cell contact sites. The role of Fyn and FER kinases. Journal of Biological Chemistry 275:32289–32298

    Google Scholar 

  202. Schwartz Y, Ben-Dor I, Navon A, Motro B, Nir U (1998) Tyrosine phosphorylation of the TATA element modulatory factor by the FER nuclear tyrosine kinases. FEBS Letters 434: 339–345

    Article  Google Scholar 

  203. Craven RJ, Cance WG, Liu ET (1995) The nuclear tyrosine kinase Rak associates with the retinoblastoma protein pRb. Cancer Research 55:3969–3972

    Google Scholar 

  204. Annerén C, Lindholm CK, Kriz V, Welsh M (2003) The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation. Current Molecular Medicine 3:313–324

    Article  Google Scholar 

  205. Serfas MS, Tyner AL (2003) Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases. Oncology Research 13:409–419

    Google Scholar 

  206. Yim EK, Peng G, Dai H, Hu R, Li K, Lu Y, Mills GB, Meric-Bernstam F, Hennessy BT, Craven RJ, Lin SY (2009) Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell 15:304–314

    Article  Google Scholar 

  207. Leonard WJ (2001) Cytokines and immunodeficiency diseases. Nature Reviews – Immunology 1:200–208

    Google Scholar 

  208. Kurdi M, Booz GW (2009) JAK redux: a second look at the regulation and role of JAKs in the heart. American Journal of Physiology – Heart and Circulatory Physiology 297: H1545–H1556

    Google Scholar 

  209. Yang J, Stark GR (2008) Roles of unphosphorylated STATs in signaling. Cell Research 18:443–451

    Article  Google Scholar 

  210. Kile BT, Nicola NA, Alexander WS (2001) Negative regulators of cytokine signaling. International Journal of Hematology 73:292–298

    Article  Google Scholar 

  211. Nicholson SE, Willson TA, Farley A, Starr R, Zhang JG, Baca M, Alexander WS, Metcalf D, Hilton DJ, Nicola NA (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO Journal 18:375–385

    Article  Google Scholar 

  212. Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M, Yoshida H, Kubo M, Yoshimura A (2002) SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17:583–591

    Article  Google Scholar 

  213. Gingras S, Parganas E, de Pauw A, Ihle JN, Murray PJ (2004) Re-examination of the role of suppressor of cytokine signaling 1 (SOCS1) in the regulation of toll-like receptor signaling. Journal of Biological Chemistry 79:54702–54707

    Article  Google Scholar 

  214. Cohney SJ, Sanden D, Cacalano NA, Yoshimura A, Mui A, Migone TS, Johnston JA (1999) SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Molecular and Cellular Biology 19: 4980–4988

    Google Scholar 

  215. Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Förster I, Clausen BE, Nicola NA, Metcalf D, Hilton DJ, Roberts AW, Alexander WS (2003) SOCS3 negatively regulates IL-6 signaling in vivo. Nature – Immunology 4:540–545

    Google Scholar 

  216. Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Molecular and Cellular Biology 24:5434–5446

    Article  Google Scholar 

  217. Mooney RA, Senn J, Cameron S, Inamdar N, Boivin LM, Shang Y, Furlanetto RW (2001) Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance. Journal of Biological Chemistry 276:25889–25893

    Google Scholar 

  218. Cheng HC, Chong YP, Ia KK, Tan O, Mulhern TD (2006) Csk homologous kinase. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  219. Jhun BH, Rivnay B, Price D, Avraham H (1995) The MATK tyrosine kinase interacts in a specific and SH2-dependent manner with c-Kit. Journal of Biological Chemistry 270: 9661–9666

    Article  Google Scholar 

  220. Yamashita H, Avraham S, Jiang S, Dikic I, Avraham H (1999) The Csk homologous kinase associates with TrkA receptors and is involved in neurite outgrowth of PC12 cells. Journal of Biological Chemistry 274:15059–15065

    Article  Google Scholar 

  221. Kohmura N, Yagi T, Tomooka Y, Oyanagi M, Kominami R, Takeda N, Chiba J, Ikawa Y, Aizawa S (1994) A novel nonreceptor tyrosine kinase, Srm: cloning and targeted disruption. Molecular and Cellular Biology 14:6915–6925

    Google Scholar 

  222. Mano H, Yamashita Y, Miyazato A, Miura Y, Ozawa K (1996) Tec protein-tyrosine kinase is an effector molecule of Lyn protein-tyrosine kinase. FASEB Journal 10:637-642.

    Google Scholar 

  223. Sandilands E, Cans C, Fincham VJ, Brunton VG, Mellor H, Prendergast GC, Norman JC, Superti-Furga G, Frame MC (2004) RhoB and actin polymerization coordinate Src activation with endosome-mediated delivery to the membrane. Developmental Cell 7:855–869

    Article  Google Scholar 

  224. Knock GA, Snetkov VA, Shaifta Y, Drndarski S, Ward JPT, Aaronson PI (2008) Role of src-family kinases in hypoxic vasoconstriction of rat pulmonary artery. Cardiovascular Research 80:453–462

    Article  Google Scholar 

  225. Seko Y, Tobe K, Takahashi N, Kaburagi Y, Kadowaki T, Yazaki Y (1996) Hypoxia and hypoxia/reoxygenation activate Src family tyrosine kinases and p21ras in cultured rat cardiac myocytes. Biochemical and Biophysical Research Communications 226:530–535

    Article  Google Scholar 

  226. Yin H, Chao L, Chao J (2005) Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways. Journal of Biological Chemistry 280:8022–8030

    Article  Google Scholar 

  227. Sato H, Sato M, Kanai H, Uchiyama T, Iso T, Ohyama Y, Sakamoto H, Tamura J, Nagai R, Kurabayashi M (2005) Mitochondrial reactive oxygen species and c-Src play a critical role in hypoxic response in vascular smooth muscle cells. Cardiovascular Research 67:714–722

    Article  Google Scholar 

  228. Pleiman CM, Clark MR, Gauen LK, Winitz S, Coggeshall KM, Johnson GL, Shaw AS, Cambier JC (1993) Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, and p56lyn which interact with the effector molecules phospholipase C-γ2, microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase. Molecular and Cellular Biology 13:5877–5887

    Google Scholar 

  229. Hegde R, Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Blk, a BH3-containing mouse protein that interacts with Bcl-2 and Bcl-xL, is a potent death agonist. Journal of Biological Chemistry 273:7783–7786

    Article  Google Scholar 

  230. Dymecki SM, Niederhuber JE, Desiderio SV (1990) Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Science 247:332–336

    Article  ADS  Google Scholar 

  231. Lin YH, Shin EJ, Campbell MJ, Niederhuber JE (1995) Transcription of the blk gene in human B lymphocytes is controlled by two promoters. Journal of Biological Chemistry 270:25968–25975

    Article  Google Scholar 

  232. Bagheri-Yarmand R, Mandal M, Taludker AH, Wang RA, Vadlamudi RK, Kung HJ, Kumar R (2001) Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. Journal of Biological Chemistry 276:29403–29409

    Article  Google Scholar 

  233. Mitchell-Jordan SA, Holopainen T, Ren S, Wang S, Warburton S, Zhang MJ, Alitalo K, Wang Y, Vondriska TM (2008) Loss of Bmx nonreceptor tyrosine kinase prevents pressure overload-induced cardiac hypertrophy. Circulation Research 103:1359–1362

    Article  Google Scholar 

  234. Pan S, An P, Zhang R, He X, Yin G, Min W (2002) Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Molecular and Cellular Biology 22:7512–7523

    Article  Google Scholar 

  235. Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M, Malli R, Graier WF (2008) Integrin clustering enables anandamide-induced Ca2 +  signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. Journal of Cell Science 121:1704–1717

    Article  Google Scholar 

  236. Semaan N, Alsaleh G, Gottenberg JE, Wachsmann D, Sibilia J (2008) Etk/BMX, a Btk family tyrosine kinase, and Mal contribute to the cross-talk between MyD88 and FAK pathways. Journal of Immunology 180:3485–3491

    Google Scholar 

  237. Palmer CD, Mutch BE, Workman S, McDaid JP, Horwood NJ, Foxwell BM (2008) Bmx tyrosine kinase regulates TLR4-induced IL-6 production in human macrophages independently of p38 MAPK and NFκB activity. Blood 111:1781–1788

    Article  Google Scholar 

  238. Carpenter CL (2004) Btk-dependent regulation of phosphoinositide synthesis. Biochemical Society Transactions 32:326–329

    Article  Google Scholar 

  239. Uckun FM (2008) Bruton’s tyrosine kinase (BTK) as a dual-function regulator of apoptosis. Biochemical Pharmacology 56:683–691

    Article  Google Scholar 

  240. Lowell CA, Berton G (1999) Integrin signal transduction in myeloid leukocytes. Journal of Leukocyte Biology 65:313–320

    Google Scholar 

  241. Resh M (2006) Fyn. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  242. Banin S, Truong O, Katz DR, Waterfield MD, Brickell PM, Gout I (1996) Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein-tyrosine kinases. Current Biology 6:981–988

    Article  Google Scholar 

  243. Stanglmaier M, Warmuth M, Kleinlein I, Reis S, Hallek M (2003) The interaction of the Bcr-Abl tyrosine kinase with the Src kinase Hck is mediated by multiple binding domains. Leukemia 17:283–289

    Article  Google Scholar 

  244. Scott MP, Zappacosta F, Kim EY, Annan RS, Miller WT (2002) Identification of novel SH3 domain ligands for the Src family kinase Hck. Wiskott-Aldrich syndrome protein (WASP), WASP-interacting protein (WIP), and ELMO1. Journal of Biological Chemistry 277: 28238–28246

    Article  Google Scholar 

  245. Briggs SD, Bryant SS, Jove R, Sanderson SD, Smithgall TE (1995) The Ras GTPase-activating protein (GAP) is an SH3 domain-binding protein and substrate for the Src-related tyrosine kinase, Hck. Journal of Biological Chemistry 270:14718–14724

    Article  Google Scholar 

  246. Shivakrupa R, Radha V, Sudhakar Ch, Swarup G (2003) Physical and functional interaction between Hck tyrosine kinase and guanine nucleotide exchange factor C3G results in apoptosis, which is independent of C3G catalytic domain. Journal of Biological Chemistry 278:52188–52194

    Article  Google Scholar 

  247. Ward AC, Monkhouse JL, Csar XF, Touw IP, Bello PA (1998) The Src-like tyrosine kinase Hck is activated by granulocyte colony-stimulating factor (G-CSF) and docks to the activated G-CSF receptor. Biochemical and Biophysical Research Communications 251:117–123

    Article  Google Scholar 

  248. Poghosyan Z, Robbins SM, Houslay MD, Webster A, Murphy G, Edwards DR (2002) Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases. Journal of Biological Chemistry 277:4999-5007

    Article  Google Scholar 

  249. Hao S, August A (2002) The proline rich region of the Tec homology domain of ITK regulates its activity. FEBS Letters 525:53–58

    Article  Google Scholar 

  250. Bunnell SC, Henry PA, Kolluri R, Kirchhausen T, Rickles RJ, Berg LJ (1996) Identification of Itk/Tsk Src homology 3 domain ligands. Journal of Biological Chemistry 271:25646–25656

    Article  Google Scholar 

  251. BioGRID: General Repository for Interaction Datasets; database of physical and genetic interactions for model organisms (www.thebiogrid.org)

  252. Bléry M, Kubagawa H, Chen CC, Vély F, Cooper MD, Vivier E (1998) The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proceedings of the National Academy of Sciences of the United States of America 95: 2446–2451

    Article  ADS  Google Scholar 

  253. Belsches AP, Haskell MD, Parsons SJ (1997) Role of c-Src tyrosine kinase in EGF-induced mitogenesis. Frontiers in Bioscience 2:d501–d518

    Google Scholar 

  254. Amanchy R, Zhong J, Hong R, Kim JH, Gucek M, Cole RN, Molina H, Pandey A (2009) Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling. Molecular Oncology 3:439–450

    Article  Google Scholar 

  255. Goldman TL, Du Y, Buttrick PM, Walker LA (2009) Src kinase expression, phosphorylation and activation in human and bovine left ventricles. FASEB Journal 23:524.7

    Google Scholar 

  256. Yang WC, Ghiotto M, Castellano R, Collette Y, Auphan N, Nunès JA, Olive D (2000) Role of Tec kinase in nuclear factor of activated T cells signaling. International Immunology 12: 1547–1552

    Article  Google Scholar 

  257. Kane LP, Watkins SC (2005) Dynamic regulation of Tec kinase localization in membrane-proximal vesicles of a T cell clone revealed by total internal reflection fluorescence and confocal microscopy. Journal of Biological Chemistry 280:21949–21954

    Article  Google Scholar 

  258. Felices M, Falk M, Kosaka Y, Berg LJ (2007) Tec kinases in T cell and mast cell signaling. Advances in Immunology 93:145–184

    Article  Google Scholar 

  259. Smith CI, Islam TC, Mattsson PT, Mohamed AJ, Nore BF, Vihinen M (2001) The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. Bioessays 23:436–446

    Article  Google Scholar 

  260. Yang WC, Collette Y, Nunès JA, Olive D (2000) Tec kinases: a family with multiple roles in immunity. Immunity 12:373–382

    Article  Google Scholar 

  261. Rajagopal K, Sommers CL, Decker DC, Mitchell EO, Korthauer U, Sperling AI, Kozak CA, Love PE, Bluestone JA (1999) RIBP, a novel Rlk/Txk- and itk-binding adaptor protein that regulates T cell activation. Journal of Experimental Medicine 190:1657–1668

    Article  Google Scholar 

  262. Maruyama T, Nara K, Yoshikawa H, Suzuki N (2006) Txk, a member of the non-receptor tyrosine kinase of the Tec family, forms a complex with poly(ADP-ribose) polymerase 1 and elongation factor 1α and regulates interferon-γ gene transcription in Th1 cells. Clinical and Experimental Immunology 147:164–175

    Article  Google Scholar 

  263. Chen YH, Lu Q, Goodenough DA, Jeansonne B (2002) Nonreceptor tyrosine kinase c-Yes interacts with occludin during tight junction formation in canine kidney epithelial cells. Molecular Biology of the Cell 13:1227–1237

    Article  Google Scholar 

  264. Mócsai A, Ruland J, Tybulewicz VLJ (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nature Reviews – Immunology 10:387–402

    Google Scholar 

  265. Geahlen RL (2007) Syk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  266. Tohyama Y, Yamamura H (2009) Protein tyrosine kinase, Syk: a key player in phagocytic cells. Journal of Biochemistry 145:267–273

    Article  Google Scholar 

  267. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 81:807–869

    Google Scholar 

  268. Chaar Z, O’Reilly P, Gelman I, Sabourin LA (2006) v-Src-dependent down-regulation of the Ste20-like kinase SLK by casein kinase II. Journal of Biological Chemistry 281:28193–28199

    Article  Google Scholar 

  269. Sabourin LA, Tamai K, Seale P, Wagner J, Rudnicki MA (2000) Caspase 3 cleavage of the Ste20-related kinase SLK releases and activates an apoptosis-inducing kinase domain and an actin-disassembling region. Molecular and Cellular Biology 20:684–696

    Article  Google Scholar 

  270. Oehrl W, Kardinal C, Ruf S, Adermann K, Groffen J, Feng GS, Blenis J, Tan TH, Feller SM (1998) The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins. Oncogene 17:1893–1901

    Article  Google Scholar 

  271. Kyriakis JM (1999) Signaling by the germinal center kinase family of protein kinases. Journal of Biological Chemistry 274:5259–5262

    Article  Google Scholar 

  272. Chen YR, Tan TH (1999) Mammalian c-Jun N-terminal kinase pathway and STE20-related kinases. Gene Therapy and Molecular Biology 4:83–98

    Google Scholar 

  273. Kiefer F, Arnold R (2010) Hpk1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  274. Ensenat D, Yao Z, Wang XS, Kori R, Zhou G, Lee SC, Tan TH (1999) A novel src homology 3 domain-containing adaptor protein, HIP-55, that interacts with hematopoietic progenitor kinase 1. Journal of Biological Chemistry 274:33945–33950

    Article  Google Scholar 

  275. Han J, Kori R, Shui JW, Chen YR, Yao Z, Tan TH (2003) The SH3 domain-containing adaptor HIP-55 mediates c-Jun N-terminal kinase activation in T cell receptor signaling. Journal of Biological Chemistry 278:52195–52202

    Article  Google Scholar 

  276. Liu SK, Fang N, Koretzky GA, McGlade CJ (1999) The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Current Biology 9:67–75

    Article  Google Scholar 

  277. Zhou G, Boomer JS, Tan TH (2004) Protein phosphatase 4 is a positive regulator of hematopoietic progenitor kinase 1. Journal of Biological Chemistry 279:49551–49561

    Article  Google Scholar 

  278. Findlay GM, Yan L, Procter J, Mieulet V, Lamb RF (2007) A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochemical Journal 403:13–20

    Article  Google Scholar 

  279. Chernoff J (2008) Mst1; Mst2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  280. Braun H, Suske G (1998) Combinatorial action of HNF3 and Sp family transcription factors in the activation of the rabbit uteroglobin/CC10 promoter. Journal of Biological Chemistry 273:9821–9828

    Article  Google Scholar 

  281. Glantschnig H, Rodan GA, Reszka AA (2002) Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. Journal of Biological Chemistry 277:42987–42996

    Google Scholar 

  282. Nakano K, Kanai-Azuma M, Kanai Y, Moriyama K, Yazaki K, Hayashi Y, Kitamura N (2003) Cofilin phosphorylation and actin polymerization by NRK/NESK, a member of the germinal center kinase family. Experimental Cell Research 287:219–227

    Article  Google Scholar 

  283. Fu CA, Shen M, Huang BC, Lasaga J, Payan DG, Luo Y (1999) TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. Journal of Biological Chemistry 274:30729–30737

    Article  Google Scholar 

  284. Kuramochi S, Moriguchi T, Kuida K, Endo J, Semba K, Nishida E, Karasuyama H (1997) LOK is a novel mouse STE20-like protein kinase that is expressed predominantly in lymphocytes. Journal of Biological Chemistry 272:22679–22684

    Article  Google Scholar 

  285. Walter SA, Cutler RE Jr, Martinez R, Gishizky M, Hill RJ (2003) Stk10, a new member of the polo-like kinase kinase family highly expressed in hematopoietic tissue. Journal of Biological Chemistry 278:18221–18228

    Article  Google Scholar 

  286. Choe KP, Strange K (2010) OXSR1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  287. Lee SJ, Cobb MH, Goldsmith EJ (2009) Crystal structure of domain-swapped STE20 OSR1 kinase domain. Protein Science 18:304–313

    Article  Google Scholar 

  288. Mudumana SP, Hentschel D, Liu Y, Vasilyev A, Drummond IA (2008) Odd skipped related 1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development 135:3355–3367

    Article  Google Scholar 

  289. Strange K, Denton J, Nehrke K (2006) Ste20-type kinases: evolutionarily conserved regulators of ion transport and cell volume. Physiology 21:61–68

    Article  Google Scholar 

  290. Russell JM (2000) Sodium–potassium–chloride cotransport. Physiological Reviews 80: 211–276

    Google Scholar 

  291. Anselmo AN, Earnest S, Chen W, Juang YC, Kim SC, Zhao Y, Cobb MH (2006) WNK1 and OSR1 regulate the Na + , K + , 2Cl −  cotransporter in HeLa cells. Proceedings of the National Academy of Sciences of the United States of America 103:10883–10888

    Article  ADS  Google Scholar 

  292. Ko B, Hoover RS (2009) Molecular physiology of the thiazide-sensitive sodium-chloride cotransporter. Current Opinion in Nephrology and Hypertension 18:421–427

    Article  Google Scholar 

  293. Komaba S, Inoue A, Maruta S, Hosoya H, Ikebe M (2003) Determination of human myosin III as a motor protein having a protein kinase activity. Journal of Biological Chemistry 278:21352–21360

    Article  Google Scholar 

  294. Dosé AC, Burnside B (2002) A class III myosin expressed in the retina is a potential candidate for Bardet-Biedl syndrome. Genomics 79:621–624

    Article  Google Scholar 

  295. Hutchison M, Berman KS, Cobb MH (1998) Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascades. Journal of Biological Chemistry 273:28625–28632

    Article  Google Scholar 

  296. Zihni C, Mitsopoulos C, Tavares IA, Ridley AJ, Morris JD (2006) Prostate-derived sterile 20-like kinase 2 (PSK2) regulates apoptotic morphology via C-Jun N-terminal kinase and Rho kinase-1. Journal of Biological Chemistry 281:7317–7323

    Article  Google Scholar 

  297. Chen Z, Cobb MH (2001) Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2. Journal of Biological Chemistry 276:16070–16075

    Article  Google Scholar 

  298. Tassi E, Biesova Z, Di Fiore PP, Gutkind JS, Wong WT (1999) Human JIK, a novel member of the STE20 kinase family that inhibits JNK and is negatively regulated by epidermal growth factor. Journal of Biological Chemistry 274:33287–33295

    Article  Google Scholar 

  299. Hergovich A, Stegert MR, Schmitz D, Hemmings BA (2006) NDR kinases regulate essential cell processes from yeast to humans. Nature Reviews – Molecular Cell Biology 7:253–264

    Google Scholar 

  300. Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nature Reviews – Molecular Cell Biology 11:9–22

    Google Scholar 

  301. Okuzumi T, Fiedler D, Zhang C, Gray DC, Aizenstein B, Hoffman R, Shokat KM (2009) Inhibitor hijacking of Akt activation. Nature – Chemical Biology 5:484–493

    Google Scholar 

  302. Cameron AJM, Escribano C, Saurin AT, Kostelecky B, Parker PJ (2009) PKC maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity. Nature – Structural and Molecular Biology 16:624–630

    Google Scholar 

  303. Kohler RS, Schmitz D, Cornils H, Hemmings BA, Hergovich A (2010) Differential NDR/LATS interactions with the human MOB family reveal a negative role for human MOB2 in the regulation of human NDR kinases. Molecular and Cellular Biology 30:4507–4520

    Article  Google Scholar 

  304. Stokoe D (2007) Pdk1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  305. Masters TA, Calleja V, Armoogum DA, Marsh RJ, Applebee CJ, Laguerre M, Bain AJ, Larijani B (2010) Regulation of 3-phosphoinositide-dependent protein kinase 1 activity by homodimerization in live cells. Science Signaling 3:ra78

    Google Scholar 

  306. Ito K, Akazawa H, Tamagawa M, Furukawa K, Ogawa W, Yasuda N, Kudo Y, Liao CH, Yamamoto R, Sato T, Molkentin JD, Kasuga M, Noda T, Nakaya H, Komuro I (2009) PDK1 coordinates survival pathways and β-adrenergic response in the heart. Proceedings of the National Academy of Sciences of the United States of America 106:8689–8694

    Article  ADS  Google Scholar 

  307. Lignitto L, Carlucci A, Sepe M, Stefan E, Cuomo O, Nisticò R, Scorziello A, Savoia C, Garbi C, Annunziato L, Feliciello A (2011) Control of PKA stability and signalling by the RING ligase praja2. Nature – Cell Biology 13:412–422

    Google Scholar 

  308. Masterson LR, Mascioni A, Traaseth NJ, Taylor SS, Veglia G (2008) Allosteric cooperativity in protein kinase A. Proceedings of the National Academy of Sciences of the United States of America 105:506–511

    Article  ADS  Google Scholar 

  309. Wu J, Brown SHJ, von Daake S, Taylor SS (2007) PKA type IIα holoenzyme reveals a combinatorial strategy for isoform diversity. Science 318:274–279

    Article  ADS  Google Scholar 

  310. Goel M, Zuo CD, Schilling WP (2010) Role of cAMP/PKA signaling cascade in vasopressin-induced trafficking of TRPC3 channels in principal cells of the collecting duct. American Journal of Physiology – Renal Physiology 298:F988–F996

    Google Scholar 

  311. Butterworth MB, Frizzell RA, Johnson JP, Peters KW, Edinger RS (2005) PKA-dependent ENaC trafficking requires the SNARE-binding protein complexin. American Journal of Physiology – Renal Physiology 289:F969–F977

    Google Scholar 

  312. Nejsum LN, Zelenina M, Aperia A, Frøkiaer J, Nielsen S (2005) Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. American Journal of Physiology – Renal Physiology 288:F930–F938

    Google Scholar 

  313. Faul C, Dhume A, Schecter AD, Mundel P (2007) Protein kinase A, Ca2 + /calmodulin-dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes. Molecular and Cellular Biology 27:8215–8227

    Article  Google Scholar 

  314. Hallaq H, Yang Z, Viswanathan PC, Fukuda K, Shen W, Wang DW, Wells KS, Zhou J, Yi J, Murray KT (2006) Quantitation of protein kinase A-mediated trafficking of cardiac sodium channels in living cells. Cardiovascular Research 72:250–261

    Article  Google Scholar 

  315. Lin L, Sun W, Wikenheiser AM, Kung F, Hoffman DA (2010) KChIP4a regulates Kv4.2 channel trafficking through PKA phosphorylation. Molecular and Cellular Neurosciences 43:315–325

    Article  Google Scholar 

  316. Esteban JA , Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nature – Neuroscience 6:136–143

    Google Scholar 

  317. Parvathenani LK, Buescher ES, Chacon-Cruz E, Beebe SJ (1998) Type I cAMP-dependent protein kinase delays apoptosis in human neutrophils at a site upstream of caspase-3. Journal of Biological Chemistry 273:6736–6743

    Article  Google Scholar 

  318. Prinz A, Herberg FW (2009) Prkx. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  319. Semizarov D, Glesne D, Laouar A, Schiebel K, Huberman E (1998) A lineage-specific protein kinase crucial for myeloid maturation. Proceedings of the National Academy of Sciences of the United States of America 95:15412-15417

    Article  ADS  Google Scholar 

  320. Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D, Bismuth G, Nunès JA, Payrastre B, Marguet D, He HT (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nature – Chemical Biology 4:538–547

    Google Scholar 

  321. Gonzalez E, McGraw TE (2009) Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proceedings of the National Academy of Sciences of the United States of America 106:7004–7009

    Article  ADS  Google Scholar 

  322. Mîinea CP, Sano H, Kane S, Sano E, Fukuda M, Peränen J, Lane WS, Lienhard GE (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochemical Journal 391:87–93

    Article  Google Scholar 

  323. Xie X, Zhang D, Zhao B, Lu MK, You M, Condorelli G, Wang CY, Guan KL (2011) IκB kinase ε and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proceedings of the National Academy of Sciences of the United States of America 108:6474–6479

    Article  ADS  Google Scholar 

  324. Miyamoto S, Rubio M, Sussman mA (2009) Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovascular Research 82:272–285

    Google Scholar 

  325. Kim HE, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proceedings of the National Academy of Sciences of the United States of America 102:17545–17550

    Article  ADS  Google Scholar 

  326. Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A (2005) Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Molecular Cell 20:539–550

    Article  Google Scholar 

  327. Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, Natesan S, Brugge JS (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. Journal of Cell Biology 171:1023–1034

    Article  Google Scholar 

  328. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes and Development 15:1406–1418

    Article  Google Scholar 

  329. Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Molecular Biology of the Cell 13:2276–2288

    Article  Google Scholar 

  330. Di Lorenzo A, Fernández-Hernando C, Cirino G, Sessa WC (2009) Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proceedings of the National Academy of Sciences of the United States of America 106:14552–14557

    Article  ADS  Google Scholar 

  331. Ezell SA, Polytarchou C, Hatziapostolou M, Guo A, Sanidas I, Bihani T, Comb MJ, Sourvinos G, Tsichlis PN (2012) The protein kinase Akt1 regulates the interferon response through phosphorylation of the transcriptional repressor EMSY. Proceedings of the National Academy of Sciences of the United States of America 109:E613–E621

    Article  ADS  Google Scholar 

  332. Rosse C, Linch M, Kermorgant S, Cameron AJM, Boeckeler K, Parker PJ (2010) PKC and the control of localized signal dynamics. Nature Reviews – Molecular Cell Biology 11:103–112

    Google Scholar 

  333. Palaniyandi SS, Sun L, Ferreira JCB, Mochly-Rosen D (2009) Protein kinase C in heart failure: a therapeutic target? Cardiovascular Research 82:229–239

    Article  Google Scholar 

  334. Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R (2009) PKCη regulates occludin phosphorylation and epithelial tight junction integrity. Proceedings of the National Academy of Sciences of the United States of America 106: 61–66

    Article  ADS  Google Scholar 

  335. Chapline C, Cottom J, Tobin H, Hulmes J, Crabb J, Jaken S (1998) A major, transformation-sensitive PKC-binding protein is also a PKC substrate involved in cytoskeletal remodeling. Journal of Biological Chemistry 273:19482–19489

    Article  Google Scholar 

  336. Mochly-Rosen D, Gordon AS (1998) Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB Journal 12:35–42

    Google Scholar 

  337. Staudinger J, Lu J, Olson EN (1997) Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-α. Journal of Biological Chemistry 272: 32019–32024

    Article  Google Scholar 

  338. Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, Fujimoto T, Tabuse Y, Kemphues KJ, Ohno S (1998) An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. Journal of Cell Biology 143:95–106

    Article  Google Scholar 

  339. Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature – Cell Biology 2:531–539

    Google Scholar 

  340. Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J (2005) The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. Journal of Biological Chemistry 280:35625–35629

    Article  Google Scholar 

  341. Konopatskaya O, Gilio K, Harper MT, Zhao Y, Cosemans JM, Karim ZA, Whiteheart SW, Molkentin JD, Verkade P, Watson SP, Heemskerk JW, Poole AW (2009) PKCα regulates platelet granule secretion and thrombus formation in mice. Journal of Clinical Investigation 119:399–407

    Google Scholar 

  342. Rajagopal S, Fang H, Oronce CI, Jhaveri S, Taneja S, Dehlin EM, Snyder SL, Sando JJ, Kamatchi GL (2009) Site-specific regulation of Ca(V)2.2 channels by protein kinase C isozymes βII and ε. Neuroscience 159:618–628

    Article  Google Scholar 

  343. Rajagopal S, Fang H, Patanavanich S, Sando JJ, Kamatchi GL (2008) Protein kinase C isozyme-specific potentiation of expressed Ca(V)2.3 currents by acetyl-beta-methylcholine and phorbol-12-myristate, 13-acetate. Brain Research 1210:1–10

    Article  Google Scholar 

  344. Steinberg SF (2005) Protein kinase Cδ. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  345. Robles-Flores M, Rendon-Huerta E, Gonzalez-Aguilar H, Mendoza-Hernandez G, Islas S, Mendoza V, Ponce-Castaneda MV, Gonzalez-Mariscal L, Lopez-Casillas F (2002) p32 (gC1qBP) is a general protein kinase C (PKC)-binding protein; interaction and cellular localization of P32-PKC complexes in ray hepatocytes. Journal of Biological Chemistry 277:5247–5255

    Article  Google Scholar 

  346. Roybal KT, Wülfing C (2010) Inhibiting the inhibitor of the inhibitor: blocking PKC-θ to enhance regulatory T cell function. Science Signaling 3:pe24

    Google Scholar 

  347. Moscat J, Diaz-Meco MT (2005) Protein kinase Cζ. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  348. Hodgkinson CP, Mander A, Sale GJ (2005) Protein kinase-ζ interacts with munc18c: role in GLUT4 trafficking. Diabetologia 48:1627–1636

    Article  Google Scholar 

  349. Westmark PR, Westmark CJ, Wang S, Levenson J, O’Riordan KJ, Burger C, Malter JS (2010) Pin1 and PKMζ sequentially control dendritic protein synthesis. Science Signaling 3:ra18

    Google Scholar 

  350. Chang S, Kim JH, Shin J (2002) p62 forms a ternary complex with PKCζ and PAR-4 and antagonizes PAR-4-induced PKCζ inhibition. FEBS Letters 510:57–61

    Article  Google Scholar 

  351. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Molecular and Cellular Biology 24: 8055–8068

    Article  Google Scholar 

  352. Samuels IS, Seibenhener ML, Neidigh KB, Wooten MW (2001) Nerve growth factor stimulates the interaction of ZIP/p62 with atypical protein kinase C and targets endosomal localization: evidence for regulation of nerve growth factor-induced differentiation. Journal of Cellular Biochemistry 82:452–466

    Article  Google Scholar 

  353. Kwan HY, Huang Y, Yao X (2000) Store-operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism. Journal of Biological Chemistry 275:6758–6763

    Article  Google Scholar 

  354. Schwappacher R, Weiske J, Heining E, Ezerski V, Marom B, Henis YI, Huber O, Knaus P (2009) Novel crosstalk to BMP signalling: cGMP-dependent kinase I modulates BMP receptor and SMAD activity. EMBO Journal 28:1537–1550

    Article  Google Scholar 

  355. Zheng H, Worrall C, Shen H, Issad T, Seregard S, Girnita A, Girnita L (2012) Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proceedings of the National Academy of Sciences of the United States of America 109:7055–7060

    Article  ADS  Google Scholar 

  356. Burgess A, Vigneron S, Brioudes E, Labbé JC, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proceedings of the National Academy of Sciences of the United States of America 107:12564-12569

    Article  ADS  Google Scholar 

  357. BokochGM (2008) Pak1 UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  358. Koh CG, Tan EJ, Manser E, Lim L (2002) The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Current Biology 12:317–321

    Article  Google Scholar 

  359. Ching YP, Leong VY, Wong CM, Kung HF (2003) Identification of an autoinhibitory domain of p21-activated protein kinase 5. Journal of Biological Chemistry 278:33621–33624

    Article  Google Scholar 

  360. Nekrasova T, Jobes ML, Ting JH, Wagner GC, Minden A (2008) Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion. Developmental Biology 322:95–108

    Article  Google Scholar 

  361. Baird D, Feng Q, Cerione RA (2006) Biochemical characterization of the Cool (Cloned-out-of-Library)/Pix (Pak-interactive exchange factor) proteins. Methods in Enzymology 406: 58–69

    Article  Google Scholar 

  362. Baldwin A, Grueneberg DA, Hellner K, Sawyer J, Grace M, Li W, Harlow E, Munger K (2010) Kinase requirements in human cells. V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. Proceedings of the National Academy of Sciences of the United States of America 107:12463–12468

    Article  ADS  Google Scholar 

  363. Chernoff J (2007) Pak5. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  364. Riento K, Ridley AJ (2003) ROCKs: multifunctional kinases in cell behaviour. Nature Reviews – Molecular Cell Biology 4:446-456

    Google Scholar 

  365. Iftinca M, Hamid J, Chen L, Varela D, Tadayonnejad R, Altier C, Turner RW, Zampon GW (2007) Regulation of T-type calcium channels by Rho-associated kinase. Nature – Neuroscience 10:854–860

    Google Scholar 

  366. Luykenaar KD, El-Rahman RA, Walsh MP, Welsh DG (2009) Rho-kinase-mediated suppression of KDR current in cerebral arteries requires an intact actin cytoskeleton. American Journal of Physiology – Heart and Circulatory Physiology 296:H917–H926

    Google Scholar 

  367. Storey NM, O’Bryan JP, Armstrong DL (2002) Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Current Biology 12:27–33

    Article  Google Scholar 

  368. Jones SVP (2003) Role of the small GTPase Rho in modulation of the inwardly rectifying potassium channel Kir2.1. Molecular Pharmacology 64:987–993

    Article  Google Scholar 

  369. Luykenaar KD, Welsh DG (2007) Activators of the PKA and PKG pathways attenuate RhoA-mediated suppression of the KDR current in cerebral arteries. American Journal of Physiology – Heart and Circulatory Physiology 292:H2654–H2663

    Google Scholar 

  370. Yatani A, Irie K, Otani T, Abdellatif M, Wei L (2005) RhoA GTPase regulates L-type Ca2 +  currents in cardiac myocytes. American Journal of Physiology – Heart and Circulatory Physiology 288:H650–H659

    Google Scholar 

  371. Staruschenko A, Nichols A, Medina JL, Camacho P, Zheleznova NN, Stockand JD (2004) Rho small GTPases activate the epithelial Na +  channel. Journal of Biological Chemistry 279:49989–49994

    Article  Google Scholar 

  372. Nilius B, Voets T, Prenen J, Barth H, Aktories K, Kaibuchi K, Droogmans G, Eggermont J (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. Journal of Physiology 516:67–74

    Article  Google Scholar 

  373. van Nieuw Amerongen GP, van Hinsbergh VWM (2009) Role of ROCK I/II in vascular branching. American Journal of Physiology – Heart and Circulatory Physiology 296: H903–H905

    Google Scholar 

  374. Kroll J, Epting D, Kern K, Dietz CT, Feng Y, Hammes HP, Wieland T, Augustin HG (2009) Inhibition of Rho-dependent kinases ROCK I/II activates VEGF-driven retinal neovascularization and sprouting angiogenesis. Journal of Physiology – Heart and Circulatory Physiology 296:H893–H899

    Google Scholar 

  375. Fischer RS, Gardel M, Ma X, Adelstein RS, Waterman CM (2009) Local cortical tension by myosin II guides 3D endothelial cell branching. Current Biology 19:260–265

    Article  Google Scholar 

  376. Olson MF (2006) Rock1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  377. Olson MF (2007) Rock2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  378. The human kinome, Science’s signal transduction knowledge environment (STKE) www.cellsignal.com

  379. Hauge C, Frödin M (2006) RSK and MSK in MAP kinase signalling. Journal of Cell Science 119:3021–3023

    Article  Google Scholar 

  380. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews 75:50-83

    Article  Google Scholar 

  381. Hayashi S, Okada T, Igarashi N, Fujita T, Jahangeer S, Nakamura S (2002) Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. Journal of Biological Chemistry 277:33319–33324

    Article  Google Scholar 

  382. Liu L, Yang C, Yuan J, Chen X, Xu J, Wei Y, Yang J, Lin G, Yu L (2005) RPK118, a PX domain-containing protein, interacts with peroxiredoxin-3 through pseudo-kinase domains. Molecules and Cells 19:39–45

    Google Scholar 

  383. Anjum R, Blenis J (2008) The RSK family of kinases: emerging roles in cellular signalling. Nature Reviews – Molecular Cell Biology 9:747–758

    Google Scholar 

  384. Roux PP (2007) Rsk1; Rsk4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  385. Julien LA, Roux PP (2007) Rsk3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  386. Dennis PB, Thomas G (2008) S6K1; S6K2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  387. Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO (2011) Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 108:E1204–E1213

    Article  ADS  Google Scholar 

  388. Marklund U, Lightfoot K, Cantrell D (2003) Intracellular location and cell context-dependent function of protein kinase D. Immunity 19:491–501

    Article  Google Scholar 

  389. Canagarajah B, Leskow FC, Ho JY, Mischak H, Saidi LF, Kazanietz MG, Hurley JH (2004) Structural mechanism for lipid activation of the Rac-specific GAP, 2-chimaerin. Cell 119:407–418

    Article  Google Scholar 

  390. Raval AP, Dave KR, Prado R, Katz LM, Busto R, Sick TJ, Ginsberg MD, Mochly-Rosen D, Perez-Pinzon MA (2005) Protein kinase C delta cleavage initiates an aberrant signal transduction pathway after cardiac arrest and oxygen glucose deprivation. Journal of Cerebral Blood Flow and Metabolism 25:730–741

    Article  Google Scholar 

  391. Kermorgant S, Zicha D, Parker PJ (2004) PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal 23:3721–3734

    Article  Google Scholar 

  392. Bredt DS, Ferris CD, Snyder SH (1992) Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. Journal of Biological Chemistry 267:10976–10981

    Google Scholar 

  393. Hsu LS, Chen GD, Lee LS, Chi CW, Cheng JF, Chen JY (2001) Human Ca2 + /calmodulin-dependent protein kinase kinase β gene encodes multiple isoforms that display distinct kinase activity. Journal of Biological Chemistry 276:31113–31123

    Article  Google Scholar 

  394. Condon JC, Pezzi V, Drummond BM, Yin S, Rainey WE (2002) Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Endocrinology 143: 3651–3657

    Article  Google Scholar 

  395. Matsushita M, Nairn AC (1999) Inhibition of the Ca2 + /calmodulin-dependent protein kinase I cascade by cAMP-dependent protein kinase. Journal of Biological Chemistry 274: 10086–10093

    Article  Google Scholar 

  396. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proceedings of the National Academy of Sciences of the United States of America 106:2342–2347

    Article  ADS  Google Scholar 

  397. Komukai K, O-Uchi J, Morimoto S, Kawai M, Hongo K, Yoshimura M, Kurihara S (2010) Role of Ca2 + /calmodulin-dependent protein kinase II in the regulation of the cardiac L-type Ca2 +  current during endothelin-1 stimulation. American Journal of Physiology – Heart and Circulatory Physiology 298:H1902–H1907

    Google Scholar 

  398. Anderson KA, Noeldner PK, Reece K, Wadzinski BE, Means AR (2004) Regulation and function of the calcium/calmodulin-dependent protein kinase IV/protein serine/threonine phosphatase 2A signaling complex. Journal of Biological Chemistry 279:31708–31716

    Article  Google Scholar 

  399. Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY (2010) Myosin light chain kinase in microvascular endothelial barrier function. Cardiovascular Research 87:272–280

    Article  Google Scholar 

  400. Poperechnaya A, Varlamova O, Lin PJ, Stull JT, Bresnick AR (2000) Localization and activity of myosin light chain kinase isoforms during the cell cycle. Journal of Cell Biology 151: 697–708‘

    Google Scholar 

  401. Birukov KG, Csortos C, Marzilli L, Dudek S, Ma SF, Bresnick AR, Verin AD, Cotter RJ, Garcia JG (2001) Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60Src. Journal of Biological Chemistry 276:8567–8573

    Article  Google Scholar 

  402. Zhang WC, Peng YJ, Zhang GS, He WQ, Qiao YN, Dong YY, Gao YQ, Chen C, Zhang CH, Li W, Shen HH, Ning W, Kamm KE, Stull JT, Gao X, Zhu MS (2010) Myosin light chain kinase is necessary for tonic airway smooth muscle contraction. Journal of Biological Chemistry 285:5522–5531

    Article  Google Scholar 

  403. van Riper DA, McDaniel NL, Rembold CM (1997) Myosin light chain kinase phosphorylation in nitrovasodilator induced swine carotid artery relaxation. Biochimica et Biophysica Acta 1355:323–330

    Article  Google Scholar 

  404. Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2 +  sensitization of contraction in vascular smooth muscle. Journal of Biological Chemistry 275:21722–21729

    Article  Google Scholar 

  405. Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S, Kemp BE (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332:1433–1435

    Article  ADS  Google Scholar 

  406. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-βis an alternative upstream kinase for AMP-activated protein kinase. Cell Metabolism 2:9–19

    Article  Google Scholar 

  407. Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444:868–874

    Article  ADS  Google Scholar 

  408. Zheng B, Cantley LC (2007) Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America 104:819–822

    Article  ADS  Google Scholar 

  409. Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE, Lee SH, Shong M, Kim JM, Kim J, Chung J (2007) Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447:1017–1020

    Article  ADS  Google Scholar 

  410. Ikematsu N, Dallas ML, Ross FA, Lewis RW, Rafferty JN, David JA, Suman R, Peers C, Hardie DG, Evans AM (2011) Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proceedings of the National Academy of Sciences of the United States of America 108:18132–18137

    Article  ADS  Google Scholar 

  411. Bright NJ, Thornton C, Carling D (2009) The regulation and function of mammalian AMPK-related kinases. Acta Physiologica 196:15–26

    Article  Google Scholar 

  412. Vancauwenbergh S, Bollen M (2006) Melk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  413. Drewes G (2006) Mark1; Mark4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  414. Zagrska A, Deak M, Campbell DG, Banerjee S, Hirano M, Aizawa S, Prescott AR, Alessi DR (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Science Signaling 3:ra25

    Google Scholar 

  415. Stolz A, Ertych N, Kienitz A, Vogel C, Schneider V, Fritz B, Jacob R, Dittmar G, Weichert W, Petersen I, Bastians H (2010) The CHK–BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nature – Cell Biology 12:492–499

    Google Scholar 

  416. Lukas TJ (2006) Dap kinase. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  417. de Diego I, Kuper J, Bakalova N, Kursula P, Wilmanns M (2010) Molecular basis of the death-associated protein kinase-calcium/calmodulin regulator complex. Science Signaling 3:ra6

    Google Scholar 

  418. Sanjo H, Kawai T, Akira S (1998) DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. Journal of Biological Chemistry 273:29066–29071

    Article  Google Scholar 

  419. Walsh CM (2007) Drak2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  420. Rozengurt E, Rey O, Waldron RT (2005) Protein kinase D signaling. Journal of Biological Chemistry 280:13205–13208

    Article  Google Scholar 

  421. Fielitz J, Kim MS, Shelton JM, Qi X, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) Proceedings of the National Academy of Sciences of the United States of America 105:3059–3063

    Article  ADS  Google Scholar 

  422. Eiseler T, Döppler H, Yan IK, Kitatani K, Mizuno K, Storz P (2009) Protein kinase D1 regulates cofilin mediated F-actin reorganization and cell motility via slingshot. Nature – Cell Biology 11:545–556

    Google Scholar 

  423. Storz P (2006) Protein kinase D2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  424. Storz P (2006) Protein kinase D3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  425. Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, Ocorr K, Ellisman MH, Bodmer R, Bier E, Karin M (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327:1223–1228

    Article  ADS  Google Scholar 

  426. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, Maclean KH, Inoki K, Guan KL, Shen J, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proceedings of the National Academy of Sciences of the United States of America 107:4153–4158

    Article  ADS  Google Scholar 

  427. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM Activation by oxidative stress. Science 330:517–521

    Article  ADS  Google Scholar 

  428. Meek K, Dang V, Lees-Miller SP (2008) DNA-PK: the means to justify the ends? Advances in Immunology 99:33–58

    Article  Google Scholar 

  429. Goudelock DM, Jiang K, Pereira E, Russell B, Sanchez Y (2003) Regulatory interactions between the checkpoint kinase Chk1 and the proteins of the DNA-dependent protein kinase complex. Journal of Biological Chemistry 278:29940–29947

    Article  Google Scholar 

  430. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332: 1317–1322

    Article  ADS  Google Scholar 

  431. Parnell SC, Magenheimer BS, Maser RL, Zien CA, Frischauf AM, Calvet JP (2002) Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G proteins. Journal of Biological Chemistry 277:19566–19572

    Article  Google Scholar 

  432. Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Gödel M, Müller K, Herbst M, Hornung M, Doerken M, Köttgen M, Nitschke R, Igarashi P, Walz G, Kuehn EW (2010) Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nature – Cell Biology 12:1115–1122

    Google Scholar 

  433. Ramanathan A, Schreiber SL (2009) Direct control of mitochondrial function by mTOR. Proceedings of the National Academy of Sciences of the United States of America 106:22229–22232

    Article  ADS  Google Scholar 

  434. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villén J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–1326

    Article  ADS  Google Scholar 

  435. Saci A, Cantley LC, Carpenter CL (2011) Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Molecular Cell 42:50–61

    Article  Google Scholar 

  436. Robitaille AM, Hall MN (2008) mTOR. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  437. Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, Wang X, Larsson O, Selvaraj A, Liu Y, Kozma SC, Thomas G, Sonenberg N (2010) mTORC1-Mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328:1172–1176

    Article  ADS  Google Scholar 

  438. Li S, Brown MS, Goldstein JL (2010) Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America 107: 3441–3446

    Article  ADS  Google Scholar 

  439. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Current Biology 16:1865–1870

    Article  Google Scholar 

  440. Liu L, Das S, Losert W, Parent CA (2010) mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Developmental Cell 19:845–857

    Article  Google Scholar 

  441. Xu J, Dang Y, Ren YR, Liu JO (2010) Cholesterol trafficking is required for mTOR activation in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 107:4764–4769

    Article  ADS  Google Scholar 

  442. Graves PR, Roach PJ (1995) Role of COOH-terminal phosphorylation in the regulation of casein kinase Iδ. Journal of Biological Chemistry 270:21689–21694

    Article  Google Scholar 

  443. Nichols RJ, Traktman P (2004) Characterization of three paralogous members of the Mammalian vaccinia related kinase family. Journal of Biological Chemistry 279:7934–7946

    Article  Google Scholar 

  444. Lazo PA, Vega FM, Sevilla A (2005) Vrk1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  445. Blanco S, Lazo PA (2009) Vrk2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  446. Scheeff ED, Eswaran J, Bunkoczi G, Knapp S, Manning G (2009) Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 17:128–138

    Article  Google Scholar 

  447. Lazo PA (2009) Vrk3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  448. Vartiainen MK, Sarkkinen EM, Matilainen T, Salminen M, Lappalainen P (2003) Mammals have two twinfilin isoforms whose subcellular localizations and tissue distributions are differentially regulated. Journal of Biological Chemistry 278:34347–34355

    Article  Google Scholar 

  449. Kitano-Takahashi M, Morita H, Kondo S, Tomizawa K, Kato R, Tanio M, Shirota Y, Takahashi H, Sugio S, Kohno T (2007) Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein. Acta crystallographica. Section F, Structural Biology and Crystallization Communications 63:602–604

    Article  Google Scholar 

  450. Sato S, Xu J, Okuyama S, Martinez LB, Walsh SM, Jacobsen MT, Swan RJ, Schlautman JD, Ciborowski P, Ikezu T (2008) Spatial learning impairment, enhanced CDK5/p35 activity, and downregulation of NMDA receptor expression in transgenic mice expressing tau-tubulin kinase 1. Journal of Neuroscience 28:14511–14521

    Article  Google Scholar 

  451. Zhang S, Edelmann L, Liu J, Crandall JE, Morabito MA (2008) Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors. Journal of Neuroscience 28:415–424

    Article  Google Scholar 

  452. Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Worth P, Singleton AB, Hilton DA, Holton J, Revesz T, Davis MB, Giunti P, Wood NW (2007) Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nature – Genetics 39:1434–1436

    Google Scholar 

  453. Bouskila M, Esoof N, Gay L, Fang EH, Deak M, Begley MJ, Cantley LC, Prescott A, Storey KG, Alessi DR (2011) TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development. Biochemical Journal 437:157–167

    Article  Google Scholar 

  454. Olsten MEK, Litchfield DW (2006) Casein kinase II α1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  455. Litchfield DW (2005) Casein kinase II α2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  456. Bibby AC, Litchfield DW (2005) Casein kinase II β. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  457. Tian B, Yang Q, Mao Z (2009) Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nature – Cell Biology 11:211–218

    Google Scholar 

  458. Yu DS, Zhao R, Hsu EL, Cayer J, Ye F, Guo Y, Shyr Y, Cortez D (2010) Cyclin-dependent kinase 9–cyclin K functions in the replication stress response. EMBO Reports 11:876–882

    Article  Google Scholar 

  459. Li X, Zhang R, Luo D, Park SJ, Wang Q, Kim Y, Min W (2005) Tumor necrosis factor α-induced desumoylation and cytoplasmic translocation of homeodomain-interacting protein kinase 1 are critical for apoptosis signal-regulating kinase 1-JNK/p38 activation. Journal of Biological Chemistry 280:15061–15070

    Article  Google Scholar 

  460. Moehlenbrink J, Hofmann TG (2009) Hipk2 UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  461. Calzado MA, de la Vega L, Möller A, Bowtell DDL, Schmitz ML (2009) An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nature – Cell Biology 11:85–91

    Google Scholar 

  462. Lan HC, Li HJ, Lin G, Lai PY, Chung BC (2007) Cyclic AMP stimulates SF-1-dependent CYP11A1 expression through homeodomain-interacting protein kinase 3-mediated Jun N-terminal kinase and c-Jun phosphorylation. Molecular and Cellular Biology 27:2027–2036

    Article  Google Scholar 

  463. Arai S, Matsushita A, Du K, Yagi K, Okazaki Y, Kurokawa R (2007) Novel homeodomain-interacting protein kinase family member, HIPK4, phosphorylates human p53 at serine 9. FEBS Letters 581:5649–5657

    Article  Google Scholar 

  464. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (2006) Emerging roles of pseudokinases. Trends in Cell Biology 16:443–452

    Article  Google Scholar 

  465. Wickström SA, Lange A, Montanez E, Fässler R (2010) The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO Journal 29:281–291

    Article  Google Scholar 

  466. Radeva G, Petrocelli T, Behrend E, Leung-Hagesteijn C, Filmus J, Slingerland J, Dedhar S (1997) Overexpression of the integrin-linked kinase promotes anchorage-independent cell cycle progression. Journal of Biological Chemistry 272:13937–13944

    Article  Google Scholar 

  467. Xu Z, Fukuda T, Li Y, Zha X, Qin J, Wu C (2005) Molecular dissection of PINCH-1 reveals a mechanism of coupling and uncoupling of cell shape modulation and survival. Journal of Biological Chemistry 280:27631–27637

    Article  Google Scholar 

  468. Tu Y, Li F, Goicoechea S, Wu C (1999) The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells. Molecular and Cellular Biology 19:2425–2434

    Google Scholar 

  469. Montanez E, Wickström SA, Altstätter J, Chu H, Fässler R (2009) α-Parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling. EMBO Journal 28:3132–3144

    Article  Google Scholar 

  470. Zhang Y, Chen K, Tu Y, Velyvis A, Yang Y, Qin J, Wu C (2002) Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites. Journal of Cell Science 115:4777–4786

    Article  Google Scholar 

  471. Flannery S, Bowie AG (2010) The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochemical Pharmacology 80:1981–1991

    Article  Google Scholar 

  472. Suzuki N, Suzuki S, Saito T (2005) IRAKs: key regulatory kinases of innate immunity. Current Medicinal Chemistry. Anti-Inflammatory and Anti-Allergy Agents 4:13–20

    Article  Google Scholar 

  473. Brissoni B, Agostini L, Kropf M, Martinon F, Swoboda V, Lippens S, Everett H, Aebi N, Janssens S, Meylan E, Felberbaum-Corti M, Hirling H, Gruenberg J, Tschopp J, Burns K (2006) Intracellular trafficking of interleukin-1 receptor I requires Tollip. Current Biology 16:2265–2270

    Article  Google Scholar 

  474. Akira S, Takeda K (2004) Toll-like receptor signalling. Nature Reviews – Immunology 4:499–511

    Google Scholar 

  475. Smith H, Liu XY, Dai L, Goh ET, Chan AT, Xi J, Seh CC, Qureshi IA, Lescar J, Ruedl C, Gourlay R, Morton S, Hough J, McIver EG, Cohen P, Cheung PC (2011) The role of TBK1 and IKKε in the expression and activation of Pellino-1. Biochemical Journal 434:537–548

    Article  Google Scholar 

  476. Moynagh PN (2009) The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends in Immunology 30:33–42

    Article  Google Scholar 

  477. Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z (1999) IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. Journal of Biological Chemistry 274:19403–19410

    Article  Google Scholar 

  478. Chen BC, Wu WT, Ho FM, Lin WW (2002) Inhibition of interleukin-1β-induced NF-κB activation by calcium/calmodulin-dependent protein kinase kinase occurs through Akt activation associated with interleukin-1 receptor-associated kinase phosphorylation and uncoupling of MyD88. Journal of Biological Chemistry 277:24169–24179

    Article  Google Scholar 

  479. Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proceedings of the National Academy of Sciences of the United States of America 99:5567–5572

    Article  ADS  Google Scholar 

  480. Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD (2008) Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation. Molecular and Cellular Biology 28:3538–3547

    Article  Google Scholar 

  481. Motshwene PG, Moncrieffe MC, Grossmann JG, Kao CC, Ayaluru M, Sandercock AM, Robinson CV, Latz E, Gay NJ (2009) An oligomeric signalling platform formed by the toll-like receptor signal transducers MyD88 and IRAK4. Journal of Biological Chemistry 284:25404–25411

    Article  Google Scholar 

  482. Bernard O (2008) LIMK1; LIMK2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  483. Huang TY, DerMardirossian C, Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Current Opinion in Cell Biology 18:26–31

    Article  Google Scholar 

  484. Festjens N, VandenBerghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death and Differentiation 14:400–410

    Article  Google Scholar 

  485. Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Science Signaling 3:re4

    Google Scholar 

  486. Plotnikova OV, Pugacheva EN, Dunbrack RL, Golemis EA (2010) Rapid calcium-dependent activation of Aurora-A kinase. Nature – Communications 1:64

    Google Scholar 

  487. Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America 105:10762–10767

    Article  ADS  Google Scholar 

  488. Plotnikova OV, Pugacheva EN, Golemis EA (2011) Aurora A kinase activity influences calcium signaling in kidney cells. Journal of Cell Biology 193:1021–1032

    Article  Google Scholar 

  489. Rannou Y, Prigent C (2006) Aurora B. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  490. Nigg EA (1998) Polo-like kinases: positive regulators of cell division from start to finish. Current Opinion in Cell Biology 10:776–783

    Article  Google Scholar 

  491. Tsvetkov L, Xu X, Li J, Stern DF (2003) Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody. Journal of Biological Chemistry 278:8468–8475

    Article  Google Scholar 

  492. Johmura Y, Soung NK, Park JE, Yu LR, Zhou M, Bang JK, Kim BY, Veenstra TD, Erikson RL, Lee KS (2011) Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proceedings of the National Academy of Sciences of the United States of America 108:11446–11451

    Article  ADS  Google Scholar 

  493. Kauselmann G, Weiler M, Wulff P, Jessberger S, Konietzko U, Scafidi J, Staubli U, Bereiter-Hahn J, Strebhardt K, Kuhl D (1999) The polo-like protein kinases Fnk and Snk associate with a Ca2 + - and integrin-binding protein and are regulated dynamically with synaptic plasticity. EMBO Journal 18:5528–5539

    Article  Google Scholar 

  494. Matsumoto T, Wang PY, Ma W, Sung HJ, Matoba S, Hwang PM (2009) Polo-like kinases mediate cell survival in mitochondrial dysfunction. Proceedings of the National Academy of Sciences of the United States of America 106:14542–14546

    Article  ADS  Google Scholar 

  495. Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C, Stambrook P, Jhanwar-Uniyal M, Dai W (2001) Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. Journal of Biological Chemistry 276:43305–43312

    Article  Google Scholar 

  496. Ouyang B, Li W, Pan H, Meadows J, Hoffmann I, Dai W (1999) The physical association and phosphorylation of Cdc25C protein phosphatase by Prk. Oncogene 18:6029–6036

    Article  Google Scholar 

  497. Holtrich U, Wolf G, Yuan J, Bereiter-Hahn J, Karn T, Weiler M, Kauselmann G, Rehli M, Andreesen R, Kaufmann M, Kuhl D, Strebhardt K (2000) Adhesion induced expression of the serine/threonine kinase Fnk in human macrophages. Oncogene 19:4832–4839

    Article  Google Scholar 

  498. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Developmental Cell 13:190–202

    Article  Google Scholar 

  499. Lee BH, Chen W, Stippec S, Cobb MH (2007) Biological cross-talk between WNK1 and the transforming growth factor-β–Smad signaling pathway. Journal of Biological Chemistry 282:17985–17996

    Article  Google Scholar 

  500. Lee BH, Min X, Heise CJ, Xu BE, Chen S, Shu H, Luby-Phelps K, Goldsmith EJ, Cobb MH (2004) WNK1 phosphorylates synaptotagmin 2 and modulates its membrane binding. Molecular Cell 15:741–751

    Article  Google Scholar 

  501. Wang WH, Giebisch G (2009) Regulation of potassium handling in the renal collecting duct. Pflügers Archiv (European Journal of Physiology) 458:157–168

    Article  Google Scholar 

  502. Kahle KT, Rinehart J, Giebisch G, Gamba G, Hebert SC, Lifton RP (2008) A novel protein kinase signaling pathway essential for blood pressure regulation in humans. Trends in Endocrinology and Metabolism 19:91–95

    Article  Google Scholar 

  503. Choate KA, Kahle KT, Wilson FH, Nelson-Williams C, Lifton RP (2003) WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl − -transporting epithelia. Proceedings of the National Academy of Sciences of the United States of America 100:663–668

    Article  ADS  Google Scholar 

  504. Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvol P, Jeunemaitre X (2003) Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Molecular and Cellular Biology 23:9208–9221

    Article  Google Scholar 

  505. Xu BE, Stippec S, Lenertz L, Lee BH, Zhang W, Lee YK, Cobb MH (2004) WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. Journal of Biological Chemistry 279:7826–7831

    Article  Google Scholar 

  506. Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH (2005) WNK1 activates SGK1 to regulate the epithelial sodium channel. Proceedings of the National Academy of Sciences of the United States of America 102:10315–10320

    Article  ADS  Google Scholar 

  507. Xu BE, Stippec S, Lazrak A, Huang CL, Cobb MH (2005) WNK1 activates SGK1 by a phosphatidylinositol 3-kinase-dependent and non-catalytic mechanism. Journal of Biological Chemistry 280:34218–34223

    Article  Google Scholar 

  508. Vitari AC, Deak M, Collins BJ, Morrice N, Prescott AR, Phelan A, Humphreys S, Alessi DR (2004) WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate. Biochemical Journal 378:257–268

    Article  Google Scholar 

  509. Moniz S, Matos P, Jordan P (2008) WNK2 modulates MEK1 activity through the Rho GTPase pathway. Cellular Signalling 20:1762–1768

    Article  Google Scholar 

  510. Kahle KT, Rinehart J, de Los Heros P, Louvi A, Meade P, Vazquez N, Hebert SC, Gamba G, Gimenez I, Lifton RP (2005) WNK3 modulates transport of Cl −  in and out of cells: implications for control of cell volume and neuronal excitability. Proceedings of the National Academy of Sciences of the United States of America 102:16783–16788

    Article  ADS  Google Scholar 

  511. San-Cristobal P, de los Heros P, Ponce-Coria J, Moreno E, Gamba G (2008) WNK kinases, renal ion transport and hypertension. American Journal of Nephrology 28:860–870

    Google Scholar 

  512. Hoorn EJ, van der Lubbe N, Zietse R (2009) The renal WNK kinase pathway: a new link to hypertension. Nephrology Dialysis Transplantation 24:1074–1077

    Article  Google Scholar 

  513. Liapis H, Nag M, Kaji DM (1998) K-Cl cotransporter expression in the human kidney. American Journal of Physiology – Cell Physiology 275:C1432–C1437

    Google Scholar 

  514. Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S (2004) Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proceedings of the National Academy of Sciences of the United States of America 101:4690–4694

    Article  ADS  Google Scholar 

  515. Kahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD, Forbush B, Aronson PS, Lifton RP (2004) WNK4 regulates apical and basolateral Cl −  flux in extrarenal epithelia. Proceedings of the National Academy of Sciences of the United States of America 101:2064–2069

    Article  ADS  Google Scholar 

  516. Chabwine JN, Talavera K, Verbert L, Eggermont J, Vanderwinden JM, De Smedt H, Van Den Bosch L, Robberecht W, Callewaert G (2009) Differential contribution of the Na + –K + –2Cl −  cotransporter NKCC1 to chloride handling in rat embryonic dorsal root ganglion neurons and motor neurons. FASEB Journal 23:1168–1176

    Article  Google Scholar 

  517. Fuse T, Ohmae S, Takemoto-Kimura S, Bito H (2007) DCLK1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  518. Ohmae S, Takemoto-Kimura S, Okamura M, Adachi-Morishima A, Nonaka M, Fuse T, Kida S, Tanji M, Furuyashiki T, Arakawa Y, Narumiya S, Okuno H, Bito H (2006) Molecular identification and characterization of a family of kinases with homology to Ca2 + /calmodulin-dependent protein kinases I/IV. Journal of Biological Chemistry 281:20427–20439

    Article  Google Scholar 

  519. Higgins JM (2008) Haspin. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  520. Partanen JI, Tervonen TA, Myllynen M, Lind E, Imai M, Katajisto P, Dijkgraaf GJ, Kovanen PE, Mäkelä TP, Werb Z, Klefström J (2012) Tumor suppressor function of Liver kinase B1 (Lkb1) is linked to regulation of epithelial integrity. Proceedings of the National Academy of Sciences of the United States of America 109:E388-E397

    Article  ADS  Google Scholar 

  521. Letwin K, Mizzen L, Motro B, Ben-David Y, Bernstein A, Pawson T (1992) A mammalian dual specificity protein kinase, Nek1, is related to the NIMA cell cycle regulator and highly expressed in meiotic germ cells. EMBO Journal 11:3521–3531

    Google Scholar 

  522. Fry AM (2005) Nek2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  523. Roig J (2010) Nek6; Nek7; Nek9. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  524. Ishitani T, Hirao T, Suzuki M, Isoda M, Ishitani S, Harigaya K, Kitagawa M, Matsumoto K, Itoh M (2010) Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nature – Cell Biology 12:278–285

    Google Scholar 

  525. Looyenga BD, DeHaan AM, MacKeigan JP (2008) Pink1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  526. Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW (2011) PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proceedings of the National Academy of Sciences of the United States of America 108:9572–9577

    Article  ADS  Google Scholar 

  527. Williams BR, Sadler AJ (2006) Pkr. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  528. Daher A, Laraki G, Singh M, Melendez-Peña CE, Bannwarth S, Peters AH, Meurs EF, Braun RE, Patel RC, Gatignol A (2009) Molecular and Cellular Biology 29:254–265

    Article  Google Scholar 

  529. Elde NC, Child SJ, Geballe AP, Malik HS (2009) Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature 457:485–489

    Article  ADS  Google Scholar 

  530. Goh KC, deVeer MJ, Williams BRG (2000) The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO Journal 19:4292–4297

    Article  Google Scholar 

  531. Silva AM, Whitmore M, Xu Z, Jiang Z, Li X, Williams BRG (2004) Protein kinase R (PKR) interacts with and activates mitogen-activated protein kinase kinase 6 (MKK6) in response to double-stranded RNA stimulation. Journal of Biological Chemistry 279:37670–37676

    Article  Google Scholar 

  532. Daub H (2005) Srpk1; Srpk2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  533. Delhase M, Kim SY, Lee H, Naiki-Ito A, Chen Y, Ahn ER, Murata K, Kim SJ, Lautsch N, Kobayashi KS, Shirai T, Karin M, Nakanishi M (2012) TANK-binding kinase 1 (TBK1) controls cell survival through PAI-2/serpinB2 and transglutaminase 2. Proceedings of the National Academy of Sciences of the United States of America 109:E177–E186

    Article  ADS  Google Scholar 

  534. Mody A, Weiner J, Ramanathan S (2009) Modularity of MAP kinases allows deformation of their signalling pathways. Nature – Cell Biology 11:484–491

    Google Scholar 

  535. Gehart H, Kumpf S, Ittner A, Ricci R (2010) MAPK signalling in cellular metabolism: stress or wellness? EMBO Reports 11:834–840

    Article  Google Scholar 

  536. Dhanasekaran N, Reddy EP (1998) Signaling by dual specificity kinases. Oncogene 17: 1447–1455

    Article  Google Scholar 

  537. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 81:807–869

    Google Scholar 

  538. Takahashi K, Tanase-Nicola S, Ten Wolde PR (2010) Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proceedings of the National Academy of Sciences of the United States of America 107:2473–2478

    Article  ADS  Google Scholar 

  539. Lehoux S, Tedgui A (2003) Cellular mechanics and gene expression in blood vessels. Journal of Biomechanics 36:631–643

    Article  Google Scholar 

  540. Jauch R, Cho MK, Jake S, Netter C, Schreiter K, Aicher B, Zweckstetter M, Jackle Wahl MC (2006) Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment. EMBO Journal 25:4020–4032

    Article  Google Scholar 

  541. Liu L, Channavajhala PL, Rao VR, Moutsatsos I, Wu L, Zhang Y, Lin LL, Qiu Y (2009) Proteomic characterization of the dynamic KSR-2 interactome, a signaling scaffold complex in MAPK pathway. Biochimica et Biophysica Acta 1794:1485–1495

    Article  Google Scholar 

  542. Nelson ML, Kang HS, Lee GM, Blaszczak AG, Lau DKW, McIntosh LP, Graves BJ (2010) Ras signaling requires dynamic properties of Ets1 for phosphorylation-enhanced binding to coactivator CBP. Proceedings of the National Academy of Sciences of the United States of America 107:10026–10031

    Article  ADS  Google Scholar 

  543. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO Journal 16:1909–1920

    Article  Google Scholar 

  544. Sabio G, Kennedy NJ, Cavanagh-Kyros J, Jung DY, Ko HJ, Ong H, Barrett T, Kim JK, Davis RJ (2010) Role of muscle c-Jun NH2-terminal kinase 1 in obesity-induced insulin resistance. Molecular and Cellular Biology 30:106–115

    Article  Google Scholar 

  545. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB (Federation of American Societies for Experimental Biology) Journal 9:726–735

    Google Scholar 

  546. Qi M, Elion EA (2005) MAP kinase pathways Journal of Cell Science 118:3569–3572

    Google Scholar 

  547. Rauch J, Kolch W (2010) A-Raf. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  548. Feng L, Xie X, Ding Q, Luo X, He J, Fan F, Liu W, Wang Z, Chen Y (2007) Spatial regulation of Raf kinase signaling by RKTG. Proceedings of the National Academy of Sciences of the United States of America 104:14348–14353

    Article  ADS  Google Scholar 

  549. Rajakulendran T, Sahmi M, Lefranois M, Sicheri F, Therrien M (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545

    Article  ADS  Google Scholar 

  550. Ren JG, Li Z, Sacks DB (2007) IQGAP1 modulates activation of B-Raf. Proceedings of the National Academy of Sciences of the United States of America 104:10465–10469

    Article  ADS  Google Scholar 

  551. Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744

    Article  Google Scholar 

  552. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435

    Article  ADS  Google Scholar 

  553. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430

    Article  ADS  Google Scholar 

  554. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439:358–362

    Article  ADS  Google Scholar 

  555. von Kriegsheim A, Pitt A, Grindlay GJ, Kolch W, Dhillon AS (2006) Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nature – Cell Biology 8:1011–1016

    Google Scholar 

  556. Craig EA, Stevens MV, Vaillancourt RR, Camenisch TD (2008) MAP3Ks as central regulators of cell fate during development. Developmental Dynamics 23:3102–3114

    Article  Google Scholar 

  557. Dorow DS, Devereux L, Dietzsch E, De Kretser T (1993) Identification of a new family of human epithelial protein kinases containing two leucine/isoleucine-zipper domains. European Journal of Biochemistry 213:701–710

    Article  Google Scholar 

  558. Gallo KA, Mark MR, Scadden DT, Wang Z, Gu Q, Godowski PJ (1994) Identification and characterization of SPRK, a novel src-homology 3 domain-containing proline-rich kinase with serine/threonine kinase activity. Journal of Biological Chemistry 269:15092–15100

    Google Scholar 

  559. Bisson N, Moss T (2009) Mlk1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  560. Bisson N, Moss T (2009) Mlk2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  561. Marcora E, Gowan K, Lee JE (2003) Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proceedings of the National Academy of Sciences of the United States of America 100:9578–9583

    Article  ADS  Google Scholar 

  562. Schachter K, Liou GY, Du Y, Gallo KA (2006) Mlk3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  563. Vito P, Pellegrini L, Guiet C, D’Adamio L (1999) Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2 + -dependent reaction. Journal of Biological Chemistry 274:1533–1540

    Article  Google Scholar 

  564. Figueroa C, Tarras S, Taylor J, Vojtek AB (2003) Akt2 negatively regulates assembly of the POSH-MLK-JNK signaling complex. Journal of Biological Chemistry 278:47922–47927

    Article  Google Scholar 

  565. Couture JP, Blouin R (2009) DLK. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  566. Masaki M, Ikeda A, Shiraki E, Oka S, Kawasaki T (2003) Mixed lineage kinase LZK and antioxidant protein-1 activate NF-κB synergistically. European Journal of Biochemistry 270:76–83

    Article  Google Scholar 

  567. Ruggieri R (2006) Mltk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  568. Geh EN, Jin C, Xia Y (2010) Map3k1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  569. Ritterhoff S, Farah CM, Grabitzki J, Lochnit G, Skurat AV, Schmitz ML (2010) The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. EMBO Journal 29:3750–3761

    Article  Google Scholar 

  570. Miyata Y, Akashi M, Nishida E (1999) Molecular cloning and characterization of a novel member of the MAP kinase superfamily. Genes to Cells 4:299–309

    Article  Google Scholar 

  571. Zhou X, Izumi Y, Burg MB, Ferraris JD (2011) Rac1/osmosensing scaffold for MEKK3 contributes via phospholipase C-γ1 to activation of the osmoprotective transcription factor NFAT5. Proceedings of the National Academy of Sciences of the United States of America 108:12155–12160

    Article  Google Scholar 

  572. Matsuzawa A, Takeda K, Ichijo H (2010) ASK1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  573. Yoon KW, Cho JH, Lee JK, Kang YH, Chae JS, Kim YM, Kim J, Kim EK, Kim SE, Baik JH, Naik UP, Cho SG, Choi EJ (2009) CIB1 functions as a Ca2 + -sensitive modulator of stress-induced signaling by targeting ASK1. Proceedings of the National Academy of Sciences of the United States of America 106:17389–17394

    Article  ADS  Google Scholar 

  574. Li X, Zhang R, Luo D, Park SJ, Wang Q, Kim Y, Min W (2005) Tumor necrosis factor α-induced desumoylation and cytoplasmic translocation of homeodomain-interacting protein kinase 1 are critical for apoptosis signal-regulating kinase 1-JNK/p38 activation. Journal of Biological Chemistry 280:15061–15070

    Article  Google Scholar 

  575. Gan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan JL (2006) Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC-mTOR signaling pathways. Journal of Cell Biology 175:121–133

    Article  Google Scholar 

  576. Takizawa T, Tatematsu C, Nakanishi Y (2002) Double-stranded RNA-activated protein kinase interacts with apoptosis signal-regulating kinase 1. Implications for apoptosis signaling pathways. European Journal of Biochemistry 269:6126–6132

    Google Scholar 

  577. Xie D, Gore C, Zhou J, Pong RC, Zhang H, Yu L, Vessella RL, Min W, Hsieh JT (2009) DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proceedings of the National Academy of Sciences of the United States of America 106:19878–19883

    Google Scholar 

  578. Cockrell LM, Fu H (2011) Map3k6. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  579. Eto N, Miyagishi M, Inagi R, Fujita T, Nangaku M (2009) Mitogen-activated protein 3 kinase 6 mediates angiogenic and tumorigenic effects via vascular endothelial growth factor expression. American Journal of Pathology 174:1553–1563

    Article  Google Scholar 

  580. Ninomiya-Tsuji J, Matsumoto K (2006) Tak1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  581. Omori E, Inagaki M, Mishina Y, Matsumoto K, Ninomiya-Tsuji J (2012) Epithelial transforming growth factor β-activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America 109:3365–3370

    Article  ADS  Google Scholar 

  582. Li S, Wang L, Dorf ME (2009) PKC phosphorylation of TRAF2 mediates IKKα/β recruitment and K63-linked polyubiquitination. Molecular Cell 33:30–42

    Article  Google Scholar 

  583. Fürthauer M, Lin W, Ang SL, Thisse B, Thisse C (2002) Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nature – Cell Biology 4:170–174

    Google Scholar 

  584. Yang X, Kovalenko D, Nadeau RJ, Harkins LK, Mitchell J, Zubanova O, Chen PY, Friesel R (2004) Sef interacts with TAK1 and mediates JNK activation and apoptosis. Journal of Biological Chemistry 279:38099–38102

    Article  Google Scholar 

  585. Gantke T, Sriskantharajah S, Ley SC (2011) Regulation and function of TPL-2, an IκB kinase-regulated MAP kinase kinase kinase. Cell Research 21:131–145

    Article  Google Scholar 

  586. Régnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M (1997) Identification and characterization of an IkappaB kinase. Cell 90:373–383

    Article  Google Scholar 

  587. Yasuda S, Sugiura H, Yamagata K (2009) Mek3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  588. Asaoka Y, Nishina H (2010) Diverse physiological functions of MKK4 and MKK7 during early embryogenesis. Journal of Biochemistry 148:393–401

    Google Scholar 

  589. Abe JI, Yang J (2010) MEK5 UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  590. Forcales S, Puri PL (2010) MKK6. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  591. Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nature Reviews – Molecular Cell Biology 11:414–426

    Google Scholar 

  592. McKay MM, Ritt DA, Morrison DK (2009) Signaling dynamics of the KSR1 scaffold complex. Proceedings of the National Academy of Sciences of the United States of America 106:11022–11027

    Article  ADS  Google Scholar 

  593. Nojima H, Adachi M, Matsui T, Okawa K, Tsukita S, Tsukita S (2008) IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade. Nature – Cell Biology 10:971–978

    Google Scholar 

  594. Vaidyanathan H, Opoku-Ansah J, Pastorino S, Renganathan H, Matter M, Ramo JW (2008) ERK MAP kinase is targeted to RSK2 by the phosphoprotein PEA-15. Proceedings of the National Academy of Sciences of the United States of America 104:19837–19842

    Article  ADS  Google Scholar 

  595. Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, Okada M (2009) The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK–ERK pathway to late endosomes. EMBO Journal 28:477–489

    Article  Google Scholar 

  596. Magee J, Cygler M (2011) Interactions between kinase scaffold MP1/p14 and its endosomal anchoring protein p18. Biochemistry 50:3696–3705

    Article  Google Scholar 

  597. Catalanotti F, Reyes G, Jesenberger V, Galabova-Kovacs G, de Matos Simoes R, Carugo O, Baccarini M (2009) A Mek1–Mek2 heterodimer determines the strength and duration of the Erk signal. Nature – Structural and Molecular Biology 16:294–303

    Google Scholar 

  598. Rushworth LK, Hindley AD, O’Neill E, Kolch W (2006) Regulation and role of Raf-1/B-Raf heterodimerization. Molecular and Cellular Biology 26:2262–2272

    Article  Google Scholar 

  599. Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, Osborne J, McGlynn K, Stippec S, Earnest S, Chen W, Cobb MH (2008) The roles of MAPKs in disease. Cell Research 18:436–442

    Article  Google Scholar 

  600. Traub O, Monia BP, Dean NM, Berk BC (1997) PKC-epsilon is required for mechano-sensitive activation of ERK1/2 in endothelial cells. Journal of Biological Chemistry 272:31251–31257

    Article  Google Scholar 

  601. Cai H, Smola U, Wixler V, Eisenmann TI, Diaz MMT, Moscat J, Rapp U, Cooper GM (1997) Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Molecular and Cell Biology 17:732–741

    Google Scholar 

  602. Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Reports 7:782–786

    Article  Google Scholar 

  603. Emrick MA, Lee T, Starkey PJ, Mumby MC, Resing KA, Ahn NG (2006) The gatekeeper residue controls autoactivation of ERK2 via a pathway of intramolecular connectivity. Proceedings of the National Academy of Sciences of the United States of America 103:18101–18106

    Article  ADS  Google Scholar 

  604. Chanalaris A, Lawrence KM, Stephanou A, Knight RD, Hsu SY, Hsueh AJ, Latchman DS (2003) Protective effects of the urocortin homologues stresscopin (SCP) and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury in rat neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology 35:1295–1305

    Article  Google Scholar 

  605. Lee SJ, Pfluger PT, Kim JY, Nogueiras R, Duran A, Pagès G, Pouysségur J, Tschöp MH, Diaz-Meco MT, Moscat J (2010) A functional role for the p62–ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Reports 11:226–232

    Article  Google Scholar 

  606. Meloche S (2006) Erk4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  607. Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Reports 7:782–786

    Article  Google Scholar 

  608. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, Liu YC, Karin M (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIP L turnover. Cell 124:601–613

    Article  Google Scholar 

  609. Liu J, Zhao Y, Eilers M, Lin A (2009) Miz1 is a signal- and pathway-specific modulator or regulator (SMOR) that suppresses TNF-α-induced JNK1 activation. Proceedings of the National Academy of Sciences of the United States of America 106:18279–18284

    Article  ADS  Google Scholar 

  610. Haeusgen W, Herdegen T, Waetzig V (2010) Jnk2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  611. Li C, Zhang GY (2011) Jnk3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  612. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  ADS  Google Scholar 

  613. Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E, Fornace AJ, Ashwell JD (2005) Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nature – Immunology 6:390–395

    Google Scholar 

  614. Rousseau S (2011) p38 α MAP kinase. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  615. Mahlknecht U, Will J, Varin A, Hoelzer D, Herbein G (2004) Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. Journal of Immunology 173:3979–3990

    Google Scholar 

  616. Hou SW, Lepp A, Chen G (2010) p38γ MAP kinase. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  617. Chen Z, Chen J, Weng T, Jin N, Liu L (2006) Identification of rat lung–prominent genes by a parallel DNA microarray hybridization. BMC Genomics 7:47

    Article  Google Scholar 

  618. Liao P, Wang SQ, Wang S, Zheng M, Zheng M, Zhang SJ, Cheng H, Wang Y, Xiao RP (2002) p38 Mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circulation Research 90:190–196

    Article  Google Scholar 

  619. Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, Saffitz J, Chien K, Xiao RP, Kass DA, Wang Y (2002) The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America 98:12283–12288

    Article  ADS  Google Scholar 

  620. Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR (2004) p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton. American Journal of Physiology – Renal Physiology 286:F693–F701

    Google Scholar 

  621. Gaestel M (2006) MAPKAP kinases “MKs” two’s company, three’s a crowd. Nature Reviews – Molecular Cell Biology 7:120–130

    Google Scholar 

  622. Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS (2002) MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Molecular and Cellular Biology 22:2871–2881

    Article  Google Scholar 

  623. Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO Journal 9:2431–2438

    Google Scholar 

  624. Cole A, Frame S, Cohen P (2004) Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochemical Journal 377:249–255

    Article  Google Scholar 

  625. Vilimek D, Duronio V (2006) Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB. Biochemistry and Cell Biology 84:20–29

    Article  Google Scholar 

  626. Kaladchibachi SA, Doble B, Anthopoulos N, Woodgett JR, Manoukian AS (2007) Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. Journal of Circadian Rhythms 5:3

    Article  Google Scholar 

  627. Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X, Proud CG (2001) The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bε at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochemical Journal 355:609–615

    Google Scholar 

  628. Himpel S, Panzer P, Eirmbter K, Czajkowska H, Sayed M, Packman LC, Blundell T, Kentrup H, Grötzinger J, Joost HG, Becker W (2001) Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochemical Journal 359:497–505

    Article  Google Scholar 

  629. Becker W (2008) Dyrk1a. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  630. Becker W, Friedman EA (2008) Dyrk1b. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  631. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K (2007) DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Molecular Cell 25:725–738

    Article  Google Scholar 

  632. Bogacheva O, Bogachev O, Menon M, Dev A, Houde E, Valoret EI, Prosser HM, Creasy CL, Pickering SJ, Grau E, Rance K, Livi GP, Karur V, Erickson-Miller CL, Wojchowski DM (2008) DYRK3 dual-specificity kinase attenuates erythropoiesis during anemia. Journal of Biological Chemistry 283:36665–36675

    Article  Google Scholar 

  633. Sacher F, Möller C, Bone W, Gottwald U, Fritsch M (2007) The expression of the testis-specific Dyrk4 kinase is highly restricted to step 8 spermatids but is not required for male fertility in mice. Molecular and Cellular Endocrinology 267:80–88

    Article  Google Scholar 

  634. Rabinow LJ, Uguen P (2005) Clk1; Clk2; Clk3; Clk4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  635. Hanes J, von der Kammer H, Klaudiny J, Scheit KH (1994) Characterization by cDNA cloning of two new human protein kinases. Evidence by sequence comparison of a new family of mammalian protein kinases. Journal of Molecular Biology 244:665–672

    Google Scholar 

  636. Rudolph J, Kristjansdottir KS (2004) Myt1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  637. Granovsky AE, Rosner MR (2008) Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor. Cell Research 18:452–457

    Article  Google Scholar 

  638. Klysik J, Theroux SJ, Sedivy JM, Moffit JS, Boekelheide K (2008) Signaling crossroads: the function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cell Signalling 20:1–9

    Article  Google Scholar 

  639. Goumon Y, Angelone T, Schoentgen F, Chasserot-Golaz S, Almas B, Fukami MM, Langley K, Welters ID, Tota B, Aunis D, Metz-Boutigue MH (2004) The hippocampal cholinergic neurostimulating peptide, the N-terminal fragment of the secreted phosphatidylethanolamine-binding protein, possesses a new biological activity on cardiac physiology. Journal of Biological Chemistry 279:13054–13064

    Article  Google Scholar 

  640. Zhu ST, Mc Henry KT, Lane WS, Fenteany G (2005) A chemical inhibitor reveals the role of Raf kinase inhibitor protein in cell migration. Chemistry Biology 12:981–991

    Article  Google Scholar 

  641. Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemée A (2007) Emerging roles of nuclear protein phosphatases. Nature Reviews – Molecular Cell Biology 8:234–244

    Google Scholar 

  642. Conner SH, Kular G, Peggie M, Shepherd S, Schüttelkopf AW, Cohen P, Van Aalten DM (2006) TAK1-binding protein 1 is a pseudophosphatase. Biochemical Journal 399:427–434

    Article  Google Scholar 

  643. Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297:1018–1023

    Article  ADS  Google Scholar 

  644. Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nature Reviews – Molecular Cell Biology 12:469–482

    Google Scholar 

  645. Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiological Reviews 84:1–39

    Article  Google Scholar 

  646. Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R, Peti W (2010) Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nature – Structural and Molecular Biology 17:459–464

    Google Scholar 

  647. Johnson DF, Moorhead G, Caudwell FB, Cohen P, Chen YH, Chen MX, Cohen PT (1996) Identification of protein-phosphatase-1-binding domains on the glycogen and myofibrillar targetting subunits. European Journal of Biochemistry 239:317–325

    Article  Google Scholar 

  648. Shimada M, Haruta M, Niida H, Sawamoto K, Nakanishi M (2010) Protein phosphatase 1γ is responsible for dephosphorylation of histone H3 at Thr 11 after DNA damage. EMBO Reports 11:883–889

    Article  Google Scholar 

  649. Wang BJ, Tang W, Zhang P, Wei Q (2012) Regulation of the catalytic domain of protein phosphatase 1 by the terminal region of protein phosphatase 2B. Journal of Biochemistry 151:283–290

    Article  Google Scholar 

  650. de Souza RP, Rosa DV, Souza BR, Romano-Silva MA (2006) Darpp32. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  651. Vancauwenbergh S, Beullens M, Bollen M (2007) Nipp1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  652. Shichi D, Arimura T, Ishikawa T, Kimura A (2010) Heart-specific small subunit of myosin light chain phosphatase activates rho-associated kinase and regulates phosphorylation of myosin phosphatase target subunit 1. Journal of Biological Chemistry 285:33680–33690

    Article  Google Scholar 

  653. Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical Journal 353:417–439

    Article  Google Scholar 

  654. Chen J, Martin BL, Brautigan DL (1992) Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257:1261–1264

    Article  ADS  Google Scholar 

  655. Xing Y, Li Z, Chen Y, Stock JB, Jeffrey PD, Shi Y (2008) Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell 133:154–163

    Article  Google Scholar 

  656. Hastie CJ, Carnegie GK, Morrice N, Cohen PT (2000) A novel 50 kDa protein forms complexes with protein phosphatase 4 and is located at centrosomal microtubule organizing centres. Biochemical Journal 347:845–855

    Article  Google Scholar 

  657. Liu E, Knutzen CA, Krauss S, Schweiger S, Chiang GG (2011) Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proceedings of the National Academy of Sciences of the United States of America 108:8680–8685

    Article  ADS  Google Scholar 

  658. Strack S, Cribbs JT, Gomez L (2004) Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. Journal of Biological Chemistry 279:47732–47739

    Article  Google Scholar 

  659. Tar K, Csortos C, Czikora I, Olah G, Ma SF, Wadgaonkar R, Gergely P, Garcia JG, Verin AD (2006) Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. Journal of Cellular Biochemistry 98:931–953

    Article  Google Scholar 

  660. Liu Q, Caldwell-Busby J, Molkentin JD (2009) Interaction between TAK1–TAB1–TAB2 and RCAN1–calcineurin defines a signalling nodal control point. Nature – Cell Biology 11: 154–161

    Google Scholar 

  661. Duan L, Cobb MH (2010) Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback. Proceedings of the National Academy of Sciences of the United States of America 107:22314–22319

    Article  ADS  Google Scholar 

  662. Brewis ND, Street AJ, Prescott AR, Cohen PT (1993) PPX, a novel protein serine/threonine phosphatase localized to centrosomes. EMBO Journal 12:987–996

    Google Scholar 

  663. Lee DH, Pan Y, Kanner S, Sung P, Borowiec JA, Chowdhury D (2010) A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nature – Structural and Molecular Biology 17:365–372

    Google Scholar 

  664. Yoon YS, Lee MW, Ryu D, Kim JH, Ma H, Seo WY, Kim YN, Kim SS, Lee CH, Hunter T, Choi CS, Montminy MR, Koo SH (2010) Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America 107:17704–17709

    Article  Google Scholar 

  665. Chinkers M (2001) Protein phosphatase 5 in signal transduction. Trends in Endocrinology and Metabolism 12:28–32

    Article  Google Scholar 

  666. Becker W, Kentrup H, Klumpp S, Schultz JE, Joost HG (1994) Molecular cloning of a protein serine/threonine phosphatase containing a putative regulatory tetratricopeptide repeat domain. Journal of Biological Chemistry 269:22586–22592

    Google Scholar 

  667. Bastians H, Ponstingl H (1996) The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. Journal of Cell Science 109:2865–2874

    Google Scholar 

  668. Huang X, Honkanen RE (1998) Molecular cloning, expression, and characterization of a novel human serine/threonine protein phosphatase, PP7, that is homologous to Drosophila retinal degeneration C gene product (rdgC). Journal of Biological Chemistry 273:1462–1468

    Article  Google Scholar 

  669. Wang Y, Dow EC, Liang YY, Ramakrishnan R, Liu H, Sung TL, Lin X, Rice AP (2008) Phosphatase PPM1A regulates phosphorylation of Thr-186 in the Cdk9 T-loop. Journal of Biological Chemistry 283:33578–33584

    Article  Google Scholar 

  670. Lu G, Wang Y (2008) Functional diversity of mammalian type 2C protein phosphatase isoforms: new tales from an old family. Clinical and Experimental Pharmacology and Physiology 35:107–112

    Article  Google Scholar 

  671. Henmi T, Amano K, Nagaura Y, Matsumoto K, Echigo S, Tamura S, Kobayashi T (2009) A mechanism for the suppression of interleukin-1-induced nuclear factor κB activation by protein phosphatase 2Cη-2. Biochemical Journal 423:71–78

    Article  Google Scholar 

  672. Voss M, Paterson J, Kelsall IR, Martn-Granados C, Hastie CJ, Peggie MW, Cohen PT (2011) Ppm1E is an in cellulo AMP-activated protein kinase phosphatase. Cellular Signalling 23:114–124

    Article  Google Scholar 

  673. Ishida A, Tada Y, Nimura T, Sueyoshi N, Katoh T, Takeuchi M, Fujisawa H, Taniguchi T, Kameshita I (2005) Identification of major Ca2 + /calmodulin-dependent protein kinase phosphatase-binding proteins in brain: biochemical analysis of the interaction. Archives of Biochemistry and Biophysics 435:134–146

    Article  Google Scholar 

  674. Lee-Hoeflich ST, Pham TQ, Dowbenko D, Munroe X, Lee J, Li L, Zhou W, Haverty PM, Pujara K, Stinson J, Chan SM, Eastham-Anderson J, Pandita A, Seshagiri S, Hoeflich KP, Turashvili G, Gelmon KA, Aparicio SA, DP Davis, Sliwkowski MX, Stern HM (2011) PPM1H is a p27 phosphatase implicated in trastuzumab resistance. Cancer Discovery 1: 326–337

    Article  Google Scholar 

  675. Sugiura T, Noguchi Y (2009) Substrate-dependent metal preference of PPM1H, a cancer-associated protein phosphatase 2C: comparison with other family members. Biometals 22:469–477

    Article  Google Scholar 

  676. Lu G, Sun H, Korge P, Koehler CM, Weiss JN, Wang Y (2009) Functional Characterization of a Mitochondrial Ser/Thr Protein Phosphatase in Cell Death Regulation (Chap. 14, p.255-273). In Allison WS, Murphy AN (Eds) Methods in Enzymology, Vol. 457 “Mitochondrial Function, Part B: Mitochondrial Protein Kinases, Protein Phosphatases and Mitochondrial Diseases”, Elsevier, Amsterdam

  677. Shimizu K, Okada M, Nagai K, Fukada Y (2003) Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. Journal of Biological Chemistry 278:14920–14925

    Article  Google Scholar 

  678. Kato J, Kato M (2010) Crystallization and preliminary crystallographic studies of the catalytic subunits of human pyruvate dehydrogenase phosphatase isoforms 1 and 2. Acta Crystallographica, Section F, Structural Biology and Crystallization Communications 66:342–345

    Article  Google Scholar 

  679. Caruso M, Maitan MA, Bifulco G, Miele C, Vigliotta G, Oriente F, Formisano P, Beguinot F (2001) Activation and mitochondrial translocation of protein kinase Cdelta are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells. Journal of Biological Chemistry 276:45088–45097

    Article  Google Scholar 

  680. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews – Molecular Cell Biology 7:833–846

    Google Scholar 

  681. Reue K, Brindley DN (2008) Thematic Review Series: glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. Journal of Lipid Research 49:2493–2503

    Google Scholar 

  682. Östman A, Frijhoff J, Sandin A, Böhmer FD (2011) Regulation of protein tyrosine phosphatases by reversible oxidation. Journal of Biochemistry 150:345–356

    Article  Google Scholar 

  683. Gandhi TK, Chandran S, Peri S, Saravana R, Amanchy R, Prasad TS, Pandey A (2005) A bioinformatics analysis of protein tyrosine phosphatases in humans. DNA Research 12: 79–89

    Article  Google Scholar 

  684. Chernoff J (2008) Ptp1b. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  685. Lund IK, Hansen JA, Andersen HS, Møller NP, Billestrup N (2005) Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. Journal of Molecular Endocrinology 34:339–351

    Article  Google Scholar 

  686. Aoki N, Matsuda T (2000) A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. Journal of Biological Chemistry 275:39718–39726

    Article  Google Scholar 

  687. Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H (2008) Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Molecular and Cellular Proteomics 7:1763–1777

    Article  Google Scholar 

  688. Ravichandran LV, Chen H, Li Y, Quon MJ (2001) Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Molecular Endocrinology 15:1768–1780

    Article  Google Scholar 

  689. Tiganis T, Bennett AM, Ravichandran KS, Tonks NK (1998) Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Molecular and Cellular Biology 18:1622–1634

    Google Scholar 

  690. Tiganis T, Kemp BE, Tonks NK (1999) The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. Journal of Biological Chemistry 274:27768–27775

    Article  Google Scholar 

  691. Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, Matsuda T (2002) The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochemical and Biophysical Research Communications 297:811–817

    Article  Google Scholar 

  692. Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK, Tiganis T (2003) Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Molecular and Cellular Biology 23:2096–2108

    Article  Google Scholar 

  693. Arpin M, Algrain M, Louvard D (1994) Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Current Opinion in Cell Biology 6:136–141

    Article  Google Scholar 

  694. Zhang SH, Kobayashi R, Graves PR, Piwnica-Worms H, Tonks NK (1997) Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3β protein. Journal of Biological Chemistry 272:27281–27287

    Article  Google Scholar 

  695. Zheng Y, Schlondorff J, Blobel CP (2002) Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. Journal of Biological Chemistry 277:42463–42470

    Article  Google Scholar 

  696. Jespersen T, Gavillet B, van Bemmelen MX, Cordonier S, Thomas MA, Staub O, Abriel H (2006) Cardiac sodium channel Na V 1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochemical and Biophysical Research Communications 348: 1455–1462

    Article  Google Scholar 

  697. Sozio MS, Mathis MA, Young JA, Wälchli S, Pitcher LA, Wrage PC, Bartk B, Campbell A, Watts JD, Aebersold R, Hooft van Huijsduijnen R, van Oers NS (2004) PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor ζ subunit. Journal of Biological Chemistry 279:7760–7769

    Article  Google Scholar 

  698. Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T (2000) The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor δ2 and ε subunits. Journal of Biological Chemistry 275:16167–16173

    Article  Google Scholar 

  699. Lombroso PJ, Murdoch G, Lerner M (1991) Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum. Proceedings of the National Academy of Sciences of the United States of America 88:7242–7246

    Article  ADS  Google Scholar 

  700. Fitzpatrick CJ, Goebel-Goody SM, Liberzon I, Lombroso PJ (2010) STEP. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  701. Nguyen TH, Liu J, Lombroso PJ (2002) Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 420. Journal of Biological Chemistry 277:24274–24279

    Article  Google Scholar 

  702. Pulido R, Zñiga A, Ullrich A (1998) PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO Journal 17:7337–7350

    Article  Google Scholar 

  703. Keilhack H, Müller M, Böhmer SA, Frank C, Weidner KM, Birchmeier W, Ligensa T, Berndt A, Kosmehl H, Günther B, Müller T, Birchmeier C, Böhmer FD (2001) Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. Journal of Cell Biology 152:325–334

    Article  Google Scholar 

  704. Tenev T, Keilhack H, Tomic S, Stoyanov B, Stein-Gerlach M, Lammers R, Krivtsov AV, Ullrich A, Böhmer FD (1997) Both SH2 domains are involved in interaction of SHP-1 with the epidermal growth factor receptor but cannot confer receptor-directed activity to SHP-1/SHP-2 chimera. Journal of Biological Chemistry 272:5966–5973

    Article  Google Scholar 

  705. Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA (1998) SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Molecular and Cellular Biology 18:2089–2099

    Google Scholar 

  706. Klingmüller U, Lorenz U, Cantley LC, Neel BG, Lodish HF (1995) Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80:729–738

    Article  Google Scholar 

  707. Yoshida K, Kufe D (2001) Negative regulation of the SHPTP1 protein tyrosine phosphatase by protein kinase Cδ in response to DNA damage. Molecular Pharmacology 60:1431–1438

    Google Scholar 

  708. Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, Phillips JH (1997) LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. Immunity 7:283–290

    Article  Google Scholar 

  709. Wang PY, Liu P, Weng J, Sontag E, Anderson RG (2003) A cholesterol-regulated PP2A/HePTP complex with dual specificity ERK1/2 phosphatase activity. EMBO Journal 22:2658–2667

    Article  Google Scholar 

  710. Pettiford SM, Herbst R (2003) The protein tyrosine phosphatase HePTP regulates nuclear translocation of ERK2 and can modulate megakaryocytic differentiation of K562 cells. Leukemia 17:366–378

    Article  Google Scholar 

  711. Kruger JM, Fukushima T, Cherepanov V, Borregaard N, Loeve C, Shek C, Sharma K, Tanswell AK, Chow CW, Downey GP (2002) Protein-tyrosine phosphatase MEG2 is expressed by human neutrophils. Localization to the phagosome and activation by polyphosphoinositides. Journal of Biological Chemistry 277:2620–2628

    Google Scholar 

  712. Cho CY, Koo SH, Wang Y, Callaway S, Hedrick S, Mak PA, Orth AP, Peters EC, Saez E, Montminy M, Schultz PG, Chanda SK (2006) Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metabolism 3:367–378

    Article  Google Scholar 

  713. Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J (1998) Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. Journal of Biological Chemistry 273:15906–15912

    Article  Google Scholar 

  714. Lehmann U, Schmitz J, Weissenbach M, Sobota RM, Hortner M, Friederichs K, Behrmann I, Tsiaris W, Sasaki A, Schneider-Mergener J, Yoshimura A, Neel BG, Heinrich PC, Schaper F (2003) SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. Journal of Biological Chemistry 78:661–671

    Google Scholar 

  715. Yin T, Shen R, Feng GS, Yang YC (1997) Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. Journal of Biological Chemistry 272:1032–1037

    Article  Google Scholar 

  716. Yu CL, Jin YJ, Burakoff SJ (2000) Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation. Journal of Biological Chemistry 275:599–604

    Article  Google Scholar 

  717. Boudot C, Kadri Z, Petitfrère E, Lambert E, Chrétien S, Mayeux P, Haye B, Billat C (2002) Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-γ2 activation in erythropoietin-stimulated cells. Cell Signalling 14:869–878

    Article  Google Scholar 

  718. Nakamura T, Gulick J, Colbert MC, Robbins J (2009) Protein tyrosine phosphatase activity in the neural crest is essential for normal heart and skull development. Proceedings of the National Academy of Sciences of the United States of America 106:11270–11275

    Article  ADS  Google Scholar 

  719. Shen Y, Schneider G, Cloutier JF, Veillette A, Schaller MD (1998) Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. Journal of Biological Chemistry 273:6474–6481

    Article  Google Scholar 

  720. Veillette A, Rhee I, Souza CM, Davidson D (2009) PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders. Immunological Reviews 228:312–324

    Article  Google Scholar 

  721. Gross C, Heumann R, Erdmann KS (2001) The protein kinase C-related kinase PRK2 interacts with the protein tyrosine phosphatase PTP-BL via a novel PDZ domain binding motif. FEBS Letters 496:101–104

    Article  Google Scholar 

  722. Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y (2003) The protein tyrosine phosphatase Pez is a major phosphatase of adherens junctions and dephosphorylates beta-catenin. Molecular Biology of the Cell 14:2520–2529

    Article  Google Scholar 

  723. Spencer S, Dowbenko D, Cheng J, Li W, Brush J, Utzig S, Simanis V, Lasky LA (2009) PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase. Journal of Cell Biology 138:845–860

    Article  Google Scholar 

  724. Ohsugi M, Kuramochi S, Matsuda S, Yamamoto T (1997) Molecular cloning and characterization of a novel cytoplasmic protein-tyrosine phosphatase that is specifically expressed in spermatocytes. Journal of Biological Chemistry 272:33092–33099

    Article  Google Scholar 

  725. Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento EV, Gottesman M, Garbi C, Feliciello A (2008) Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. Journal of Biological Chemistry 283: 10919–10929

    Article  Google Scholar 

  726. Castiglioni S, Maier JA, Mariotti M (2007) The tyrosine phosphatase HD-PTP: A novel player in endothelial migration. Biochemical and Biophysical Research Communications 364: 534–539

    Article  Google Scholar 

  727. Mariotti M, Castiglioni S, Garcia-Manteiga JM, Beguinot L, Maier JA (2009) HD-PTP inhibits endothelial migration through its interaction with Src. International Journal of Biochemistry and Cell Biology 41:687–693

    Article  Google Scholar 

  728. Takahashi Y, Morales FC, Kreimann EL, Georgescu MM (2006) PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO Journal 25:910–920

    Article  Google Scholar 

  729. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128:157–170

    Article  Google Scholar 

  730. Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG (2002) Direct identification of PTEN phosphorylation sites. FEBS Letters 528:145–153

    Article  Google Scholar 

  731. Chen H, Duncan IC, Bozorgchami H, Lo SH (2002) Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proceedings of the National Academy of Sciences of the United States of America 99:733–738

    ADS  Google Scholar 

  732. Eto M, Kirkbride J, Elliott E, Lo SH, Brautigan DL (2007) Association of the tensin N-terminal protein-tyrosine phosphatase domain with the α isoform of protein phosphatase-1 in focal adhesions. Journal of Biological Chemistry 282:17806–17815

    Article  Google Scholar 

  733. Hafizi S, Ibraimi F, Dahlbäck B (2005) C1-TEN is a negative regulator of the Akt/PKB signal transduction pathway and inhibits cell survival, proliferation, and migration. FASEB Journal 19:971–973

    Google Scholar 

  734. Tapparel C, Reymond A, Girardet C, Guillou L, Lyle R, Lamon C, Hutter P, Antonarakis SE (2003) The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323:189–199

    Article  Google Scholar 

  735. Liu Y, Shepherd EG, Nelin LD (2007) MAPK phosphatases regulating the immune response. Nature Reviews – Immunology 7:202–212

    Google Scholar 

  736. Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochemical Journal 418:475–489

    Google Scholar 

  737. Bayón Y, Alonso A (2010) Atypical DUSPs: 19 phosphatases in search of a role (Chap. 9). In Lazo PA (Ed.) Emerging Signaling Pathways in Tumor Biology. Transworld Research Network, Kerala, India

    Google Scholar 

  738. Dickinson RJ, Keyse SM (2006) Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science 119:4607–4615

    Article  Google Scholar 

  739. Keyse SM (2008) Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Reviews 27:253–261

    Article  Google Scholar 

  740. Jeffrey KL, Camps M, Rommel C, Mackay CR (2007) Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nature Reviews – Drug Discovery 6:391–403

    Google Scholar 

  741. Lang R, Hammer M, Mages J (2006) DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. Journal of Immunology 177: 7497–7504

    Google Scholar 

  742. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, Flavell RA (2006) Dynamic regulation of pro-and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proceedings of the National Academy of Sciences of the United States of America 103:2274–2279

    Article  ADS  Google Scholar 

  743. Chun CZ, Kaur S, Samant GV, Wang L, Pramanik K, Garnaas MK, Li K, Field L, Mukhopadhyay D, Ramchandran R (2009) Snrk-1 is involved in multiple steps of angioblast development and acts via notch signaling pathway in artery-vein specification in vertebrates. Blood 113:983–984

    Google Scholar 

  744. Pramanik K, Chun CZ, Garnaas MK, Samant GV, Li K, Horswill MA, North PE, Ramchandran R (2009) Dusp-5 and Snrk-1 coordinately function during vascular development and disease. Blood 113:1184–1191

    Article  Google Scholar 

  745. Molina G, Vogt A, Bakan A, Dai W, Queiroz de Oliveira P, Znosko W, Smithgall TE, Bahar I, Lazo JS, Day BW, Tsang M (2009) Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nature – Chemical Biology 5:680–687

    Google Scholar 

  746. Levy-Nissenbaum O, Sagi-Assif O, Witz IP (2004) Characterization of the dual-specificity phosphatase PYST2 and its transcripts. Genes, Chromosomes and Cancer 39:37–47

    Article  Google Scholar 

  747. Pulido R, Muda M (2010) MKP-X. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  748. Martell KJ, Seasholtz AF, Kwak SP, Clemens KK, Dixon JE (1995) hVH-5: a protein tyrosine phosphatase abundant in brain that inactivates mitogen-activated protein kinase. Journal of Neurochemistry 65:1823–1833

    Article  Google Scholar 

  749. Bernabeu R, Di Scala G, Zwiller J (2000) Odor regulates the expression of the mitogen-activated protein kinase phosphatase gene hVH-5 in bilateral entorhinal cortex-lesioned rats. Brain Research – Molecular Brain Research 5:113–120

    Google Scholar 

  750. Pulido R, Muda M (2010) MKP-4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  751. Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, Davis RJ, Greenberg PD, Flavell RA, Dong C (2004) Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430:793–797

    Article  ADS  Google Scholar 

  752. Wolters NM, MacKeigan JP (2007) Mk-styx. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  753. Kligys K, Claiborne JN, DeBiase PJ, Hopkinson SB, Wu Y, Mizuno K, Jones JC (2007) The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. Journal of Biological Chemistry 282:32520–32528

    Article  Google Scholar 

  754. Clague MJ, Lorenzo O (2005) The myotubularin family of lipid phosphatases. Traffic 6: 1063–1069

    Article  Google Scholar 

  755. Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Molecular Biology of the Cell 19:3334–3346

    Article  Google Scholar 

  756. Wishart MJ (2007) Styx. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  757. Xiao J, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE (2011) Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proceedings of the National Academy of Sciences of the United States of America 108:11860–11865

    Article  Google Scholar 

  758. Gross AW, Dawson JP, Muda M (2011) Yvh1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  759. Ramponi G, Stefani M (1997) Structure and function of the low Mr phosphotyrosine protein phosphatases. Biochimica et Biophysica Acta 1341:137–156

    Article  Google Scholar 

  760. Chiarugi P, Cirri P, Raugei G, Manao G, Taddei L, Ramponi G (1996) Low M(r) phosphotyrosine protein phosphatase interacts with the PDGF receptor directly via its catalytic site. Biochemical and Biophysical Research Communications 219:21–25

    Article  Google Scholar 

  761. Shimizu H, Toyama O, Shiota M, Kim-Mitsuyama S, Miyazaki H (2005) Protein tyrosine phosphatase LMW-PTP exhibits distinct roles between vascular endothelial and smooth muscle cells. Journal of Receptors and Signal Transduction 25:19–33

    Article  Google Scholar 

  762. Nilsson I, Hoffmann I (2000) Cell cycle regulation by the Cdc25 phosphatase family. Progress in Cell Cycle Research 4:107–114

    Article  Google Scholar 

  763. Aressy B, Ducommun B (2008) Cell cycle control by the CDC25 phosphatases. Anti-Cancer Agents in Medicinal Chemistry 8:818–824

    Article  Google Scholar 

  764. Potapova TA, Daum JR, Byrd KS, Gorbsky GJ (2009) Fine tuning the cell cycle: activation of the Cdk1 inhibitory phosphorylation pathway during mitotic exit. Molecular Biology of the Cell 20:1737–1748

    Article  Google Scholar 

  765. Kiyokawa H, Ray D (2008) In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets. Anti-Cancer Agents in Medicinal Chemistry 8:832–836

    Article  Google Scholar 

  766. Fernandez-Vidal A, Mazars A, Manenti S (2008) CDC25A: a rebel within the CDC25 phosphatases family? Anti-Cancer Agents in Medicinal Chemistry 8:825–831

    Article  Google Scholar 

  767. Timofeev O, Cizmecioglu O, Hu E, Orlik T, Hoffmann I (2009) Human Cdc25A phosphatase has a non-redundant function in G2 phase by activating Cyclin A-dependent kinases. FEBS Letters 583:841–847

    Article  Google Scholar 

  768. Zhang X, Neganova I, Przyborski S, Yang C, Cooke M, Atkinson SP, Anyfantis G, Fenyk S, Keith WN, Hoare SF, Hughes O, Strachan T, Stojkovic M, Hinds PW, Armstrong L, Lako M (2009) A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. Journal of Cell Biology 184:67–82

    Article  Google Scholar 

  769. Lobjois V, Jullien D, Bouché JP, Ducommun B (2009) The polo-like kinase 1 regulates CDC25B-dependent mitosis entry. Biochimica et Biophysica Acta 793:462–468

    Article  Google Scholar 

  770. Telles E, Hosing AS, Kundu ST, Venkatraman P, Dalal SN (2009) A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Experimental Cell Research 315:1448–1457

    Article  Google Scholar 

  771. Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X (2002) Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129: 3033–3044

    Google Scholar 

  772. Almo SC, Bonanno JB, Saunder JM, Emtage S, Dilorenzo TP, Malashkevich V, Wasserman SR, Swaminathan S, Eswaramoorthy S, Agarwal R, Kumaran D, Madegowda M, Ragumani S, Patskovsky Y, Alvarado J, Ramagopal UA, Faber-Barata J, Chance MR, Sali A, Fiser A, Zhang ZY, Lawrence DS, Burley SK (2007) Structural genomics of protein phosphatases. Journal of Structural and Functional Genomics 8:121–140

    Article  Google Scholar 

  773. Tuma PL, Collins CA (1995) Dynamin forms polymeric complexes in the presence of lipid vesicles. Characterization of chemically cross-linked dynamin molecules. Journal of Biological Chemistry 270:26707–26714

    Google Scholar 

  774. Sirajuddin M, Farkasovsky M, Zent E, Wittinghofer A (2009) GTP-induced conformational changes in septins and implications for function. Proceedings of the National Academy of Sciences of the United States of America 106:16592–16597

    Article  Google Scholar 

  775. Gasper R, Meyer S, Gotthardt K, Sirajuddin M, Wittinghofer A (2009) It takes two to tango: regulation of G proteins by dimerization. Nature Reviews – Molecular Cell Biology 10: 423–429

    Google Scholar 

  776. Noguchi S, Toyoshima K, Yamamoto S, Miyazaki T, Otaka M, Watanabe S, Imai K, Senoo H, Kobayashi R, Jikei M, Kawata Y, Kubota H, Itoh H (2011) Cytosolic chaperonin CCT possesses GTPase activity. American Journal of Molecular Biology 1:123–130

    Article  Google Scholar 

  777. http://www.sigmaaldrich.com/

  778. Hildebrandt JD (1997) Role of subunit diversity in signaling by heterotrimeric G proteins. Biochemical Pharmacology 54:325–339

    Article  Google Scholar 

  779. Hendriks-Balk MC, Peters SLM, Michel MC, Alewijnse AE (2008) Regulation of G protein-coupled receptor signalling: Focus on the cardiovascular system and regulator of G protein signalling proteins. European Journal of Pharmacology 585:278–291

    Article  Google Scholar 

  780. Digby GJ, Lober RM, Sethi PR, Lambert NA (2006) Some G protein heterotrimers physically dissociate in living cells. Proceedings of the National Academy of Sciences of the United States of America 103:17789–17794

    Article  ADS  Google Scholar 

  781. Berlot C (2004) G protein α s. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  782. Jiang P, Enomoto A, Jijiwa M, Kato T, Hasegawa T, Ishida M, Sato T, Asai N, Murakumo Y, Takahashi M (2008) An actin-binding protein Girdin regulates the motility of breast cancer cells. Cancer Research 68:1310–1318

    Article  Google Scholar 

  783. Garcia-Marcos M, Kietrsunthorn PS, Pavlova Y, Adia MA, Ghosh P, Farquhar MG (2012) Functional characterization of the guanine nucleotide exchange factor (GEF) motif of GIV protein reveals a threshold effect in signaling. Proceedings of the National Academy of Sciences of the United States of America 109:1961–1966

    Article  ADS  Google Scholar 

  784. Ghosh P, Beas AO, Bornheimer SJ, Garcia-Marcos M, Forry EP, Johannson C, Ear J, Jung BH, Cabrera B, Carethers JM, Farquhar MG (2010) A Gαi-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate. Molecular Biology of the Cell 21:2338–2354

    Article  Google Scholar 

  785. Bajpayee NS, Jiang M (2010) G protein α i1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  786. Kasahara K, Ui M (2011) G protein α o UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  787. Tang G, Wang Y, Park S, Bajpayee NS, Vi D, Nagaoka Y, Birnbaumer L, Jiang M (2012) Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic β cells. Proceedings of the National Academy of Sciences of the United States of America 109:2636–2641

    Article  ADS  Google Scholar 

  788. Kimple M, Manning D (2009) G protein α z. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  789. Wettschureck N (2009) G protein α q. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  790. Mizuno N, Itoh H (2009) Functions and regulatory mechanisms of Gq-signaling pathways. Neurosignals 17:42–54

    Article  Google Scholar 

  791. Kurrasch DM, Huang J, Wilkie TM (2004) G protein-α11. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  792. Anger T, Zhang W, Mende U (2004) Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo. Journal of Biological Chemistry 279:3906–3915

    Article  Google Scholar 

  793. Booden MA, Siderovski DP, Der CJ (2002) Leukemia-associated Rho guanine nucleotide exchange factor promotes Gαq-coupled activation of RhoA. Molecular and Cellular Biology 22:4053–4061

    Article  Google Scholar 

  794. Oligny-Longpré G, Corbani M, Zhou J, Hogue M, Guillon G, Bouvier M (2012) Engagement of β-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation. Proceedings of the National Academy of Sciences of the United States of America 109:E1028–E1037

    Article  ADS  Google Scholar 

  795. Zimmerman B, Beautrait A, Aguila B, Charles R, Escher E, Claing A, Bouvier M, Laporte SA (2012) Differential β-arrestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. Science Signaling 5:ra33

    Google Scholar 

  796. Zhang W, Anger T, Su J, Hao J, Xu X, Zhu M, Gach A, Cui L, Liao R, Mende U (2006) Selective loss of fine tuning of Gq/11 signaling by RGS2 protein exacerbates cardiomyocyte hypertrophy. Journal of Biological Chemistry 281:5811–5820

    Article  Google Scholar 

  797. Yan Y, Chi PP, Bourne HR (1997) RGS4 inhibits Gq-mediated activation of mitogen-activated protein kinase and phosphoinositide synthesis. Journal of Biological Chemistry 272:11924–11927

    Article  Google Scholar 

  798. Zeng H, Zhao D, Yang S, Datta K, Mukhopadhyay D (2003) Heterotrimeric Gαq/Gα11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. Journal of Biological Chemistry 278:20738–20745

    Article  Google Scholar 

  799. Huang J, Wilkie TM (2006) G protein α 15. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  800. Hajicek N, Kozasa T (2008) G protein-α 13. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  801. Kurose H (2003) Gα12 and Gα13 as key regulatory mediator in signal transduction. Life Sciences 74:155–161

    Article  Google Scholar 

  802. Siehler S (2009) Regulation of RhoGEF proteins by G12 ∕ 13-coupled receptors. British Journal of Pharmacology 158:41–49

    Article  Google Scholar 

  803. Lee WH, Lee CH, Moon A, Dhanasekaran DN, Kim SK (2010) G protein α 12. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  804. Kleuss C (2007) G protein-γ 8. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  805. Pumiglia KM, LeVine H, Haske T, Habib T, Jove R, Decker SJ (1995) A direct interaction between G-proteinβγsubunits and the Raf-1 protein kinase. Journal of Biological Chemistry 270:14251–14254

    Article  Google Scholar 

  806. Wedegaertner PB, Wilson PT, Bourne HR (1995) Lipid modifications of trimeric G proteins. Journal of Biological Chemistry 270:503–506

    Article  Google Scholar 

  807. Yan K, Kalyanaraman V, Gautam N (1996) Differential ability to form the G protein βγ complex among members of the β and γ subunit families. Journal of Biological Chemistry 271:7141–7146

    Article  Google Scholar 

  808. Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO Journal 27:3092–3103

    Google Scholar 

  809. Hippe HJ, Luedde M, Lutz S, Koehler H, Eschenhagen T, Frey N, Katus HA, Wieland T, Niroomand F (2007) Regulation of cardiac cAMP synthesis and contractility by nucleoside diphosphate kinase B/G protein βγ dimer complexes. Circulation Research 100:1191–1199

    Article  Google Scholar 

  810. Hippe HJ, Wolf NM, Abu-Taha I, Mehringer R, Just S, Lutz S, Niroomand F, Postel EH, Katus HA, Rottbauer W, Wieland T (2009) The interaction of nucleoside diphosphate kinase B with Gβγ dimers controls heterotrimeric G protein function. Proceedings of the National Academy of Sciences of the United States of America 106:16269–16274

    Article  ADS  Google Scholar 

  811. Siderovski DP, Willard FS (2005) The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. International Journal of Biological Sciences 1:51–66

    Article  Google Scholar 

  812. Popov SG, Krishna UM, Falck JR, Wilkie TM (2000) Ca2+/Calmodulin reverses phosphatidylinositol-3,4,5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity. Journal of Biological Chemistry 275: 18962–18968

    Article  Google Scholar 

  813. Cho H, Kehrl JH (2009) Rgs1; Rgs3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  814. Ocal O, Wilkie TM (2010) Rgs8. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  815. Shi CS, Lee SB, Sinnarajah S, Dessauer CW, Rhee SG, Kehrl JH (2001) Regulator of G-protein signaling 3 (RGS3) inhibits Gbeta1gamma2-induced inositol phosphate production, mitogen-activated protein kinase activation, and Akt activation. Journal of Biological Chemistry 276:24293–24300

    Article  Google Scholar 

  816. Mittmann C, Schuler C, Chung CH, Hoppner G, Nose M, Kehrl JH, Wieland T (2001) Evidence for a short form of RGS3 preferentially expressed in the human heart. Naunyn Schmiedebergs Archives of Pharmacology 63:456–463

    Google Scholar 

  817. Doupnik CA, Xu T, Shinaman JM (2001) Profile of RGS expression in single rat atrial myocytes. Biochimica et Biophysica Acta 1522:97–107

    Article  Google Scholar 

  818. Sabri A, Pak E, Alcott SA, Wilson BA, Steinberg SF (2000) Coupling function of endogenous α1- and β-adrenergic receptors in mouse cardiomyocytes. Circulation Research 86:1047–1053

    Article  Google Scholar 

  819. Yasutake M, Haworth RS, King A, Avkiran M (1996) Thrombin activates the sarcolemmal Na+-H+ exchanger. Evidence for a receptor-mediated mechanism involving protein kinase C. Circulation Research 79:705–715

    Google Scholar 

  820. Tall GG, Krumins AM, Gilman AG (2003) Mammalian Ric-8A (synembryn) is a heterotrimeric Gα protein guanine nucleotide exchange factor. Journal of Biological Chemistry 278:8356–8362

    Article  Google Scholar 

  821. Wang SC, Lai HL, Chiu YT, Ou R, Huang CL, Chern Y (2007) Regulation of type V adenylate cyclase by Ric8a, a guanine nucleotide exchange factor. Biochemical Journal 406:383–388

    Article  Google Scholar 

  822. Nishimura A, Okamoto M, Sugawara Y, Mizuno N, Yamauchi J, Itoh H (2006) Ric-8A potentiates Gq-mediated signal transduction by acting downstream of G protein-coupled receptor in intact cells. Genes to Cells 11:487–498

    Article  Google Scholar 

  823. Cismowski MJ (2006) Non-receptor activators of heterotrimeric G-protein signaling (AGS proteins). Seminars in Cell and Developmental Biology 17:334–344

    Article  Google Scholar 

  824. Takesono A, Nowak MW, Cismowski M, Duzic E, Lanier SM (2002) Activator of G-protein signaling 1 blocks GIRK channel activation by a G-protein-coupled receptor: apparent disruption of receptor signaling complexes. Journal of Biological Chemistry 277: 13827–13830

    Article  Google Scholar 

  825. Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH (1998) CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95, Neuron 20:115–124.

    Article  Google Scholar 

  826. Takahashi H, Umeda N, Tsutsumi Y, Fukumura R, Ohkaze H, Sujino M, van der Horstd G, Yasuie A, Inouyeb SIT, Fujimoria A, Ohhata T, Arakia R, Abe M (2003) Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Molecular Brain Research 110:1–6

    Article  Google Scholar 

  827. Sato M, Cismowski MJ, Toyota E, Smrcka Av, Lucchesi PA, Chilian WM, Lanier SM (2006) Identification of a receptor-independent activator of G-protein signaling (AGS8) in ischemic heart and its interaction with Gβγ. Proceedings of the National Academy of Sciences of the United States of America 103:797–802

    Article  ADS  Google Scholar 

  828. Groves B, Gong Q, Xu Z, HuntsmanC, Nguyen C, Li D, Ma D (2007) A specific role of AGS3 in the surface expression of plasma membrane proteins. Proceedings of the National Academy of Sciences of the United States of America 104:18103–18108

    Article  ADS  Google Scholar 

  829. De Vries L, Fischer T, Tronchère H, Brothers GM, Strockbine B, Siderovski DP, Farquhar MG (2000) Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha i subunits. Proceedings of the National Academy of Sciences of the United States of America 97:14364–14369

    Article  ADS  Google Scholar 

  830. Boughton AP, Yang P, Tesmer VM, Ding B, Tesmer JJ, Chen Z (2011) Heterotrimeric G protein β1γ2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane. Proceedings of the National Academy of Sciences of the United States of America 108:E667–E673

    Article  ADS  Google Scholar 

  831. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Reviews – Molecular Cell Biology 9:690–701.

    Google Scholar 

  832. Olofsson B (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cellular Signalling 11:545–554

    Article  Google Scholar 

  833. Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nature Reviews – Molecular Cell Biology 9:846–859

    Google Scholar 

  834. van Nieuw Amerongen GP, van Hinsbergh VWM (2001) Cytoskeletal effects of Rho-like small guanine nucleotide-binding proteins in the vascular system. Arteriosclerosis, Thrombosis, and Vascular Biology 21:300–311

    Article  Google Scholar 

  835. Ménager C, Vassy J, Doliger C, Legrand Y, Karniguian A (1999) Subcellular localization of RhoA and ezrin at membrane ruffles of human endothelial cells: differential role of collagen and fibronectin. Experimental Cell Research 249:221–230

    Article  Google Scholar 

  836. Matsumoto Y, Uwatoku T, Oi K, Abe K, Hattori T, Morishige K, Eto Y, Fukumoto Y, Nakamura K, Shibata Y, Matsuda T, Takeshita A, Shimokawa H (2004) Long-term inhibition of Rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries: involvement of multiple mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology 24:181–186

    Article  Google Scholar 

  837. Seasholtz TM, Majumdar M, Brown JH (1999) Rho as a mediator of G protein-coupled receptor signaling. Molecular Pharmacology 55:949–956

    Google Scholar 

  838. Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature Reviews – Molecular Cell Biology 12:362–375

    Google Scholar 

  839. Kahn RA (2005) Arf1; Arf2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  840. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nature Reviews – Molecular Cell Biology 7:347–358

    Google Scholar 

  841. Turner CE, Brown MC (2001) Cell motility: ARNO and ARF6 at the cutting edge. Current Biology 11:R875–R877

    Article  Google Scholar 

  842. Liu Y, Kahn RA, Prestegard JH (2010) Dynamic structure of membrane-anchored Arf ⋅GTP. Nature – Structural and Molecular Biology 17:876–881

    Google Scholar 

  843. Leonoudakis D, Conti LR, Radeke CM, McGuire LM, Vandenberg CA (2004) A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. Journal of Biological Chemistry 279:19051–19063

    Article  Google Scholar 

  844. Kahn RA, Cunningham LA (2005) Arf4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  845. Kontani K, Hori Y, Katada T (2009) Arf-like protein 13B. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  846. Hörer J, Blum R, Feick P, Nastainczyk W, Schulz I (1999) A comparative study of rat and human Tmp21 (p23) reveals the pseudogene-like features of human Tmp21-II. DNA Sequence 10:121–126

    Google Scholar 

  847. Allison AB, Casanova JE (2011) Arf6. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  848. Kahn RA, Shrivastava-Ranjan P (2006) Arf-like protein 1. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  849. Kahn RA, Bowzard JB (2006) Arf-like protein 2. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  850. Li CC, Lee FJS (2010) Arf-like protein 4D. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  851. Thompson A, Kanamarlapudi V (2011) Arf-like protein 8A; Arf-like protein 8B. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  852. Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T, Uchiyama Y, Nakayama K (2005) Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. Journal of Cell Science 118:4039–4048

    Article  Google Scholar 

  853. Schürmann A, Schmidt M, Asmus M, Bayer S, Fliegert F, Koling S, Massmann S, Schilf C, Subauste MC, Voss M, Jakobs KH, Joost HG (1999) The ADP-ribosylation factor (ARF)-related GTPase ARF-related protein binds to the ARF-specific guanine nucleotide exchange factor cytohesin and inhibits the ARF-dependent activation of phospholipase-D. Journal of Biological Chemistry 274:9744–9751

    Article  Google Scholar 

  854. Kanamarlapudi V, Wilson LM (2011) ADP-ribosylation factor domain protein 1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  855. Huang M, Weissman JT, Beraud-Dufour S, Luan P, Wang C, Chen W, Aridor M, Wilson IA, Balch WE (2001) Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. Journal of Cell Biology 155:937–948

    Article  Google Scholar 

  856. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nature Reviews – Molecular Cell Biology 10:513–525

    Google Scholar 

  857. Draper RK (2007) Rab6a. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  858. Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. Journal of Cell Science 120:3905–3910

    Article  Google Scholar 

  859. Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. Journal of Molecular Biology 4:889–901

    Article  Google Scholar 

  860. Buvelot Frei S, Rahl PB, Nussbaum M, Briggs BJ, Calero M, Janeczko S, Regan AD, Chen CZ, Barral Y, Whittaker GR, Collins RN (2006) Bioinformatic and comparative localization of Rab proteins reveals functional insights into the uncharacterized GTPases Ypt10p and Ypt11p. Molecular and Cellular Biology 26:7299–7317

    Article  Google Scholar 

  861. Nottingham RM, Pfeffer SR (2009) Defining the boundaries: Rab GEFs and GAPs. Proceedings of the National Academy of Sciences of the United States of America 106:14185–14186

    Article  ADS  Google Scholar 

  862. Rivera-Molina FE, Novick PJ (2009) A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proceedings of the National Academy of Sciences of the United States of America 106:14408–14413

    Article  ADS  Google Scholar 

  863. Sivalingam DA, Amirshahi S, Thyagarajan K, Tofig BN, Stein MP (2011) Rab1a. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  864. Thyagarajan K, Stein MP (2008) Rab35. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  865. Junutula JR, Prekeris R (2009) Rab11a and Rab11b. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  866. Prekeris R (2009) Rab11-FIP3. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  867. Coppola T, Magnin-Luthi S, Perret-Menoud V, Gattesco S, Schiavo G, Regazzi R (2001) Direct interaction of the Rab3 effector RIM with Ca2 +  channels, SNAP-25, and synaptotagmin. Journal of Biological Chemistry 276:32756–32762

    Article  Google Scholar 

  868. Ward HH, Peterson BR, Wandinger-Ness A (2008) Rab26. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  869. Fukuda M, Kuroda TS (2002) Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin. Journal of Biological Chemistry 277:43096–43103

    Article  Google Scholar 

  870. Fukuda M (2003) Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. Journal of Biological Chemistry 278:15373–15380

    Article  Google Scholar 

  871. Shirakawa R, Higashi T, Tabuchi A, Yoshioka A, Nishioka H, Fukuda M, Kita T, Horiuchi H (2004) Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. Journal of Biological Chemistry 279:10730–10737

    Article  Google Scholar 

  872. Yi Z, Yokota H, Torii S, Aoki T, Hosaka M, Zhao S, Takata K, Takeuchi T, Izumi T (2002) The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules. Molecular and Cellular Biology 22:1858–1867

    Article  Google Scholar 

  873. Sinka R, Gillingham AK, Kondylis V, Munro SJ (2008) Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins. Journal of Cell Biology 183:607–615

    Article  Google Scholar 

  874. Lütcke A, Olkkonen VM, Dupree P, Lütcke H, Simons K, Zerial M (1995) Isolation of a murine cDNA clone encoding Rab19, a novel tissue-specific small GTPase. Gene 155:257–260

    Article  Google Scholar 

  875. Thomas C, Rousset R, Noselli S (2009) JNK signalling influences intracellular trafficking during Drosophila morphogenesis through regulation of the novel target gene Rab30. Developmental Biology 331:250–260

    Article  Google Scholar 

  876. Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge R, Dejgaard K, Ly-Hartig TB, Pepperkok R, Simpson JC, Presley JF (2008) Rab18 and Rab43 have key roles in ER-Golgi trafficking. Journal of Cell Science 121:2768–2781

    Article  Google Scholar 

  877. Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H, Katada T (2003) RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. Journal of Cell Science 116:4159–4168

    Article  Google Scholar 

  878. Jones AT (2006) Rab21. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  879. Lin MG, Zhong Q (2011) Interaction between small GTPase Rab7 and PI3KC3 links autophagy and endocytosis: A new Rab7 effector protein sheds light on membrane trafficking pathways. Small Gtpases 2(2):85–88

    Article  Google Scholar 

  880. Sun Q, Westphal W, Wong KN, Tan I, Zhong Q (2010) Rubicon controls endosome maturation as a Rab7 effector. Proceedings of the National Academy of Sciences of the United States of America 107:19338–19343

    Article  ADS  Google Scholar 

  881. Pfeffer S (2011) Rab9. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  882. Nazarian R, Falcón-Pérez JM, Dell’Angelica EC (2003) Biogenesis of lysosome-related organelles complex 3 (BLOC-3): a complex containing the Hermansky-Pudlak syndrome (HPS) proteins HPS1 and HPS4. Proceedings of the National Academy of Sciences of the United States of America 100:8770–8775

    Article  ADS  Google Scholar 

  883. Kloer DP, Rojas R, Ivan V, Moriyama K, van Vlijmen T, Murthy N, Ghirlando R, van der Sluijs P, Hurley JH, Bonifacino JS (2010) Assembly of the biogenesis of lysosome-related organelles complex-3 (BLOC-3) and its interaction with Rab9. Journal of Biological Chemistry 285:7794–7804

    Article  Google Scholar 

  884. Sun Y, Bilan PJ, Liu Z, Klip A (2010) Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proceedings of the National Academy of Sciences of the United States of America 107:19909–19914

    Article  ADS  Google Scholar 

  885. Wandinger-Ness A, Deretic D (2008) Rab8a. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  886. Babbey CM, Ahktar N, Wang E, Chen CC, Grant BD, Dunn KW (2006) Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Molecular Biology of the Cell 17:3156–3175

    Article  Google Scholar 

  887. Evans TN, Wicking CA (2006) Rab23. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  888. Maltese WA (2006) Rab24. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  889. Offermanns S, Rosenthal W (Eds.) (2008) Encyclopedia of Molecular Pharmacology (2nd ed.; 1505 p.) Springer, Berlin, Heidelberg, New York

    Google Scholar 

  890. Verma SK, Lal H, Golden HB, Gerilechaogetu F, Smith M, Guleria RS, Foster DM, Lu G, Dostal DE (2011) Rac1 and RhoA differentially regulate angiotensinogen gene expression in stretched cardiac fibroblasts. Cardiovascular Research 90:88–96

    Article  Google Scholar 

  891. Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT, Malliri A (2010) Sumoylation of the GTPase Rac1 is required for optimal cell migration. Nature – Cell Biology 12:1078–185

    Google Scholar 

  892. Diebold BA, Bokoch GM (2008) Rac2. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  893. Knaus UG (2006) Rac3. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  894. Zhang J, Chang L, Chen C, Zhang M, Luo Y, Hamblin M, Villacorta L, Xiong JW, Chen YE, Zhang J, Zhu X (2011) Rad GTPase inhibits cardiac fibrosis through connective tissue growth factor. Cardiovascular Research 91:90–98

    Article  Google Scholar 

  895. Fu M, Zhang J, Tseng YH, Cui T, Zhu X, Xiao Y, Mou Y, De Leon H, Chang MM, Hamamori Y, Kahn CR, Chen YE (2005) Rad GTPase attenuates vascular lesion formation by inhibition of vascular smooth muscle cell migration. Circulation 111:1071–1077

    Article  Google Scholar 

  896. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    Article  ADS  Google Scholar 

  897. Sidhu RS, Clough RR, Bhullar RP (2005) Regulation of phospholipase C-δ1 through direct interactions with the small GTPase Ral and calmodulin. Journal of Biological Chemistry 280:21933–21941

    Article  Google Scholar 

  898. Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP (1999) The small GTPase RalA targets filamin to induce filopodia. Proceedings of the National Academy of Sciences of the United States of America 96:2122–2128

    Article  ADS  Google Scholar 

  899. Luo JQ, Liu X, Hammond SM, Colley WC, Feig LA, Frohman MA, Morris AJ, Foster DA (1997) RalA interacts directly with the Arf-responsive, PIP2-dependent phospholipase D1. Biochemical and Biophysical Research Communications 235:854–859

    Article  Google Scholar 

  900. Kim JH, Lee SD, Han JM, Lee TG, Kim Y, Park JB, Lambeth JD, Suh PG, Ryu SH (1998) Activation of phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and RalA. FEBS Letters 430:231–235

    Article  Google Scholar 

  901. Chien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL, Balakireva MG, Romeo Y, Kopelovich L, Gale M Jr, Yeaman C, Camonis JH, Zhao Y, White MA (2006) RalB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127:157–170

    Article  Google Scholar 

  902. Vartak N, Bastiaens P (2010) Spatial cycles in G-protein crowd control. EMBO Journal 29:2689–2699

    Article  Google Scholar 

  903. Pannekoek WJ, Kooistra MRH, Zwartkruis FJT, Bos JL (2009) Cell–cell junction formation: The role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochimica et Biophysica Acta 1788:790–796

    Article  Google Scholar 

  904. Spilker C, Acuña Sanhueza GA, Böckers TM, Kreutz MR, Gundelfinger ED (2007) SPAR2, a novel SPAR-related protein with GAP activity for Rap1 and Rap2. Journal of Neurochemistry 104:187–201

    Google Scholar 

  905. Nancy V, Wolthuis RM, de Tand MF, Janoueix-Lerosey I, Bos JL, de Gunzburg J (1999) Identification and characterization of potential effector molecules of the Ras-related GTPase Rap2. Journal of Biological Chemistry 274:8737–8745

    Article  Google Scholar 

  906. Janoueix-Lerosey I, Pasheva E, de Tand MF, Tavitian A, de Gunzburg J (1998) Identification of a specific effector of the small GTP-binding protein Rap2. European Journal of Biochemistry 252:290–298

    Article  Google Scholar 

  907. Lafuente E, van Puijenbroek A, Krause M, Carman C, Freeman G, Berezovskaya A, Springer T, Gertler F, Boussiotis V (2004) RIAM, an Ena/VASP and profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Developmental Cell 7:585–595

    Article  Google Scholar 

  908. Tamada M, Sheetz M, Sawada Y (2004) Activation of a signaling cascade by cytoskeleton stretch. Developmental Cell 7:709–718

    Article  Google Scholar 

  909. Crabbe L, Karlseder J (2010) Mammalian Rap1 widens its impact. Nature – Cell Biology 12:733–735

    Google Scholar 

  910. Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327:1657–1661

    Article  ADS  Google Scholar 

  911. Martinez P, Thanasoula M, Carlos AR, Gómez-López G, Tejera AM, Schoeftner S, Dominguez O, Pisano DG, Tarsounas M, Blasco MA (2010) Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nature – Cell Biology 12:768–780

    Google Scholar 

  912. Teo H, Ghosh S, Luesch H, Ghosh A, Wong ET, Malik N, Orth A, de Jesus P, Perry AS, Oliver JD, Tran NL, Speiser LJ, Wong M, Saez E, Schultz P, Chanda SK, Verma IM, Tergaonkar V (2010) Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression. Nature – Cell Biology 12:758–767

    Google Scholar 

  913. Edreira MM, Li S, Hochbaum D, Wong S, Gorfe AA, Ribeiro-Neto F, Woods VL Jr, Altschuler DL (2009) Phosphorylation-induced conformational changes in Rap1b: allosteric effects on switch domains and effector loop. Journal of Biological Chemistry 284: 27480–27486

    Article  Google Scholar 

  914. Machida N, Umikawa M, Takei K, Sakima N, Myagmar BE, Taira K, Uezato H, Ogawa Y, Kariya K (2004) Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. Journal of Biological Chemistry 279:15711–15714

    Article  Google Scholar 

  915. Greco F, Sinigaglia F, Balduini C, Torti M (2004) Activation of the small GTPase Rap2B in agonist-stimulated human platelets Journal of Thrombosis and Haemostasis 2:2223–2230

    Google Scholar 

  916. Guo, Yuan J, Tang W, Chen X, Gu X, Luo K, Wang Y, Wan B, Yu L (2007) Cloning and characterization of the human gene RAP2C, a novel member of Ras family, which activates transcriptional activities of SRE. Molecular Biology Reports 34:137–144

    Article  Google Scholar 

  917. Paganini S, Guidetti GF, Catrical S, Trionfini P, Panelli S, Balduini C, Torti M (2006) Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie 88:285–295

    Article  Google Scholar 

  918. Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J (2008) Membrane-dependent signal integration by the Ras activator Son of sevenless. Nature – Structural and Molecular Biology 15:452–461

    Google Scholar 

  919. Bos JL, de Rooij J, Reedquist KA (2001) Rap1 signalling: adhering to new models. Nature Reviews – Molecular Cell Biology 2:369–377

    Google Scholar 

  920. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR (2011) Regulating the regulator: post-translational modification of RAS. Nature Reviews – Molecular Cell Biology 13:39–51

    Google Scholar 

  921. Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752.

    Article  ADS  Google Scholar 

  922. Bos JL (1998) All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral. EMBO Journal 17:6776–6782

    Article  Google Scholar 

  923. Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nature Reviews – Molecular Cell Biology 9:517–531

    Google Scholar 

  924. Drosten M, Dhawahir A, Sum EYM, Urosevic J, Lechuga CG, Esteban LM, Castellano E, Guerra C, Santos E, Barbacid M (2010) Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO Journal 29:1091–1104

    Article  Google Scholar 

  925. Pochynyuk O, Stockand JD, Staruschenko A (2007) Ion channel regulation by Ras, Rho, and Rab small GTPases. Experimental Biology and Medicine 232:1258–1265

    Article  Google Scholar 

  926. Kennedy MB, Beale HC, Carlisle HJ, Washburn LR (2005) Integration of biochemical signalling in spines. Nature Reviews – Neuroscience. 6:423–434

    Google Scholar 

  927. Komatsu M, Ruoslaht E (2005) R-Ras is a global regulator of vascular regeneration that suppresses intimal hyperplasia and tumor angiogenesis. Nature – Medicine 11:1346–1350

    Google Scholar 

  928. Abankwa D, Gorfe AA, Inder K, Hancock JF (2010) Ras membrane orientation and nanodomain localization generate isoform diversity. Proceedings of the National Academy of Sciences of the United States of America 107:1130–1135

    Article  ADS  Google Scholar 

  929. Berthiaume LG (2002) Insider information: how palmitoylation of Ras makes it a signaling double agent. Science STKE 2002:pe41.

    Google Scholar 

  930. Tian T, Harding A, Inder K, Plowman S, Parton RG, Hancock JF (2007) Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nature – Cell Biology 9: 905–914

    Google Scholar 

  931. White MA (2004) H-Ras. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  932. Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA (2004) Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427:256–260

    Article  ADS  Google Scholar 

  933. Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D (2000) Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. Journal of Biological Chemistry 275:27979–27988

    Google Scholar 

  934. Mitin NY, Ramocki MB, Zullo AJ, Der CJ, Konieczny SF, Taparowsky EJ (2004) Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization. Journal of Biological Chemistry 279:22353–22361

    Article  Google Scholar 

  935. Young NP, Jacks T (2010) Tissue-specific p19Arf regulation dictates the response to oncogenic K-ras. Proceedings of the National Academy of Sciences of the United States of America 107:10184–10189

    Article  ADS  Google Scholar 

  936. van der Weyden L, Adams DJ (2007) The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochimica et Biophysica Acta 1776:58–85

    Google Scholar 

  937. Lim KH, Ancrile BB, Kashatus DF, Counter CM (2008) Tumour maintenance is mediated by eNOS. Nature 452:646–649

    Article  ADS  Google Scholar 

  938. Cantrell DA (2003) GTPases and T cell activation. Immunological Reviews 192:122–130

    Article  Google Scholar 

  939. Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes and Development 17:1829–1834

    Article  Google Scholar 

  940. Saito K, Araki Y, Kontani K, Nishina H, Katada T (2005) Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. Journal of Biochemistry 137:423–430

    Article  Google Scholar 

  941. Alberts AS, Bouquin N, Johnston LH, Treisman R (1998) Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein βsubunits and the yeast response regulator protein Skn7. Journal of Biological Chemistry 273:8616–8622

    Article  Google Scholar 

  942. Schwartz M (2004) Rho signalling at a glance. Journal of Cell Science 117:5457–5458

    Article  Google Scholar 

  943. Zhao ZS, Manser E (2005) PAK and other Rho-associated kinases – effectors with surprisingly diverse mechanisms of regulation. Biochemical Journal 386:201–214

    Article  Google Scholar 

  944. Mukai H (2003) The structure and function of PKN, a protein kinase having a catalytic domain homologous to that of PKC. Journal of Biochemistry 133:17–27

    Article  Google Scholar 

  945. Miyoshi J, Takai Y (2009) RhoA. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  946. El Sayegh TY, Arora PD, Ling K, Laschinger C, Janmey PA, Anderson RA, McCulloch CA (2007) Phosphatidylinositol-4,5 bisphosphate produced by PIP5KIγ regulates gelsolin, actin assembly, and adhesion strength of N-cadherin junctions. Molecular Biology of the Cell 18:3026–3038

    Article  Google Scholar 

  947. Laudanna C, Bolomini-Vittori M (2008) RhoC. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  948. Ramos S, Khademi F, Somesh BP, Rivero F (2002) Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene 298:147–157

    Article  Google Scholar 

  949. Berthold J, Schenkova K, Rivero F (2008) Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacologica Sinica 29:285–295

    Article  Google Scholar 

  950. Wilkins A, Carpenter CL (2008) Regulation of RhoBTB2 by the Cul3 ubiquitin ligase complex. Methods in Enzymology 439:103–109

    Article  Google Scholar 

  951. Gasman S, Kalaidzidis Y, Zerial M (2003) RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nature – Cell Biology 5:195–204

    Google Scholar 

  952. Tsubakimoto K, Matsumoto K, Abe H, Ishii J, Amano M, Kaibuchi K, Endo T (1999) Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 18:2431–2440

    Article  Google Scholar 

  953. Gouw LG, Reading NS, Jenson SD, Lim MS, Elenitoba-Johnson KSJ (2005) Expression of the Rho-family GTPase gene RHOF in lymphocyte subsets and malignant lymphomas. British Journal of Haematology 129:531–533

    Article  Google Scholar 

  954. Pellegrin S, Mellor H (2005) The Rho family GTPase Rif induces filopodia through mDia2. Current Biology 15:129–133

    Article  Google Scholar 

  955. Gauthier-Rouvière C, Vignal E, Mériane M, Roux P, Montcourier P, Fort P (1998) RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs. Molecular Biology of the Cell 9:1379–1394

    Google Scholar 

  956. Le Gallic L, Fort P (1997) Structure of the human ARHG locus encoding the Rho/Rac-like RhoG GTPase. Genomics 42:157–160

    Article  Google Scholar 

  957. Fueller F, Kubatzky KF (2008) The small GTPase RhoH is an atypical regulator of haematopoietic cells. Cell Communication and Signaling 6:6

    Article  Google Scholar 

  958. de Toledo M, Senic-Matuglia F, Salamero J, Uze G, Comunale F, Fort P, Blangy A (2003) The GTP/GDP cycling of rho GTPase TCL is an essential regulator of the early endocytic pathway. Molecular Biology of the Cell 14:4846–4856

    Article  Google Scholar 

  959. Nishizuka M, Arimoto E, Tsuchiya T, Nishihara T, Imagawa M (2003) Crucial role of TCL/TC10βL, a subfamily of Rho GTPase, in adipocyte differentiation. Journal of Biological Chemistry 278:15279–15284

    Article  Google Scholar 

  960. Murphy GA, Solski PA, Jillian SA, Pérez de la Ossa P, D’Eustachio P, Der CJ, Rush MG (1999) Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Oncogene 18:3831–3845

    Article  Google Scholar 

  961. Watson RT, Kanzaki M, Pessin J (2004) Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocrine Reviews 25:177–204

    Article  Google Scholar 

  962. Chang L, Chiang SH, Saltiel AR (2007) TC10α is required for insulin-stimulated glucose uptake in adipocytes. Endocrinology 148:27–33

    Article  Google Scholar 

  963. Tian L, Nelson DL, Stewart DM (2000) Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. Journal of Biological Chemistry 275:7854–7861

    Article  Google Scholar 

  964. Chang L, Adams RD, Saltiel AR (2002) The TC10-interacting protein CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 adipocytes. Proceedings of the National Academy of Sciences of the United States of America 99:12835–12840

    Article  ADS  Google Scholar 

  965. Maffucci T, Brancaccio A, Piccolo E, Stein RC, Falasca M (2003) Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO Journal 22:4178–4189

    Article  Google Scholar 

  966. Cheng J, Wang H, Guggino WB (2005) Regulation of cystic fibrosis transmembrane regulator trafficking and protein expression by a Rho family small GTPase TC10. Journal of Biological Chemistry 280:3731–3739

    Article  Google Scholar 

  967. Krekelberg JL, Spiker CL, DeRouen AJ, Repasky GA (2009) Tc10. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  968. Joberty G, Perlungher RR, Macara IG (1999) The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Molecular and Cellular Biology 19:6585–6597

    Google Scholar 

  969. Abe T, Kato M, Miki H, Takenawa T, Endo T (2003) Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. Journal of Cell Science 116:155–168

    Article  Google Scholar 

  970. Fransson S, Ruusala A, Aspenström P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochemical and Biophysical Research Communications 344:500–510

    Article  Google Scholar 

  971. Brazier H, Pawlak G, Vives V, Blangy A (2009) The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. International Journal of Biochemistry and Cell Biology 41:1391–1401

    Article  Google Scholar 

  972. Schiavone D, Dewilde S, Vallania F, Turkson J, Di Cunto F, Poli V (2009) The RhoU/Wrch1 Rho GTPase gene is a common transcriptional target of both the gp130/STAT3 and Wnt-1 pathways. Biochemical Journal 421:283–292

    Article  Google Scholar 

  973. Sorokina EM, Chernoff J (2005) Rho-GTPases: new members, new pathways. Journal of Cellular Biochemistry 94:225–231

    Article  Google Scholar 

  974. Finlin BS, Andres DA (1999) Phosphorylation-dependent association of the Ras-related GTP-binding protein Rem with 14-3-3 proteins. Archives of Biochemistry and Biophysics 368):401–412

    Google Scholar 

  975. Reynet C, Kahn CR (1993) Rad: a member of the Ras family overexpressed in muscle of type II diabetic humans. Science 262:1441–1444

    Article  ADS  Google Scholar 

  976. Chang L, Zhang J, Tseng YH, Xie CQ, Ilany J, Brüning JC, Sun Z, Zhu X, Cui T, Youker KA, Yang Q, Day SM, Kahn CR, Chen YE (2007) Rad GTPase deficiency leads to cardiac hypertrophy. Circulation 116:2976–2983

    Article  Google Scholar 

  977. Bannister RA, Colecraft HM, Beam KG (2008) Rem inhibits skeletal muscle EC coupling by reducing the number of functional L-type Ca2 +  channels. Biophysical Journal 94: 2631–2638

    Article  ADS  Google Scholar 

  978. Seu L, Pitt GS (2006) Dose-dependent and isoform-specific modulation of Ca2 +  channels by RGK GTPases. Journal of General Physiology 128:605–613

    Article  Google Scholar 

  979. Leyris JP, Gondeau C, Charnet A, Delattre C, Rousset M, Cens T, Charnet P (2009) RGK GTPase-dependent Ca V 2.1 Ca2 +  channel inhibition is independent of Ca V β-subunit-induced current potentiation. FASEB Journal 23:2627–2638

    Article  Google Scholar 

  980. Chen H, Puhl HL, Niu SL, Mitchell DC, Ikeda SR (2005) Expression of Rem2, an RGK family small GTPase, reduces N-type calcium current. Journal of Neuroscience 25: 9762–9772

    Article  Google Scholar 

  981. Finlin BS, Mosley AL, Crump SM, Correll RN, Ozcan S, Satin J, Andres DA (2005) Regulation of L-type Ca2 +  channel activity and insulin secretion by the Rem2 GTPase. Journal of Biological Chemistry 280:41864–41871

    Article  Google Scholar 

  982. Splingard A, Ménétrey J, Perderiset M, Cicolari J, Regazzoni K, Hamoudi F, Cabanié L, El Marjou A, Wells A, Houdusse A, de Gunzburg J (2007) Biochemical and structural characterization of the gem GTPase. Journal of Biological Chemistry 282:1905–1915

    Article  Google Scholar 

  983. Chardin P (2006) Function and regulation of Rnd proteins. Nature Reviews – Molecular Cell Biology 7:54–62

    Google Scholar 

  984. Uesugi K, Oinuma I, Katoh H, Negishi M (2009) Different requirement for Rnd GTPases of R-Ras GAP activity of Plexin-C1 and Plexin-D1. Journal of Biological Chemistry 284: 6743–6751

    Article  Google Scholar 

  985. Chardin P (2005) Rnd1; Rnd2; Rnd3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  986. Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP, Kim YB, Aaronson SA, Lee SW (2006) RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress. Current Biology 16:2466–2472

    Article  Google Scholar 

  987. Marie-Claire C, Salzmann J, David A, Courtin C, Canestrelli C, Noble F (2007) Rnd family genes are differentially regulated by 3,4-methylenedioxymethamphetamine and cocaine acute treatment in mice brain. Brain Research 1134:12–17

    Article  Google Scholar 

  988. Lee CH, Della NG, Chew CE, Zack DJ (1996) Rin, a neuron-specific and calmodulin-binding small G-protein, and Rit define a novel subfamily of ras proteins. Journal of Neuroscience 16:6784–6794

    Google Scholar 

  989. Milstein M, Mooser CK, Hu H, Fejzo M, Slamon D, Goodglick L, Dry S, Colicelli J (2007) RIN1 is a breast tumor suppressor gene. Cancer Research 67:11510–11516

    Article  Google Scholar 

  990. Shi GX, Jin L, Andres DA (2008) Pituitary adenylate cyclase-activating polypeptide 38-mediated Rin activation requires Src and contributes to the regulation of HSP27 signaling during neuronal differentiation. Molecular and Cellular Biology 28:4940–4951

    Article  Google Scholar 

  991. Andres DA, Rudolph J (2008) Rin. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  992. Hoshino M, Yoshimori T, Nakamura S (2005) Small GTPase proteins Rin and Rit bind to PAR6 GTP-dependently and regulate cell transformation. Journal of Biological Chemistry 280:22868–22874

    Article  Google Scholar 

  993. Ye K, Snyder SH (2004) PIKE GTPase: a novel mediator of phosphoinositide signaling. Journal of Cell Science 117:155–161

    Article  Google Scholar 

  994. Yeh BJ, Rutigliano RJ, Deb A, Bar-Sagi D, Lim WA (2007) Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature 447:596–600

    Article  ADS  Google Scholar 

  995. Wolthuis RM, Bos JL (1999) Ras caught in another affair: the exchange factors for Ral. Current Opinion in Genetics and Development 9:112–117

    Article  Google Scholar 

  996. Tall GG, Barbieri MA, Stahl PD, Horazdovsky BF (2001) Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Developmental Cell 1:73–82

    Article  Google Scholar 

  997. Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG, Der CJ (2002) Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nature – Cell Biology 4:621–625

    Google Scholar 

  998. Jackson CL (2003) The Sec7 family of ARF guanine-nucleotide exchange factor (Chap. 4) In Kahn RA (Ed.) ARF Family GTPases, Series: Proteins and Cell Regulation (Vol. 1) Kluwer Academic Publishers, Dordrecht, The Netherlands

  999. Casanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8:1476–1485

    Article  Google Scholar 

  1000. Geiger C, Nagel W, Boehm T, van Kooyk Y, Figdor CG, Kremmer E, Hogg N, Zeitlmann L, Dierks H, Weber KS, Kolanus W (2000) Cytohesin-1 regulates beta-2 integrin-mediated adhesion through both ARF-GEF function and interaction with LFA-1. EMBO Journal 19:2525–2536

    Article  Google Scholar 

  1001. Melançon P, Zhao X, Lasell TKR (2004) Large Arf GEFs of the Golgi complex (p. 101–119) In Kahn RA (ed.) ARF Family GTPases. Series: Proteins and Cell Regulation (Vol. 1) Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  1002. Claude A, Zhao BP, Kuziemsky CE, Dahan S, Berger SJ, Yan JP, Armold AD, Sullivan EM, Melanon P (1999) GBF1: A novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. Journal of Cell Biology 146:71–84

    Google Scholar 

  1003. Niu TK, Pfeifer AC, Lippincott-Schwartz J, Jackson CL (2005) Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi. Molecular Biology of the Cell 16:1213–1222

    Article  Google Scholar 

  1004. Luton F, Klein S, Chauvin JP, Le Bivic A, Bourgoin S, Franco M, Chardin P (2004) EFA6, exchange factor for ARF6, regulates the actin cytoskeleton and associated tight junction in response to E-cadherin engagement. Molecular Biology of the Cell 15:1134–1145

    Article  Google Scholar 

  1005. Fukaya M, Kamata A, Hara Y, Tamaki H, Katsumata O, Ito N, Takeda S, Hata Y, Suzuki T, Watanabe M, Harvey RJ, Sakagami H (2011) SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post-synaptic specializations of inhibitory synapses. Journal of Neurochemistry 116:1122–1137

    Article  Google Scholar 

  1006. Dunphy JL, Ye K, Casanova JE (2007) Nuclear functions of the Arf guanine nucleotide exchange factor BRAG2. Traffic 8:661–672

    Article  Google Scholar 

  1007. Otomo A, Hadano S, Okada T, Mizumura H, Kunita R, Nishijima H, Showguchi-Miyata J, Yanagisawa Y, Kohiki E, Suga E, Yasuda M, Osuga H, Nishimoto T, Narumiya S, Ikeda JE (2003) ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Human Molecular Genetics 12:1671–1687

    Article  Google Scholar 

  1008. Lai C, Xie C, Shim H, Chandran J, Howell BW, Cai H (2009) Regulation of endosomal motility and degradation by amyotrophic lateral sclerosis 2/alsin. Molecular Brain 2:23

    Article  Google Scholar 

  1009. Kunita R, Otomo A, Mizumura H, Suzuki-Utsunomiya K, Hadano S, Ikeda JE (2007) The Rab5 activator ALS2/alsin acts as a novel Rac1 effector through Rac1-activated endocytosis. Journal of Biological Chemistry 282:16599–16611

    Article  Google Scholar 

  1010. Penzes P, Cahill ME, Jones KA, Srivastava DP (2008) Convergent CaMK and RacGEF signals control dendritic structure and function. Trends in Cell Biology 18:405–413

    Article  Google Scholar 

  1011. Knezevic II, Predescu SA, Neamu RF, Gorovoy MS, Knezevic NM, Easington C, Malik AB, Predescu DN (2009) Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability. Journal of Biological Chemistry 284:5381–5394

    Article  Google Scholar 

  1012. Sands WA, Woolson HD, Milne GR, Rutherford C, Palmer TM (2006) Exchange protein activated by cyclic AMP (Epac)-mediated induction of suppressor of cytokine signaling 3 (SOCS-3) in vascular endothelial cells. Molecular and Cellular Biology 26:6333–6346

    Article  Google Scholar 

  1013. Rooney C, White G, Nazgiewicz A, Woodcock SA, Anderson KI, Ballestrem C, Malliri A (2010) The Rac activator STEF (Tiam2) regulates cell migration by microtubule-mediated focal adhesion disassembly. EMBO Reports 11:292–298

    Article  Google Scholar 

  1014. Hernández-Negrete I, Carretero-Ortega J, Rosenfeldt H, Hernández-Garca R, Caldern-Salinas JV, Reyes-Cruz G, Gutkind JS, Vázquez-Prado J (2007) P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. Journal of Biological Chemistry 282:23708–23715

    Article  Google Scholar 

  1015. Pannekoek WJ, Kooistra MRH, Zwartkruis FJT, Bos JL (2009) Cell–cell junction formation: The role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochimica et Biophysica Acta 1788:790–796

    Article  Google Scholar 

  1016. Kuiperij HB, de Rooij J, Rehmann H, van Triest M, Wittinghofer A, Bos JL, Zwartkruis FJ (2003) Characterisation of PDZ-GEFs, a family of guanine nucleotide exchange factors specific for Rap1 and Rap2. Biochimica et Biophysica Acta 1593:141–149

    Article  Google Scholar 

  1017. Gao X, Satoh T, Liao Y, Song C, Hu CD, Kariya Ki K, Kataoka T (2001) Identification and characterization of RA-GEF-2, a Rap guanine nucleotide exchange factor that serves as a downstream target of M-Ras. Journal of Biological Chemistry 276:42219–42225

    Article  Google Scholar 

  1018. Consonni SV, Gloerich M, Spanjaard E, Bos JL (2012) cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America 109:3814–3819

    Article  ADS  Google Scholar 

  1019. Ichiba T, Hoshi Y, Eto Y, Tajima N, Kuraishi Y (1999) Characterization of GFR, a novel guanine nucleotide exchange factor for Rap1. FEBS Letters 457:85–89

    Article  Google Scholar 

  1020. Rebhun JF, Castro AF, Quilliam LA (2000) Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction. Journal of Biological Chemistry 275:34901–34908

    Google Scholar 

  1021. Chuang TH, Xu X, Quilliam LA, Bokoch GM (1994) SmgGDS stabilizes nucleotide-bound and -free forms of the Rac1 GTP-binding protein and stimulates GTP/GDP exchange through a substituted enzyme mechanism. Biochemical Journal 303:761–767

    Google Scholar 

  1022. Caloca MJ, Zugaza JL, Bustelo XR (2003) Exchange factors of the RasGRP family mediate Ras activation in the Golgi. Journal of Biological Chemistry 278:33465–33473

    Article  Google Scholar 

  1023. Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, Stone JC (1998) RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol-binding motifs. Science 280:1082–1086

    Article  ADS  Google Scholar 

  1024. Norum JH, Hart K, Levy FO (2003) Ras-dependent ERK activation by the human Gs-coupled serotonin receptors 5-HT4(b) and 5-HT7(a). Journal of Biological Chemistry 278:3098–3104

    Article  Google Scholar 

  1025. Ruiz S, Santos E, Bustelo XR (2007) RasGRF2, a guanosine nucleotide exchange factor for Ras GTPases, participates in T-cell signaling responses. Molecular and Cellular Biology 27:8127–8142

    Article  Google Scholar 

  1026. Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H, Johnson RL 2nd, Cox AD, Philips MR (2002) Ras signalling on the endoplasmic reticulum and the Golgi. Nature – Cell Biology 4:343–350

    Google Scholar 

  1027. Rubio I, Grund S, Song SP, Biskup C, Bandemer S, Fricke M, Förster M, Graziani A, Wittig U, Kliche S (2010) TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras. Journal of Immunology 185:3536–3543

    Article  Google Scholar 

  1028. Quilliam LA, Rebhun JF, Castro AF (2002) A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Progress in Nucleic Acid Research and Molecular Biology 71:391–444

    Article  Google Scholar 

  1029. Santos E, Fernández-Medarde A (2009) Rasgrf1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1030. Anborgh PH, Qian X, Papageorge AG, Vass WC, DeClue JE, Lowy DR (1999) Ras-specific exchange factor GRF: oligomerization through its Dbl homology domain and calcium-dependent activation of Raf. Molecular and Cellular Biology 19:4611–4622

    Google Scholar 

  1031. Fan WT, Koch CA, de Hoog CL, Fam NP, Moran MF (1998) The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways. Current Biology 8:935–938

    Article  Google Scholar 

  1032. Nishihara H, Kobayashi S, Hashimoto Y, Ohba F, Mochizuki N, Kurata T, Nagashima K, Matsuda M (1999) Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins. Biochimica et Biophysica Acta 1452:179–187

    Article  Google Scholar 

  1033. Lu M, Ravichandran KS (2006) Dock180–ELMO cooperation in Rac activation. Methods in Enzymology 406:388–402

    Article  Google Scholar 

  1034. Makino Y, Tsuda M, Ichihara S, Watanabe T, Sakai M, Sawa H, Nagashima K, Hatakeyama S, Tanaka S (2006) Elmo1 inhibits ubiquitylation of Dock180. Journal of Cell Science 119:923–932

    Article  Google Scholar 

  1035. Hajdo-Milasinovic A, Ellenbroek SI, van Es S, van der Vaart B, Collard JG (2007) Rac1 and Rac3 have opposing functions in cell adhesion and differentiation of neuronal cells. Journal of Cell Science 120:555–566

    Article  Google Scholar 

  1036. Upadhyay G, Goessling W, North TE, Xavier R, Zon LI, Yajnik V (2008) Molecular association between β-catenin degradation complex and Rac guanine exchange factor DOCK4 is essential for Wnt/β-catenin signaling. Oncogene 27:5845–5855

    Article  Google Scholar 

  1037. Garron ML, Arsenieva D, Zhong J, Bloom AB, Lerner A, O’Neill GM, Arold ST (2009) Structural insights into the association between BCAR3 and Cas family members, an atypical complex implicated in anti-oestrogen resistance. Journal of Molecular Biology 386:190–203

    Article  Google Scholar 

  1038. Bouton AH, Riggins RB, Bruce-Staskal PJ (2001) Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene 20:6448–6458

    Article  Google Scholar 

  1039. Dodelet VC, Pazzagli C, Zisch AH, Hauser CA, Pasquale EB (1999) A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. Journal of Biological Chemistry 274:31941–31946

    Article  Google Scholar 

  1040. Schwab ME (2010) Functions of Nogo proteins and their receptors in the nervous system. Nature Reviews – Neuroscience 11:799–811

    Google Scholar 

  1041. Near RI, Zhang Y, Makkinje A, Vanden Borre P, Lerner A (2007) AND-34/BCAR3 differs from other NSP homologs in induction of anti-estrogen resistance, cyclin D1 promoter activation and altered breast cancer cell morphology. Journal of Cellular Physiology 212:655–665

    Article  Google Scholar 

  1042. Lu Y, Brush J, Stewart TA (1999) NSP1 defines a novel family of adaptor proteins linking integrin and tyrosine kinase receptors to the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway. Journal of Biological Chemistry 274:10047–10052

    Article  Google Scholar 

  1043. GeneCards human gene database. Crown Human Genome Center, Department of Molecular Genetics, the Weizmann Institute of Science (www.genecards.org)

  1044. Riggins RB, Quilliam LA, Bouton AH (2003) Synergistic promotion of c-Src activation and cell migration by Cas and AND-34/BCAR3. Journal of Biological Chemistry 278: 28264–28273

    Article  Google Scholar 

  1045. Felekkis KN, Narsimhan RP, Near R, Castro AF, Zheng Y, Quilliam LA, Lerner A (2005) AND-34 activates phosphatidylinositol 3-kinase and induces anti-estrogen resistance in a SH2 and GDP exchange factor-like domain-dependent manner. Molecular Cancer Research 3:32–41

    Google Scholar 

  1046. Cai D, Felekkis KN, Near RI, O’Neill GM, van Seventer JM, Golemis EA, Lerner A (2003) The GDP exchange factor AND-34 is expressed in B cells, associates with HEF1, and activates Cdc42. Journal of Immunology 170:969–978

    Google Scholar 

  1047. Loirand G, Scalbert E, Bril A, Pacaud P (2008) Rho exchange factors in the cardiovascular system. Current Opinion in Pharmacology 8:174–180

    Article  Google Scholar 

  1048. Guilluy C, Brégeon J, Toumaniantz G, Rolli-Derkinderen M, Retailleau K, Loufrani L, Henrion D, Scalbert E, Bril A, Torres RM, Offermanns S, Pacaud P, Loirand G (2010) The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nature – Medicine 16:183–190

    Google Scholar 

  1049. Chikumi H, Barac A, Behbahani B, Gao Y, Teramoto H, Zheng Y, Gutkind JS (2004) Homo- and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene 23:233–240

    Article  Google Scholar 

  1050. Chow CR, Yau DM, Kozasa T (2011) p115RhoGEF. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1051. Chen Z, Medina F, Liu MY, Thomas C, Sprang SR, Sternweis PC (2010) Activated RhoA binds to the pleckstrin homology (PH) domain of PDZ-RhoGEF, a potential site for autoregulation. Journal of Biological Chemistry 285(27):21070–21081

    Article  Google Scholar 

  1052. Feng Q, Baird D, Peng X, Wang J, Ly T, Guan JL, Cerione RA (2006) Cool-1 functions as an essential regulatory node for EGFreceptor- and Src-mediated cell growth. Nature – Cell Biology 8:945–956

    Google Scholar 

  1053. Ueda S, Kataoka T, Satoh T (2004) Role of the Sec14-like domain of Dbl family exchange factors in the regulation of Rho family GTPases in different subcellular sites. Cell Signalling 16:899–906

    Article  Google Scholar 

  1054. Ieguchi K, Ueda S, Kataoka T, Satoh T (2007) Role of the guanine nucleotide exchange factor Ost in negative regulation of receptor endocytosis by the small GTPase Rac1. Journal of Biological Chemistry 282:23296–23305

    Article  Google Scholar 

  1055. Bellanger JM, Astier C, Sardet C, Ohta Y, Stossel TP, Debant A (2000) The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nature – Cell Biology 2:888–892

    Google Scholar 

  1056. Ma XM, Kiraly DD, Gaier ED, Wang Y, Kim EJ, Levine ES, Eipper BA, Mains RE (2008) Kalirin-7 is required for synaptic structure and function. Journal of Neuroscience 28: 12368–12382

    Article  Google Scholar 

  1057. Salazar MA, Kwiatkowski AV, Pellegrini L, Cestra G, Butler MH, Rossman KL, Serna DM, Sondek J, Gertler FB, De Camilli P (2003) Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton. Journal of Biological Chemistry 278:49031–49043.

    Article  Google Scholar 

  1058. van Horck FP, Ahmadian MR, Haeusler LC, Moolenaar WH, Kranenburg O (2001) Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. Journal of Biological Chemistry 276:4948–4956

    Article  Google Scholar 

  1059. Horowitz A (2010) Plekhg5. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1060. Troyanovsky B, Levchenko T, Mnsson G, Matvijenko O, Holmgren L (2001) Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. Journal of Cell Biology 152:1247–1254

    Article  Google Scholar 

  1061. Bratt A, Birot O, Sinha I, Veitonmäki N, Aase K, Ernkvist M, Holmgren L (2005) Angiomotin regulates endothelial cell-cell junctions and cell motility. Journal of Biological Chemistry 280:34859–34869

    Article  Google Scholar 

  1062. Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, Colwill K, Starostine A, Metalnikov P, Pawson T (2006) A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 125:535–548

    Article  Google Scholar 

  1063. De Toledo M, Coulon V, Schmidt S, Fort P, Blangy A (2001) The gene for a new brain specific RhoA exchange factor maps to the highly unstable chromosomal region 1p36.2-1p36.3. Oncogene 20:7307–7317

    Article  Google Scholar 

  1064. Sosa MS, Lopez-Haber C, Yang C, Wang H, Lemmon MA, Busillo JM, Luo J, Benovic JL, Klein-Szanto A, Yagi H, Gutkind JS, Parsons RE, Kazanietz MG (2010) Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. Molecular Cell 40:877–892

    Article  Google Scholar 

  1065. Curtis C, Hemmeryckx B, Haataja L, Senadheera D, Groffen J, Heisterkamp N (2004) Scambio, a novel guanine nucleotide exchange factor for Rho. Molecular Cancer 2004; 3:10

    Article  Google Scholar 

  1066. Cario-Toumaniantz C, Ferland-McCollough D, Chadeuf G, Toumaniantz G, Rodriguez M, Galizzi JP, Lockart B, Bril A, Scalbert E, Loirand G, Pacaud P (2012) RhoA guanine exchange factor expression profile in arteries: Evidence for a Rho kinase-dependent negative feedback in angiotensin II-dependent hypertension. American Journal of Physiology – Cell Physiology

    Google Scholar 

  1067. Rojas JM, Santos E (2006) Ras GEFs and Ras GAPs (Chap. 2). In Channing D (Ed.) RAS Family GTPases, Series: Proteins and Cell Regulation (Vol. 4) Springer, Dordrecht, The Netherlands

  1068. Toumaniantz G, Ferland-McCollough D, Cario-Toumaniantz C, Pacaud P, Loirand G (2010) The Rho protein exchange factor Vav3 regulates vascular smooth muscle cell proliferation and migration. Cardiovascular Research 86:131–140

    Article  Google Scholar 

  1069. Hunter SG, Zhuang G, Brantley-Sieders D, Swat W, Cowan CW, Chen J (2006) Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis. Molecular and Cellular Biology 26:4830–4842

    Article  Google Scholar 

  1070. Sauzeau V, Sevilla MA, Rivas-Elena JV, de álava E, Montero MJ, Lpez-Novoa JM, Bustelo XR (2006) Vav3 proto-oncogene deficiency leads to sympathetic hyperactivity and cardiovascular dysfunction. Nature – Medicine 12:841–845

    Google Scholar 

  1071. Bustelo XR (2010) Vav1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1072. Cantor SB, Urano T, Feig LA (1995) Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Molecular and Cellular Biology 15:4578–4584

    Google Scholar 

  1073. Bryant SS, Briggs S, Smithgall TE, Martin GA, McCormick F, Chang JH, Parsons SJ, Jove R (1995) Two SH2 domains of p120 Ras GTPase-activating protein bind synergistically to tyrosine phosphorylated p190 Rho GTPase-activating protein. Journal of Biological Chemistry 270:17947–17952

    Article  Google Scholar 

  1074. Kahn RA, Bruford E, Inoue H, Logsdon JM, Nie Z, Premont RT, Randazzo PA, Satake M, Theibert AB, Zapp ML, Cassel d (2008) Consensus nomenclature for the human ArfGAP domain-containing proteins. Journal of Cell Biology 182:1039–1044

    Google Scholar 

  1075. Inoue H, Randazzo PA (2007) Arf GAPs and their interacting proteins. Traffic 8:1465–1475

    Article  Google Scholar 

  1076. Gosney BJ, Kanamarlapudi V (2011) ADAP2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1077. Brown MC, Cary LA, Jamieson JS, Cooper JA, Turner CE (2005) Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Molecular Biology of the Cell 16:4316–4328

    Article  Google Scholar 

  1078. Jamieson JS, Tumbarello DA, Hallé M, Brown MC, Tremblay ML, Turner CE (2005) Paxillin is essential for PTP-PEST-dependent regulation of cell spreading and motility: a role for paxillin kinase linker. Journal of Cell Science 118:5835–5847

    Article  Google Scholar 

  1079. Lamorte L, Rodrigues S, Sangwan V, Turner CE, Park M (2003) Crk associates with a multimolecular Paxillin/GIT2/β-PIX complex and promotes Rac-dependent relocalization of Paxillin to focal contacts. Molecular Biology of the Cell 14:2818–2831

    Article  Google Scholar 

  1080. Owens SE, Kanamarlapudi V (2010) Arap3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1081. Davies JC, Kanamarlapudi V (2011) Smap2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1082. Liu W, Duden R, Phair RD, Lippincott-Schwartz J (2005) ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. Journal of Cell Biology 168: 1053–1063

    Article  Google Scholar 

  1083. Natsume W, Tanabe K, Kon S, Yoshida N, Watanabe T, Torii T, Satake M (2006) SMAP2, a novel ARF GTPase-activating protein, interacts with clathrin and clathrin assembly protein and functions on the AP-1-positive early endosome/trans-Golgi network. Molecular Biology of the Cell 17:2592–2603

    Article  Google Scholar 

  1084. Nie Z, Fei J, Premont RT, Randazzo PA (2005) The Arf GAPs AGAP1 and AGAP2 distinguish between the adaptor protein complexes AP-1 and AP-3. Journal of Cell Science 118:3555–3566

    Article  Google Scholar 

  1085. Fukui K, Sasaki T, Imazumi K, Matsuura Y, Nakanishi H, Takai Y (1997) Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins. Journal of Biological Chemistry 272:4655–4658

    Article  Google Scholar 

  1086. Meng J, Casey PJ (2002) Activation of Gz attenuates Rap1-mediated differentiation of PC12 cells. Journal of Biological Chemistry 277:43417–43424

    Article  Google Scholar 

  1087. Hattori M, Tsukamoto N, Nur-e-Kamal MS, Rubinfeld B, Iwai K, Kubota H, Maruta H, Minato N (1995) Molecular cloning of a novel mitogen-inducible nuclear protein with a Ran GTPase-activating domain that affects cell cycle progression. Molecular and Cellular Biology 15:552–560

    Google Scholar 

  1088. Sot B, Kötting C, Deaconescu D, Suveyzdis Y, Gerwert K, Wittinghofer A (2010) Unravelling the mechanism of dual-specificity GAPs. EMBO Journal 29:1205–1214

    Article  Google Scholar 

  1089. Trov-Marqui AB, Tajara EH (2006) Neurofibromin: a general outlook. Clinical Genetics 70:1–13

    Article  Google Scholar 

  1090. Morrison H, Sperka T, Manent J, Giovannini M, Ponta H, Herrlich P (2007) Merlin/neurofibromatosis type 2 suppresses growth by inhibiting the activation of Ras and Rac. Cancer Research 67:520–527

    Article  Google Scholar 

  1091. Ozawa T, Araki N, Yunoue S, Tokuo H, Feng L, Patrakitkomjorn S, Hara T, Ichikawa Y, Matsumoto K, Fujii K, Saya H (2005) The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway. Journal of Biological Chemistry 280:39524–39533

    Article  Google Scholar 

  1092. Sánchez-Margalet V, Najib S (2001) Sam68 is a docking protein linking GAP and PI3K in insulin receptor signaling. Molecular and Cellular Endocrinology 183:113–121

    Article  Google Scholar 

  1093. Chow A, Davis AJ, Gawler DJ (2000) Identification of a novel protein complex containing annexin VI, Fyn, Pyk2, and the p120(GAP) C2 domain. FEBS Letters 469:88–92

    Article  Google Scholar 

  1094. Koehler JA, Moran MF (2001) RACK1, a protein kinase C scaffolding protein, interacts with the PH domain of p120GAP. Biochemical and Biophysical Research Communications 283:888–895

    Article  Google Scholar 

  1095. Tomoda T, Kim JH, Zhan C, Hatten ME (2004) Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes and Developement 18:541–558

    Article  Google Scholar 

  1096. Liu Q, Walker SA, Gao D, Taylor JA, Dai YF, Arkell RS, Bootman MD, Roderick HL, Cullen PJ, Lockyer PJ (2005) CAPRI and RASAL impose different modes of information processing on Ras due to contrasting temporal filtering of Ca2 + . Journal of Cell Biology 170:183–190

    Article  Google Scholar 

  1097. Oinuma I, Katoh H, Negishi M (2006) Semaphorin 4D/Plexin-B1-mediated R-Ras GAP activity inhibits cell migration by regulating β(1) integrin activity. Journal of Cell Biology 173:601–613

    Article  Google Scholar 

  1098. Ito Y, Oinuma I, Katoh H, Kaibuchi K, Negishi M (2006) Sema4D/plexin-B1 activates GSK-3β through R-Ras GAP activity, inducing growth cone collapse. EMBO Reports 7:704–709

    Article  Google Scholar 

  1099. Uesugi K, Oinuma I, Katoh H, Negishi M (2009) Different requirement for Rnd GTPases of R-Ras GAP activity of Plexin-C1 and Plexin-D1. Journal of Biological Chemistry 284: 6743–6751

    Article  Google Scholar 

  1100. Jacobs T, Hall C (2005) Rho GAPs – Regulators of Rho GTPases and more (Chap. 5; p. 93–112). In Manser E (Ed.) RHo Family GTPases, Series: Proteins and Cell Regulation (Vol. 3) Springer, Dordrecht, The Netherlands

  1101. Qi RZ, Ching YP, Kung HF, Wang JH (2004) α-Chimaerin exists in a functional complex with the Cdk5 kinase in brain. FEBS Letters 561:177–180

    Article  Google Scholar 

  1102. Yang C, Liu Y, Lemmon MA, Kazanietz MG (2006) Essential role for Rac in heregulin beta1 mitogenic signaling: a mechanism that involves epidermal growth factor receptor and is independent of ErbB4. Molecular and Cellular Biology 26:831–842

    Article  Google Scholar 

  1103. Christerson LB, Gallagher E, Vanderbilt CA, Whitehurst AW, Wells C, Kazempour R, Sternweis PC, Cobb MH (2002) p115 Rho GTPase activating protein interacts with MEKK1. Journal of Cellular Physiology 192:200–208

    Article  Google Scholar 

  1104. Ludwig K, Sanchez Manchinelly SA, Su L, Mikawa M, Parsons SJ (2009) p190RhoGAP-A. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1105. Sanchez Manchinelly SA, Ludwig K, Mikawa M, Parsons SJ (2009) p190RhoGAP-B. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1106. Holinstat M, Knezevic N, Broman M, Samarel AM, Malik AB, Mehta D (2006) Suppression of RhoA activity by focal adhesion kinase-induced activation of p190RhoGAP: role in regulation of endothelial permeability. Journal of Biological Chemistry 281:2296–2305

    Article  Google Scholar 

  1107. Barberis D, Casazza A, Sordella R, Corso S, Artigiani S, Settleman J, Comoglio PM, Tamagnone L (2005) p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling. Journal of Cell Science 118:4689–4700

    Article  Google Scholar 

  1108. Wennerberg K, Forget MA, Ellerbroek SM, Arthur WT, Burridge K, Settleman J, Der CJ, Hansen SH (2003) Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Current Biology 13:1106–1115

    Article  Google Scholar 

  1109. Kawai K, Iwamae Y, Yamaga M, Kiyota M, Ishii H, Hirata H, Homma Y, Yagisawa H (2009) Focal adhesion-localization of START-GAP1/DLC1 is essential for cell motility and morphology. Genes to Cells 14:227–241

    Article  Google Scholar 

  1110. Eberth A, Lundmark R, Gremer L, Dvorsky R, Koessmeier KT, McMahon HT, Ahmadian MR (2009) A BAR domain-mediated autoinhibitory mechanism for RhoGAPs of the GRAF family. Biochemical Journal 417:371–377

    Article  Google Scholar 

  1111. Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, Colwill K, Starostine A, Metalnikov P, Pawson T (2006) A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 125:535–548

    Article  Google Scholar 

  1112. Richnau N, Aspenström P (2001) Rich, a rho GTPase-activating protein domain-containing protein involved in signaling by Cdc42 and Rac1. Journal of Biological Chemistry 276:35060–35070

    Article  Google Scholar 

  1113. Rollason R, Korolchuk V, Hamilton C, Jepson M, Banting G (2009) A CD317/tetherin–RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells. Journal of Cell Biology 184:721–736.

    Article  Google Scholar 

  1114. Tcherkezian J, Danek EI, Jenna S, Triki I, Lamarche-Vane N (2005) Extracellular signal-regulated kinase 1 interacts with and phosphorylates CdGAP at an important regulatory site. Molecular and Cellular Biology 25:6314–6329

    Article  Google Scholar 

  1115. Chiang SH, Hwang J, Legendre M, Zhang M, Kimura A, Saltiel AR (2003) TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO Journal 22:2679–2691

    Article  Google Scholar 

  1116. Zalcman G, Dorseuil O, Garcia-Ranea JA, Gacon G, Camonis J (1999) RhoGAPS and RhoGDIs: (His)stories of Two families. In Jeanteur P (Ed.) Cytoskeleton and small G proteins Springer, Berlin, Heidelberg

    Google Scholar 

  1117. Zhang B, Zheng Y (1998) Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1. Biochemistry 37:5249–5257

    Article  Google Scholar 

  1118. Cho YJ, Cunnick JM, Yi SJ, Kaartinen V, Groffen J, Heisterkamp N (2007) Abr and Bcr, two homologous Rac GTPase-activating proteins, control multiple cellular functions of murine macrophages. Molecular and Cellular Biology 27:899–911

    Article  Google Scholar 

  1119. Burkard ME, Maciejowski J, Rodriguez-Bravo V, Repka M, Lowery DM, Clauser KR, Zhang C, Shokat KM, Carr SA, Yaffe MB, Jallepalli PV (2009) Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biology 7:e1000111

    Article  Google Scholar 

  1120. Jullien-Flores V, Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R, Tavitian A, Gacon G, Camonis JH (1995) Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. Journal of Biological Chemistry 270:22473–22477

    Article  Google Scholar 

  1121. Saeki N, Tokuo H, Ikebe M (2005) BIG1 is a binding partner of myosin IXb and regulates its Rho-GTPase activating protein activity. Journal of Biological Chemistry 280:10128-10134

    Article  Google Scholar 

  1122. Faucherre A, Desbois P, Nagano F, Satre V, Lunardi J, Gacon G, Dorseuil O (2005) Lowe syndrome protein Ocrl1 is translocated to membrane ruffles upon Rac GTPase activation: a new perspective on Lowe syndrome pathophysiology. Human Molecular Genetics 14: 1441–1448

    Article  Google Scholar 

  1123. Dirac-Svejstrup AB, Sumizawa T, Pfeffer SR (1997) Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO Journal 16:465–472

    Article  Google Scholar 

  1124. Wu YW, Tan KT, Waldmann H, Goody RS, Alexandrov K (2007) Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators. Proceedings of the National Academy of Sciences of the United States of America 104:12294–12299

    Article  ADS  Google Scholar 

  1125. Oesterlin LK, Goody RS, Itzen A (2012) Posttranslational modifications of Rab proteins cause effective displacement of GDP dissociation inhibitor. Proceedings of the National Academy of Sciences of the United States of America 109:5621–5626

    Article  ADS  Google Scholar 

  1126. Chen Y, Deng Y, Zhang J, Yang L, Xie X, Xu T (2009) GDI-1 preferably interacts with Rab10 in insulin-stimulated GLUT4 translocation. Biochemical Journal 422:229–235

    Article  Google Scholar 

  1127. Elfenbein A, Rhodes JM, Meller J, Schwartz MA, Matsuda M, Simons M (2009) Suppression of RhoG activity is mediated by a syndecan 4-synectin-RhoGDI1 complex and is reversed by PKCα in a Rac1 activation pathway. Journal of Cell Biology 186:75–83

    Article  Google Scholar 

  1128. Garcia-Mata R, Boulter E, Burridge K (2011) The ’invisible hand’: regulation of RHO GTPases by RHOGDIs. Nature Reviews – Molecular Cell Biology 12:493–504

    Google Scholar 

  1129. Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, Brennwald PJ, Burridge K (2010) Regulation of RhoGTPase crosstalk, degradation and activity by RhoGDI1. Nature – Cell Biology 12:477–483

    Google Scholar 

  1130. Shin EY, Shim ES, Lee CS, Kim HK, Kim EG (2009) Phosphorylation of RhoGDI1 by p21-activated kinase 2 mediates basic fibroblast growth factor-stimulated neurite outgrowth in PC12 cells. Biochemical and Biophysical Research Communications 379:384–389

    Article  Google Scholar 

  1131. Brivanlou AH, Darnell JE (2002) Signal transduction and the control of gene expression. Science 295:813–818

    Article  ADS  Google Scholar 

  1132. Berridge MJ (2009) Module 4: Sensors and Effectors. Cell Signalling Biology. Biochemical Journal’s Signal Knowledge Environment Portland Press Ltd., London, UK (www.biochemj.org/csb/004/csb004.pdf)

  1133. Snyder SH, Ferris CD (2000) Novel neurotransmitters and their neuropsychiatric relevance. American Journal of Psychiatry 157:1738–1751

    Article  Google Scholar 

  1134. Herring N, Paterson DJ (2001) Nitric oxide-cGMP pathway facilitates acetylcholine release and bradycardia during vagal nerve stimulation in the guinea-pig in vitro. Journal of Physiology 535:507–518

    Article  Google Scholar 

  1135. Xue L, Farrugia G, Miller SM, Ferris CD, Snyder SH, Szurszewski JH (2000) Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes. Proceedings of the National Academy of Sciences of the United States of America 97:1851–1855

    Article  ADS  Google Scholar 

  1136. Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacological Reviews 60:79–127

    Article  Google Scholar 

  1137. Leffler CW, Parfenova H, Jaggar JH (2011) Carbon monoxide as an endogenous vascular modulator. American Journal of Physiology – Heart and Circulatory Physiology 1:H1–H11

    Google Scholar 

  1138. Abraham NG, Kappas A (2005) Heme oxygenase and the cardiovascular–renal system. Free Radical Biology and Medicine 39:1–25

    Article  Google Scholar 

  1139. Otterbein LE, Hedblom A, Harris C, Csizmadia E, Gallo D, Wegiel B (2011) Heme oxygenase-1 and carbon monoxide modulate DNA repair through ataxia-telangiectasia mutated (ATM) protein. Proceedings of the National Academy of Sciences of the United States of America 108:14491–14496

    Article  ADS  Google Scholar 

  1140. Rhodes MA, Carraway MS, Piantadosi CA, Reynolds CM, Cherry AD, Wester TE, Natoli MJ, Massey EW, Moon RE, Suliman HB (2011) Carbon monoxide, skeletal muscle oxidative stress, and mitochondrial biogenesis in humans. American Journal of Physiology – Heart and Circulatory Physiology 297:H392–H399

    Google Scholar 

  1141. Gilchrist M, Shore AC, Benjamin N (2011) Inorganic nitrate and nitrite and control of blood pressure. Cardiovascular Research 89:492–498

    Article  Google Scholar 

  1142. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. European Heart Journal 33:829–837

    Article  Google Scholar 

  1143. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84:757–767

    Article  Google Scholar 

  1144. Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annual Review of Physiology 64:749–774

    Article  Google Scholar 

  1145. Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochimica et Biophysica Acta – Bioenergetics 1411:217–230

    Google Scholar 

  1146. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MAH, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118

    Article  ADS  Google Scholar 

  1147. Elrod JW, Calvert JW, Gundewar S, Bryan NS, Lefer DJ (2008) Nitric oxide promotes distant organ protection: evidence for an endocrine role of nitric oxide. Proceedings of the National Academy of Sciences of the United States of America 105:11430–11435

    Article  ADS  Google Scholar 

  1148. Mitchell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE (2001) Co-ordinated control of endothelial nitric oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. Journal of Cell Chemistry 276:17625–17628

    Google Scholar 

  1149. Mount PF, Kemp BE, Power DA (2007) Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. Journal of Molecular and Cellular Cardiology 42:271–279

    Article  Google Scholar 

  1150. Kolodziejska KE, Burns AR, Moore RH, Stenoien DL, Eissa NT (2005) Regulation of inducible nitric oxide synthase by aggresome formation. Proceedings of the National Academy of Sciences of the United States of America 102:4854–4859

    Article  ADS  Google Scholar 

  1151. Choy JC, Wang Y, Tellides G, Pober JS (2007) Induction of inducible NO synthase in bystander human T cells increases allogeneic responses in the vasculature. Proceedings of the National Academy of Sciences of the United States of America 104:1313–1318

    Article  ADS  Google Scholar 

  1152. Malik M, Jividen K, Padmakumar VC, Cataisson C, Li L, Lee J, Howard OM, Yuspa SH (2012) Inducible NOS-induced chloride intracellular channel 4 (CLIC4) nuclear translocation regulates macrophage deactivation. Proceedings of the National Academy of Sciences of the United States of America 109:6130–6135

    Article  ADS  Google Scholar 

  1153. Leiper J, Nandi M, Torondel B, Murray-Rust J, Malaki M, O’Hara B, Rossiter S, Anthony S, Madhani M, Selwood D, Smith C, Wojciak-Stothard B, Rudiger A, Stidwill R, McDonald NQ, Vallance P (2007) Disruption of methylarginine metabolism impairs vascular homeostasis. Nature – Medicine 13:198–203

    Google Scholar 

  1154. Patel RP, Hogg N, Kim-Shapiro DB (2011) The potential role of the red blood cell in nitrite-dependent regulation of blood flow. Cardiovascular Research 89:507–515

    Article  Google Scholar 

  1155. Salgado MT, Nagababu E, Rifkind JM (2009) Quantification of intermediates formed during the reduction of nitrite by deoxyhemoglobin. Journal of Biological Chemistry 284: 12710–12718

    Article  Google Scholar 

  1156. Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, Steinhoff HJ, Goedecke A, Schrader J, Gladwin MT, Kelm M, Rassaf T (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America 105:10256–10261

    Article  ADS  Google Scholar 

  1157. Alzawahra WF, Talukder MAH, Liu X, Samouilov A, Zweier JL (2008) Heme proteins mediate the conversion of nitrite to nitric oxide in the vascular wall. American Journal of Physiology – Heart and Circulatory Physiology 295:H499–H508

    Google Scholar 

  1158. Allen BW, Stamler JS, Piantadosi CA (2009) Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends in Molecular Medicine 15:452–460

    Article  Google Scholar 

  1159. Zuckerbraun BS, George P, Gladwin MT (2011) Nitrite in pulmonary arterial hypertension: therapeutic avenues in the setting of dysregulated arginine/nitric oxide synthase signalling. Cardiovascular Research 89:542–552

    Article  Google Scholar 

  1160. Carlström M, Larsen FJ, Nyström T, Hezel M, Borniquel S, Weitzberg E, Lundberg JO (2010) Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 107:17716–17720

    Article  Google Scholar 

  1161. Segal SS (2005) Regulation of blood flow in the microcirculation. Microcirculation 12:33–45

    Article  Google Scholar 

  1162. Diesen DL, Hess DT, Stamler JS (2008) Hypoxic vasodilation by red blood cells: evidence for an s-nitrosothiol-based signal. Circulation Research 103:545–553

    Article  Google Scholar 

  1163. Murphy ME, Sies H (1991) Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America 88:10860–10864

    Article  ADS  Google Scholar 

  1164. Isbell TS, Sun CW, Wu LC, Teng X, Vitturi DA, Branch BG, Kevil CG, Peng N, Wyss JM, Ambalavanan N, Schwiebert L, Ren J, Pawlik KM, Renfrow MB, Patel RP, Townes TM (2008) SNO-hemoglobin is not essential for red blood cell-dependent hypoxic vasodilation. Nature – Medicine 14:773–777

    Google Scholar 

  1165. Favaloro JL, Kemp-Harper BK (2009) Redox variants of nitric oxide (NO ⋆  and HNO) elicit vasorelaxation of resistance arteries via distinct mechanisms. American Journal of Physiology – Heart and Circulatory Physiology 296:H1274–H1280

    Google Scholar 

  1166. Andrews KL, Irvine JC, Tare M, Apostolopoulos J, Favaloro JL, Triggle CR, Kemp-Harper BK (2009) A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. British Journal of Pharmacology 157:540–550

    Article  Google Scholar 

  1167. Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T, Hare JM, Espey MG, Fukuto JM, Feelisch M, Wink DA, Kass DA (2001) Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proceedings of the National Academy of Sciences of the United States of America 98:10463–10468

    Article  ADS  Google Scholar 

  1168. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiological Reviews 87:315–424

    Article  Google Scholar 

  1169. Feil R, Kemp-Harper B (2006) cGMP signalling: from bench to bedside. EMBO Reports 7:149–153

    Article  Google Scholar 

  1170. Rho EH, Perkins WJ, Lorenz RR, Warner DO, Jones KA (2002) Differential effects of soluble and particulate guanylyl cyclase on Ca2 +  sensitivity in airway smooth muscle. Journal of Applied Physiology 92:257–263

    Google Scholar 

  1171. Lewko B, Wendt U, Szczepanska-Konkel M, Stepinski J, Drewnowska K, Angielski S (1997) Inhibition of endogenous nitric oxide synthesis activates particulate guanylyl cyclase in the rat renal glomeruli. Kidney International 52:654–659

    Article  Google Scholar 

  1172. Crecelius AR, Kirby BS, Voyles WF, Dinenno FA (2010) Nitric oxide, but not vasodilating prostaglandins, contributes to the improvement of exercise hyperemia via ascorbic acid in healthy older adults. American Journal of Physiology – Heart and Circulatory Physiology 299:H1633–H1641

    Google Scholar 

  1173. Batchelor AM, Bartus K, Reynell C, Constantinou S, Halvey EJ, Held KF, Dostmann WR, Vernon J, Garthwaite J (2010) Exquisite sensitivity to subsecond, picomolar nitric oxide transients conferred on cells by guanylyl cyclase-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America 107:22060–22065

    Article  ADS  Google Scholar 

  1174. Illi B, Colussi C, Rosati J, Spallotta F, Nanni S, Farsetti A, Capogrossi MC, Gaetano C (2011) NO points to epigenetics in vascular development. Cardiovascular Research 90: 447–456

    Article  Google Scholar 

  1175. Hu RG, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A (2005) The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437:981–986

    Article  ADS  Google Scholar 

  1176. Hamed S, Brenner B, Roguin A (2011) Nitric oxide: a key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2. Cardiovascular Research 91:9–15

    Article  Google Scholar 

  1177. LJ Ignarro, JB Adams, PM Horwitz, KS Wood (1986) Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. Journal of Biological Chemistry 261:4997–5002

    Google Scholar 

  1178. LJ Ignarro, RE Byrns, GM Buga, KS Wood (1987) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circulation Research 61:866–879

    Article  Google Scholar 

  1179. Balligand JL, Cannon PJ (1997) Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arteriosclerosis, Thrombosis, and Vascular Biology 17:1846–1858

    Google Scholar 

  1180. Ormerod JO, Ashrafian H, Maher AR, Arif S, Steeples V, Born GV, Egginton S, Feelisch M, Watkins H, Frenneaux MP (2011) The role of vascular myoglobin in nitrite-mediated blood vessel relaxation. Cardiovascular Research 89:560–565

    Article  Google Scholar 

  1181. Maclauchlan S, Yu J, Parrish M, Asoulin TA, Schleicher M, Krady MM, Zeng J, Huang PL, Sessa WC, Kyriakides TR (2011) Endothelial nitric oxide synthase controls the expression of the angiogenesis inhibitor thrombospondin 2. Proceedings of the National Academy of Sciences of the United States of America 108:E1137–E1145

    Article  ADS  Google Scholar 

  1182. Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ, Bauer PM, Schnermann J, Roberts DD, Isenberg JS (2010) Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovascular Research 88:471–481

    Article  Google Scholar 

  1183. Schmid-Schönbein GW (2012) Nitric oxide (NO) side of lymphatic flow and immune surveillance. Proceedings of the National Academy of Sciences of the United States of America 109:3–4

    Article  ADS  Google Scholar 

  1184. Liao S, Cheng G, Conner DA, Huang Y, Kucherlapati RS, Munn LL, Ruddle NH, Jain RK, Fukumura D, Padera TP (2011) Impaired lymphatic contraction associated with immunosuppression. Proceedings of the National Academy of Sciences of the United States of America 108:18784–18789

    Article  ADS  Google Scholar 

  1185. Su KH, Tsai JY, Kou YR, Chiang AN, Hsiao SH, Wu YL, Hou HH, Pan CC, Shyue SK, Lee TS (2009) Valsartan regulates the interaction of angiotensin II type 1 receptor and endothelial nitric oxide synthase via Src/PI3K/Akt signalling. Cardiovascular Research 82:468–475

    Article  Google Scholar 

  1186. Nausch LWM, Ledoux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proceedings of the National Academy of Sciences of the United States of America 105:365–370

    Article  ADS  Google Scholar 

  1187. Arejian M, Li Y, Anand-Srivastava MB (2009) Nitric oxide attenuates the expression of natriuretic peptide receptor C and associated adenylyl cyclase signaling in aortic vascular smooth muscle cells: role of MAPK. American Journal of Physiology – Heart and Circulatory Physiology 296:H1859–H1867

    Google Scholar 

  1188. Popowich DA, Vavra AK, Walsh CP, Bhikhapurwala HA, Rossi NB, Jiang Q, Aalami OO, Kibbe MR (2010) Regulation of reactive oxygen species by p53: implications for nitric oxide-mediated apoptosis. American Journal of Physiology – Heart and Circulatory Physiology 298:H2192-H2200.

    Google Scholar 

  1189. Ridnour LA, Windhausen AN, Isenberg JS, Yeung N, Thomas DD, Vitek MP, Roberts DD, Wink DA (2007) Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America 104:16898–16903

    Article  ADS  Google Scholar 

  1190. Mattagajasingh I, Kim CK, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America 104:14855–14860

    Article  ADS  Google Scholar 

  1191. Kashiwagi S, Tsukada K, Xu L, Miyazaki J, Kozin SV, Tyrrell JA, Sessa WC, Gerweck LE, Jain RK, Fukumura D (2008) Perivascular nitric oxide gradients normalize tumor vasculature. Nature – Medicine 14:255–257

    Google Scholar 

  1192. Massion PB,Pelat M, Belge C, Balligand JL (2005) Regulation of the mammalian heart function by nitric oxide. Comparative Biochemistry and Physiology; Part A: Molecular and Integrative Physiology 142:144–150

    Article  Google Scholar 

  1193. Tamargo J, Caballero R, Gómez R, Delpón E (2010) Cardiac electrophysiological effects of nitric oxide. Cardiovascular Research 87:593–600

    Article  Google Scholar 

  1194. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339

    Article  ADS  Google Scholar 

  1195. Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circulation Research 84:1020–103

    Article  Google Scholar 

  1196. Zhang Q, Lazar M, Molino B, Rodriguez R, Davidov T, Su J, Tse J, Weiss HR, Scholz PM (2005) Reduction in interaction between cGMP and cAMP in dog ventricular myocytes with hypertrophic failure. American Journal of Physiology – Heart and Circulatory Physiology 289:H1251–H1257

    Google Scholar 

  1197. Chang KC, Barth AS, Sasano T, Kizana E, Kashiwakura Y, Zhang Y, Foster B, Marbán E (2008) CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proceedings of the National Academy of Sciences of the United States of America 105:4477–4482

    Article  ADS  Google Scholar 

  1198. Schroder F, Klein G, Fiedler B, Bastein M, Schnasse N, Hillmer A, Ames S, Gambaryan S, Drexler H, Walter U, Lohmann SM, Wollert KC (2003) Single L-type Ca2+ channel regulation by cGMP-dependent protein kinase type I (PKG I) in adult cardiomyocytes from PKG I transgenic mice. Cardiovascular Research 60:268–277

    Article  Google Scholar 

  1199. Kalra D, Baumgarten G, Dibbs Z, Seta Y, Sivasubramanian N, Mann DL (2000) Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through a cGMP-dependent pathway. Circulation 102:1302–1307

    Article  Google Scholar 

  1200. Wilson Tang WH, Tong W, Shrestha K, Wang Z, Levison BS, Delfraino B, Hu B, Troughton RW, Klein AL, Hazen SL (2008) Differential effects of arginine methylation on diastolic dysfunction and disease progression in patients with chronic systolic heart failure. European Heart Journal 29:2506

    Article  Google Scholar 

  1201. Mujoo K, Sharin VG, Bryan NS, Krumenacker JS, Sloan C, Parveen S, Nikonoff LE, Kots AY, Murad F (2008) Role of nitric oxide signaling components in differentiation of embryonic stem cells into myocardial cells. Proceedings of the National Academy of Sciences of the United States of America 105:18924–18929

    Article  ADS  Google Scholar 

  1202. Yu Q, Gao F, Ma XL (2011) Insulin says NO to cardiovascular disease. Cardiovascular Research 89:516–524

    Article  Google Scholar 

  1203. Ortiz PA, Garvin JL (2002) Role of nitric oxide in the regulation of nephron transport. American Journal of Physiology – Renal Physiology 282:F777–F784

    Google Scholar 

  1204. Kelm M, Schrader J (1990) Control of coronary vascular tone by nitric oxide. Circulation Research 66:1561–1575

    Article  Google Scholar 

  1205. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  ADS  Google Scholar 

  1206. Gladwin MT, Raat NJ, Shiva S, Dezfulian C, Hogg N, Kim-Shapiro DB, Patel RP (2006) Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. American Journal of Physiology – Heart and Circulatory Physiology 291:H2026–H2035

    Google Scholar 

  1207. Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proceedings of the National Academy of Sciences of the United States of America 89:7674–7677

    Article  ADS  Google Scholar 

  1208. Yong QC, Hu LF, Wang S, Huang D, Bian JS (2010) Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovascular Research 88:482–491

    Article  Google Scholar 

  1209. Tanizawa K (2011) Production of H2S by 3-mercaptopyruvate sulphurtransferase. Journal of Biochemistry 149:357–359

    Article  Google Scholar 

  1210. Bearden SE, Beard RS Jr, Pfau JC (2010) Extracellular transsulfuration generates hydrogen sulfide from homocysteine and protects endothelium from redox stress. American Journal of Physiology – Heart and Circulatory Physiology 299:H1568–H1576

    Google Scholar 

  1211. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proceedings of the National Academy of Sciences of the United States of America 104:17977–17982

    Article  ADS  Google Scholar 

  1212. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590

    Article  ADS  Google Scholar 

  1213. Mishra PK, Tyagi N, Sen U, Givvimani S M D, Tyagi SC (2010) H2S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. American Journal of Physiology – Heart and Circulatory Physiology 298: H451–H456

    Google Scholar 

  1214. Meng QH, Yang G, Yang W, Jiang B, Wu L, Wang R (2007) Protective effect of hydrogen sulfide on balloon injury-induced neointima hyperplasia in rat carotid arteries. American Journal of Pathology 170:1406–1414

    Article  Google Scholar 

  1215. Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovascular Research 76:29–40

    Article  Google Scholar 

  1216. Fu M, Zhang W, Wu L, Yang G, Li H, Wang R (2012) Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proceedings of the National Academy of Sciences of the United States of America 109:2943–2948

    Article  ADS  Google Scholar 

  1217. Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 285:R277–R297

    Google Scholar 

  1218. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews 87:245–313

    Article  Google Scholar 

  1219. Massaro M, Habib A, Lubrano L, Del Turco S, Lazzerini G, Bourcier T, Weksler BB, De Caterina R (2006) The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKCε inhibition. Proceedings of the National Academy of Sciences of the United States of America 103:15184–15189

    Article  ADS  Google Scholar 

  1220. Morgan MJ, Kim YS, Liu ZG (2008) TNFα and reactive oxygen species in necrotic cell death. Cell Research 18:343–349

    Article  Google Scholar 

  1221. Gao L, Mann GE (2009) Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovascular Research 82:9–20

    Article  Google Scholar 

  1222. Bánfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnár GZ, Krause KH, Cox JA (2004) Mechanism of Ca2 +  activation of the NADPH oxidase 5 (NOX5). Journal of Biological Chemistry 279:18583–18591

    Article  Google Scholar 

  1223. El Jamali A, Valente AJ, Lechleiter JD, Gamez MJ, Pearson DW, Nauseef WM, Clark RA (2008) Novel redox-dependent regulation of NOX5 by the tyrosine kinase c-Abl. Free Radical Biology and Medicine 44:868–881

    Article  Google Scholar 

  1224. Bánfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, Ligeti E, Demaurex N, Krause KH (2000) A mammalian H +  channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287:138–142

    Article  ADS  Google Scholar 

  1225. Montezano AC, Burger D, Paravicini TM, Chignalia AZ, Yusuf H, Almasri M, He Y, Callera GE, He G, Krause KH, Lambeth D, Quinn MT, Touyz RM (2010) Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circulation Research 106:1363–1373

    Article  Google Scholar 

  1226. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 24:677–683

    Article  Google Scholar 

  1227. Manea A, Tanase LI, Raicu M, Simionescu M (2010) Jak/STAT signaling pathway regulates Nox1 and Nox4-based NADPH oxidase in human aortic smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 30:105–112

    Article  Google Scholar 

  1228. Brandes RP (2003) Role of NADPH oxidases in the control of vascular gene expression. Antioxidants and Redox Signaling 5:803–811

    Article  Google Scholar 

  1229. Anilkumar N, Weber R, Zhang M, Brewer A, Shah AM (2008) Nox4 and Nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arteriosclerosis, Thrombosis, and Vascular Biology 28:1347–1354

    Article  Google Scholar 

  1230. Godbole AS, Lu X, Guo X, Kassab GS (2009) NADPH oxidase has a directional response to shear stress. American Journal of Physiology – Heart and Circulatory Physiology 296: H152–H158

    Google Scholar 

  1231. Redmond EM, Cahill PA (2012) The NOX–ROS connection: targeting Nox1 control of N-cadherin shedding in vascular smooth muscle cells. Circulation Research 93:386–387

    Google Scholar 

  1232. Niu XL, Madamanchi NR, Vendrov AE, Tchivilev I, Rojas M, Madamanchi C, Brandes RP, Krause KH, Humphries J, Smith A, Burnand KG, Runge MS (2010) Nox activator 1: a potential target for modulation of vascular reactive oxygen species in atherosclerotic arteries. Circulation 121:549–559

    Article  Google Scholar 

  1233. Jagadeesha DK, Takapoo M, Banfi B, Bhalla RC, Miller FJ (2012) Nox1 transactivation of epidermal growth factor receptor promotes N-cadherin shedding and smooth muscle cell migration. Circulation Research 93:406–413

    Google Scholar 

  1234. Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS (2011) Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Antioxidants and Redox Signaling 15:77–97

    Article  Google Scholar 

  1235. Sundar IK, Caito S, Yao H, Rahman I (2010) Oxidative stress, thiol redox signaling methods in epigenetics. Methods in Enzymology 474:213–244

    Article  Google Scholar 

  1236. Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, Rhee SG (2003) Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300: 653–656

    Article  ADS  Google Scholar 

  1237. Kinnula VL, Lehtonen S, Kaarteenaho-Wiik R, Lakari E, Pääkkö P, Kang SW, Rhee SG, Soini Y (2002) Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis. Thorax 57:157–164

    Article  Google Scholar 

  1238. Sundar IK, Chung S, Hwang JW, Arunachalam G, Cook S, Yao H, Mazur W, Kinnula VL, Fisher AB, Rahman I (2010) Peroxiredoxin 6 differentially regulates acute and chronic cigarette smoke-mediated lung inflammatory response and injury. Experimental Lung Research 36:451–462

    Article  Google Scholar 

  1239. Song JS, Cho HH, Lee BJ, Bae YC, Jung JS (2011) Role of thioredoxin 1 and thioredoxin 2 on proliferation of human adipose tissue-derived mesenchymal stem cells. Stem Cells and Development 20:1529–1537

    Article  Google Scholar 

  1240. Brandes RP (2011) Vascular peroxidase 1/peroxidasin: a complex protein with a simple function? Cardiovascular Research 91:1–2

    Article  Google Scholar 

  1241. Shi R, Hu C, Yuan Q, Yang T, Peng J, Li Y, Bai Y, Cao Z, Cheng G, Zhang G (2011) Involvement of vascular peroxidase 1 in angiotensin II-induced vascular smooth muscle cell proliferation. Cardiovascular Research 91:27–36

    Article  Google Scholar 

  1242. Miki H, Funato Y. (2012) Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. Journal of Biochemistry 151:255–261

    Article  Google Scholar 

  1243. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    Article  ADS  Google Scholar 

  1244. Harris I, McCracken S, Mak TW (2012) PKM2: A gatekeeper between growth and survival. Cell Research 22:447–449

    Article  Google Scholar 

  1245. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Van der Heiden MG, Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283

    Article  ADS  Google Scholar 

  1246. Chai Y, Zhang DM, Lin YF (2011) Activation of cGMP-dependent protein kinase stimulates cardiac ATP-sensitive potassium channels via a ROS/calmodulin/CaMKII signaling cascade. PLoS One 6:e18191

    Article  ADS  Google Scholar 

  1247. Kubo M, Nakaya Y, Matsuoka S, Saito K, Kuroda Y (1994) Atrial natriuretic factor and isosorbide dinitrate modulate the gating of ATP-sensitive K +  channels in cultured vascular smooth muscle cells. Circulation Research 74:471–476

    Article  Google Scholar 

  1248. Denicola A, Souza JM, Radi R (1998) Diffusion of peroxynitrite across erythrocyte membranes. Proceedings of the National Academy of Sciences of the United States of America 95:3566–3571

    Article  ADS  Google Scholar 

  1249. Lancaster JR (2006) Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chemical Research in Toxicology 19:1160–1174

    Article  Google Scholar 

  1250. Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, Wang Y, Halder G, Finegold MJ, Lee JS, Johnson RL (2010) Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proceedings of the National Academy of Sciences of the United States of America 107:1437–1442.

    Article  ADS  Google Scholar 

  1251. Saucedo LJ, Edgar BA (2007) Filling out the Hippo pathway. Nature Reviews – Molecular Cell Biology 8:613–621

    Google Scholar 

  1252. Ikeda M, Kawata A, Nishikawa M, Tateishi Y, Yamaguchi M, Nakagawa K, Hirabayashi S, Bao Y, Hidaka S, Hirata Y, Hata Y (2009) Hippo pathway-dependent and -independent roles of RASSF6. Science Signaling 2:ra59

    Google Scholar 

  1253. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nature Reviews – Molecular Cell Biology 11:252–263

    Google Scholar 

  1254. Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, Wrana JL, Attisano L (2010) The Hippo pathway regulates Wnt/beta-catenin signaling. Developmental Cell 18:579–591

    Article  Google Scholar 

  1255. Zhao L, Jiang S, Hantash BM (2009) TGF-β1 Induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Engineering Part A 16:725–733

    Article  Google Scholar 

  1256. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:458–461

    Article  ADS  Google Scholar 

  1257. Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T (2007) TAZ promotes PC2 degradation through a SCFβTRCP E3 ligase complex. Molecular and Cellular Biology 27:6383–6395

    Article  Google Scholar 

  1258. Bao Y, Hata Y, Ikeda M, Withanage K (2011) Mammalian Hippo pathway: from development to cancer and beyond. Journal of Biochemistry 149:361–379

    Article  Google Scholar 

  1259. Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R, Brugge JS, Dyson NJ, Haber DA (2009) YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nature – Cell Biology 11:1444–1450

    Google Scholar 

  1260. Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Developmental Cell 19:507–520

    Article  Google Scholar 

  1261. Tanoue T, Takeichi M (2005) New insights into Fat cadherins. Journal of Cell Science 118:2347–2353

    Article  Google Scholar 

  1262. Lawrence PA, Struhl G, Casal J (2008) Do the protocadherins Fat and Dachsous link up to determine both planar cell polarity and the dimensions of organs? Nature – Cell Biology 10:1379–1382

    Google Scholar 

  1263. Ishikawa HO, Takeuchi H, Haltiwanger RS, Irvine KD (2008) Four-jointed is a Golgi kinase that phosphorylates a subset of cadherin domains. Science 321:401–404

    Article  ADS  Google Scholar 

  1264. De Souza PM, Kankaanranta H, Michael A, Barnes PJ, Giembycz MA, Lindsay MA (2002) Caspase-catalyzed cleavage and activation of Mst1 correlates with eosinophil but not neutrophil apoptosis. Blood 99:3432–3438

    Article  Google Scholar 

  1265. Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120: 675–685

    Article  Google Scholar 

  1266. Chow A, Hao Y, Yang X (2010) Molecular characterization of human homologs of yeast MOB1. International Journal of Cancer 126:2079–2089

    Google Scholar 

  1267. Gee ST, Milgram SL, Kramer KL, Conlon FL, Moody SA (2011) Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. PLoS One 6:e20309

    Article  Google Scholar 

  1268. Harvey K, Tapon N (2007) The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nature Reviews – Cancer 7:182–191

    Google Scholar 

  1269. Blandino G, Shaul Y, Strano S, Sudol M, Yaffe M (2009) The Hippo tumor suppressor pathway: a brainstorming workshop. Science Signaling 2:mr6

    Google Scholar 

  1270. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183

    Article  Google Scholar 

  1271. Maeda T, Chapman DL, Stewart AF (2002) Mammalian vestigial-like 2, a cofactor of TEF-1 and MEF2 transcription factors that promotes skeletal muscle differentiation. Journal of Biological Chemistry 277:48889–48898

    Article  Google Scholar 

  1272. Mielcarek M, Günther S, Krüger M, Braun T (2002) VITO-1, a novel vestigial related protein is predominantly expressed in the skeletal muscle lineage. Mechanisms of Development 119:S269–S274

    Article  Google Scholar 

  1273. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Current Biology 18:435–441

    Article  Google Scholar 

  1274. Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D (2010) Kibra functions as a tumor suppressor protein that regulates hippo signaling in conjunction with Merlin and expanded. Developmental Cell 18:288–299

    Article  Google Scholar 

  1275. Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N (2010) Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Developmental Cell 18:300–308

    Article  Google Scholar 

  1276. Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H (2010) The WW domain protein Kibra acts upstream of hippo in Drosophila. Developmental Cell 18:309–316

    Article  Google Scholar 

  1277. Csukai M, Chen CH, De Matteis MA, Mochly-Rosen D (1997) The coatomer protein β-COP, a selective binding protein (RACK) for protein kinase Cε. Journal of Biological Chemistry 272:29200–29206

    Article  Google Scholar 

  1278. Jaburek M, Costa AD, Burton JR, Costa CL, Garlid KD (2006) Mitochondrial PKCε and mitochondrial ATP-sensitive K +  channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circulation Research 99:878–883

    Article  Google Scholar 

  1279. Schechtman D, Mochly-Rosen D (2001) Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20:6339–6347

    Article  Google Scholar 

  1280. Yuasa K, Omori K, Yanaka N (2000) Binding and phosphorylation of a novel male germ cell-specific cGMP-dependent protein kinase-anchoring protein by cGMP-dependent protein kinase Iα. Journal of Biological Chemistry 275:4897–4905

    Article  Google Scholar 

  1281. Naisbitt S, Valtschanoff J, Allison DW, Sala C, Kim E, Craig AM, Weinberg RJ, Sheng M (2000) Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. Journal of Neuroscience 20:4524–4534

    Google Scholar 

  1282. Takeuchi M, Hata Y, Hirao K, Toyoda A, Irie M, Takai Y (1997) SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. Journal of Biological Chemistry 272:11943–11951

    Article  Google Scholar 

  1283. Boeckers TM, Winter C, Smalla KH, Kreutz MR, Bockmann J, Seidenbecher C, Garner CC, Gundelfinger ED (1999) Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family. Biochemical and Biophysical Research Communications 264:247–252

    Article  Google Scholar 

  1284. Lim S, Naisbitt S, Yoon J, Hwang JI, Suh PG, Sheng M, Kim E (1999) Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. Journal of Biological Chemistry 274:29510–29518

    Article  Google Scholar 

  1285. Sheng M, Kim E (2000) The Shank family of scaffold proteins. Journal of Cell Science 113:1851–1856

    Google Scholar 

  1286. Kwon SK, Woo J, Kim SY, Kim H, Kim E (2010) Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase δ (PTPδ), and PTPσ via specific domains regulate excitatory synapse formation.

    Google Scholar 

  1287. Carnegie GK, Scott JD (2003) A-kinase anchoring proteins and neuronal signaling mechanisms. Genes and Development 17:1557–1568

    Article  Google Scholar 

  1288. Chen L, Kass RS (2005) A-kinase anchoring proteins: different partners, different dance. Nature – Cell Biology 7:1050–1051

    Google Scholar 

  1289. Lim CJ, Han J, Yousefi N, Ma Y, Amieux PS, McKnight GS, Taylor SS, Ginsberg MH (2007) α4 Integrins are type I cAMP-dependent protein kinase-anchoring proteins. Nature – Cell Biology 9:415–421

    Google Scholar 

  1290. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time, Nature Reviews – Molecular Cell Biology 5:959–970

    Google Scholar 

  1291. Diviani D, Dodge-Kafka KL, Li J, Kapiloff MS (2011) A-kinase anchoring proteins: scaffolding proteins in the heart. American Journal of Physiology – Heart and Circulatory Physiology 301:H1742–H1753

    Google Scholar 

  1292. Dong F, Feldmesser M, Casadevall A, Rubin CS (1998) Molecular characterization of a cDNA that encodes six isoforms of a novel murine A kinase anchor protein. Journal of Biological Chemistry 273:6533–6541

    Article  Google Scholar 

  1293. Brown PR, Miki K, Harper DB, Eddy EM (2003) A-kinase anchoring protein 4 binding proteins in the fibrous sheath of the sperm flagellum. Biology of Reproduction 68: 2241–2248

    Article  Google Scholar 

  1294. Hoshi N, Langeberg L, Scott JD (2005) Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nature – Cell Biology 7:1066–1073

    Google Scholar 

  1295. Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD (2005) The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437:574–578

    Article  ADS  Google Scholar 

  1296. Akileswaran L, Taraska JW, Sayer JA, Gettemy JM, Coghlan VM (2001) A-kinase-anchoring protein AKAP95 is targeted to the nuclear matrix and associates with p68 RNA helicase. Journal of Biological Chemistry 276:17448–17454

    Article  Google Scholar 

  1297. Arsenijevic T, Degraef C, Dumont JE, Roger PP, Pirson I (2004) A novel partner for D-type cyclins: protein kinase A-anchoring protein AKAP95. Biochemical Journal 378:673–679

    Article  Google Scholar 

  1298. Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (2003) PDZK1: I. a major scaffolder in brush borders of proximal tubular cells. Kidney International 64:1733–1745

    Article  Google Scholar 

  1299. Tanji C, Yamamoto H, Yorioka N, Kohno N, Kikuchi K, Kikuchi A (2002) A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3β (GSK-3β) and mediates protein kinase A-dependent inhibition of GSK-3β. Journal of Biological Chemistry 277: 36955–36961

    Article  Google Scholar 

  1300. Gelman IH (2011) Akap12. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1301. Kultgen PL, Byrd SK, Ostrowski LE, Milgram SL (2002) Characterization of an A-kinase anchoring protein in human ciliary axonemes. Molecular Biology of the Cell 13:4156–4166

    Article  Google Scholar 

  1302. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiological Reviews 82:331–371

    Google Scholar 

  1303. Barwise JL, Walker JH (1996) Annexins II, IV, V and VI relocate in response to rises in intracellular calcium in human foreskin fibroblasts. Journal of Cell Science 109:247–255

    Google Scholar 

  1304. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2 +  signalling to membrane dynamics. Nature Reviews – Molecular Cell Biology 6:449–461

    Google Scholar 

  1305. Le Cabec V, Maridonneau-Parini I (1994) Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells. Biochemical Journal 303:481–487

    Google Scholar 

  1306. White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE (2006) EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO Journal 25, 1–12

    Article  Google Scholar 

  1307. Herbert SP, Odell AF, Ponnambalam S, Walker JH (2007) The confluence-dependent interaction of cytosolic phospholipase A2-α with annexin A1 regulates endothelial cell prostaglandin E2 generation. Journal of Biological Chemistry 82:34468–34478

    Article  Google Scholar 

  1308. Ross TS, Tait JF, Majerus PW (1990) Identity of inositol 1,2-cyclic phosphate 2-phosphohydrolase with lipocortin III. Science 248:605–607

    Article  ADS  Google Scholar 

  1309. Kaetzel MA, Chan HC, Dubinsky WP, Dedman JR, Nelson DJ (1994) A role for annexin IV in epithelial cell function. Inhibition of calcium-activated chloride conductance. Journal of Biological Chemistry 269:5297–5302

    Google Scholar 

  1310. Chan HC, Kaetzel MA, Gotter AL, Dedman JR, Nelson DJ (1994) Annexin IV inhibits calmodulin-dependent protein kinase II-activated chloride conductance. A novel mechanism for ion channel regulation. Journal of Biological Chemistry 269:32464–32468

    Google Scholar 

  1311. Trouvé P, Le Drévo MA, Kerbiriou M, Friocourt G, Fichou Y, Gillet D, Férec C (2007) Annexin V is directly involved in cystic fibrosis transmembrane conductance regulator’s chloride channel function. Biochimica et Biophysica Acta 1772:1121–1133

    Article  Google Scholar 

  1312. Riquelme G, Llanos P, Tischner E, Neil J, Campos B (2004) Annexin-6 modulates the maxi-chloride channel of the apical membrane of syncytiotrophoblast isolated from human placenta. Journal of Biological Chemistry 279:50601–50608

    Article  Google Scholar 

  1313. d’Anglemont de Tassigny A, Souktani R, Henry P, Ghaleh B, Berdeaux A (2004) Volume-sensitive chloride channels (ICl, vol ) mediate doxorubicin-induced apoptosis through apoptotic volume decrease in cardiomyocytes. Fundamental and Clinical Pharmacology 18:531–538

    Google Scholar 

  1314. d’Anglemont de Tassigny A, Berdeaux A, Souktani R, Henry P, Ghaleh B (2008) The volume-sensitive chloride channel inhibitors prevent both contractile dysfunction and apoptosis induced by doxorubicin through PI3kinase, Akt and Erk 1/2. European Journal of Heart Failure 10:39–46

    Google Scholar 

  1315. Camors E, Monceau V, Charlemagne D (2005) Annexins and Ca2 +  handling in the heart. Circulation Research 65:793–802

    Google Scholar 

  1316. Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodeling complexes. Molecular and Cellular Biology 20:1899–1910

    Article  Google Scholar 

  1317. Ghosh S, Hayden MS (2008) New regulators of NF-κB in inflammation. Nature Reviews – Immunology 8:837–848

    Google Scholar 

  1318. Peters RT, Liao SM, Maniatis T (2000) IKKε is part of a novel PMA-inducible IkappaB kinase complex. Molecular Cell 5:513–522

    Article  Google Scholar 

  1319. Kamata H, Tsuchiya Y, Asano T (2010) IκBβ is a positive and negative regulator of NF-κB activity during inflammation. Cell Research 20:1178–1180

    Article  Google Scholar 

  1320. Xu S, Bayat H, Hou X, Jiang B (2006) Ribosomal S6 kinase-1 modulates interleukin-1 β-induced persistent activation of NF-κB through phosphorylation of IκBβ. American Journal of Physiology – Cell Physiology 291:C1336–C1345

    Google Scholar 

  1321. Fiorini E, Schmitz I, Marissen WE, Osborn SL, Touma M, Sasada T, Reche PA, Tibaldi EV, Hussey RE, Kruisbeek AM, Reinherz EL, Clayton LK (2002) Peptide-induced negative selection of thymocytes activates transcription of an NF-κB inhibitor. Molecular Cell 9: 637–648

    Article  Google Scholar 

  1322. Vertegaal ACO, Kuiperij HB, Yamaoka S, Courtois G, van der Eb AJ, Zantema A (2000) Protein kinase C-α is an upstream activator of the IκBβ complex in the TPA signal transduction pathway to NF-κB in U2OS cells. Cellular Signalling 12:759–768

    Article  Google Scholar 

  1323. Gould GW (2011) IKKε: a kinase at the intersection of signaling and membrane traffic. Science Signaling 4:pe30

    Google Scholar 

  1324. Sun SC (2011) Non-canonical NFκB signaling pathway. Cell Research 21:71–85

    Article  MATH  Google Scholar 

  1325. Shih VFS, Tsui R, Caldwell A, Hoffmann A (2011) A single NFκB system for both canonical and non-canonical signaling. Cell Research 21:86–102

    Article  Google Scholar 

  1326. Liu S, Chen ZJ (2011) Expanding role of ubiquitination in NFκB signaling. Cell Research 21:6–21

    Article  Google Scholar 

  1327. Razani B, Zarnegar B, Ytterberg AJ, Shiba T, Dempsey PW, Ware CF, Loo JA, Cheng G (2010) Negative feedback in noncanonical NF-κB signaling modulates NIK stability through IKKα-mediated phosphorylation. Science Signaling 3:ra41

    Google Scholar 

  1328. Miyamoto S (2011) Nuclear initiated NFκB signaling: NEMO and ATM take center stage. Cell Research 21:116–130

    Article  Google Scholar 

  1329. Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S, Tergaonkar V (2010) ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Molecular Cell 40:75–86

    Article  Google Scholar 

  1330. Hinz M, Stilmann M, Arslan SC, Khanna KK, Dittmar G, Scheidereit C (2010) A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Molecular Cell 40:63–74

    Article  Google Scholar 

  1331. Blonska M, Lin X (2011) NFκB signaling pathways regulated by CARMA family of scaffold proteins. Cell Research 21:55–70

    Article  Google Scholar 

  1332. Staal J, Bekaert T, Beyaert R (2011) Regulation of NFκB signaling by caspases and MALT1 paracaspase. Cell Research 21:40–54

    Article  Google Scholar 

  1333. Yamanaka K, Ishikawa H, Megumi Y, Tokunaga F, Kanie M, Rouault TA, Morishima I, Minato N, Ishimori K, Iwai K (2003) Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2. Nature – Cell Biology 5:336–340

    Google Scholar 

  1334. Harhaj EW, Dixit VM (2011) Deubiquitinases in the regulation of NFκB signaling. Cell Research 21:22–39

    Article  Google Scholar 

  1335. Tokunaga F, Sakata SI, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K (2009) Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature – Cell Biology 11:123–132

    Google Scholar 

  1336. Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ (2009) Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461:114–119

    Article  ADS  Google Scholar 

  1337. Gyrd-Hansen M, DardingM, Miasari M, Santoro MM, Zender L, Xue W, Tenev T, da Fonseca PCA, Zvelebil M, Bujnicki JM, Lowe S, Silke J, Meier P (2008) IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-κB as well as cell survival and oncogenesis. Nature – Cell Biology 10:1309–1317

    Google Scholar 

  1338. Stilmann M, Hinz M, Arslan SC, Zimmer A, Schreiber V, Scheidereit C (2009) A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IkappaB kinase activation. Molecular Cell 36:365–378

    Article  Google Scholar 

  1339. Yazdanpanah B, Wiegmann K, Tchikov V, Krut O, Pongratz C, Schramm M, Kleinridders A, Wunderlich T, Kashkar H, Utermöhlen O, Brüning JC, Schütze S, Krönke M (2009) Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460:1159–1163

    Article  ADS  Google Scholar 

  1340. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NFκB signaling. Cell Research 21:103–115

    Article  Google Scholar 

  1341. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nature Reviews – Molecular Cell Biology 8:49–62

    Google Scholar 

  1342. Wang D, You Y, Lin PC, Xue L, Morris SW, Zen H, Wen R, Lin X (2007) Bcl10 plays a critical role in NF-kappaB activation induced by G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America 104:145–150

    Article  ADS  Google Scholar 

  1343. Shrum CK, Defrancisco D, Meffert MK (2009) Stimulated nuclear translocation of NF-κB and shuttling differentially depend on dynein and the dynactin complex. Proceedings of the National Academy of Sciences of the United States of America 106:2647–2652

    Article  ADS  Google Scholar 

  1344. Bosisio D, Marazzi I, Agresti A, Shimizu N, Bianchi ME, Natoli G (2006) A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-kappaB-dependent gene activity. EMBO Journal 25:798–810

    Article  Google Scholar 

  1345. Chew J, Biswas S, Shreeram S, Humaidi M, Wong ET, Dhillion MK, Teo H, Hazra A, Fang CC, Lpez-Collazo E, Bulavin DV, Tergaonkar V (2009) WIP1 phosphatase is a negative regulator of NF-κB signalling. Nature – Cell Biology 11:659–666

    Google Scholar 

  1346. Nakajima A, Komazawa-Sakon S, Takekawa M, Sasazuki T, Yeh WC, Yagita H, Okumura K, Nakano H (2006) An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO Journal 25:5549–5559

    Article  Google Scholar 

  1347. Yang Q, Kim YS, Lin Y, Lewis J, Neckers L, Liu ZG (2006) Tumour necrosis factor receptor 1 mediates endoplasmic reticulum stress-induced activation of the MAP kinase JNK. EMBO Reports 7:622–627

    Google Scholar 

  1348. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNF requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Molecular Cell 22:245–257

    Article  Google Scholar 

  1349. Vallabhapurapu S, Matsuzawa A, Zhang WZ, Tseng PH, Keats JJ, Wang H, Vignali DAA, Bergsagel PL, Karin M (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nature – Immunology 9:1364–1370

    Google Scholar 

  1350. Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, Shiba T, Yang X, Yeh WC, Mak TW, Korneluk RG, Cheng G (2008) Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nature – Immunology 9:1371–1378

    Google Scholar 

  1351. Chen Y, Rabson AB, Gorski DH (2010) MEOX2 regulates nuclear factor-κB activity in vascular endothelial cells through interactions with p65 and IκBβ. Cardiovascular Research 87:723–731

    Article  Google Scholar 

  1352. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006) Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation. Nature – Cell Biology 8:398–406

    Google Scholar 

  1353. Basak S, Kim H, Kearns JD, Tergaonkar V, O’Dea E, Werner SL, Benedict CA, Ware CF, Ghosh G, Verma IM, Hoffmann A (2007) A fourth IκB protein within the NF-κB signaling module. Cell 128:369–381

    Article  Google Scholar 

  1354. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SCM, Geijtenbeek TBH (2009) Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nature – Immunology 10:203–213

    Google Scholar 

  1355. Goto A, Matsushita K, Gesellchen V, El Chamy L, Kuttenkeuler D, Takeuchi O, Hoffmann JA, Akira S, Boutros M, Reichhart JM (2008) Akirins are highly conserved nuclear proteins required for NF-κB-dependent gene expression in drosophila and mice. Nature – Immunology 9:97–104

    Google Scholar 

  1356. Shembade N, Ma A, Harhaj EW (2010) Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327:1135–1139

    Article  ADS  Google Scholar 

  1357. Neumann M, Klar S, Wilisch-Neumann A, Hollenbach E, Kavuri S, Leverkus M, Kandolf R, Brunner-Weinzierl MC, Klingel K (2011) Glycogen synthase kinase-30̆3b2 is a crucial mediator of signal-induced RelB degradation. Oncogene 30:2485–2492

    Article  Google Scholar 

  1358. Hailfinger S, Nogai H, Pelzer C, Jaworski M, Cabalzar K, Charton JE, Guzzardi M, Décaillet C, Grau M, Dörken B, Lenz P, Lenz G, Thome M (2011) Malt1-dependent RelB cleavage promotes canonical NF-κB activation in lymphocytes and lymphoma cell lines. Proceedings of the National Academy of Sciences of the United States of America 108:14596–14601

    Article  ADS  Google Scholar 

  1359. Oliver KM, Lenihan CR, Bruning U, Cheong A, Laffey JG, McLoughlin P, Taylor CT, Cummins EP (2012) Hypercapnia induces cleavage and nuclear localization of RelB protein, giving insight into CO2 sensing and signaling. Journal of Biological Chemistry 287: 14004–14011

    Article  Google Scholar 

  1360. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proceedings of the National Academy of Sciences of the United States of America 103:18154–18159

    Article  ADS  Google Scholar 

  1361. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453:807–811

    Article  ADS  Google Scholar 

  1362. Nakayama K (2009) Cellular signal transduction of the hypoxia response. Journal of Biochemistry 146:757–765

    Article  Google Scholar 

  1363. Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Coles CH, Yu X, Hay RT, Ley SC, Pugh CW, Oldham NJ, Masson N, Schofield CJ, Ratcliffe PJ (2006) Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proceedings of the National Academy of Sciences of the United States of America 103:14767–14772

    Article  ADS  Google Scholar 

  1364. Resnik ER, Herron JM, Lyu SC, Cornfield DN (2007) Developmental regulation of hypoxia-inducible factor 1 and prolyl-hydroxylases in pulmonary vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America 104:18789–18794

    Article  ADS  Google Scholar 

  1365. Loor G, Schumacker PT (2008) Role of hypoxia-inducible factor in cell survival during myocardial ischemia–reperfusion. Cell Death and Differentiation 15:686–690

    Article  Google Scholar 

  1366. Formenti F, Constantin-Teodosiu D, Emmanuel Y, Cheeseman J, Dorrington KL, Edwards LM, Humphreys SM, Lappin TR, McMullin MF, McNamara CJ, Mills W, Murphy JA, O’Connor DF, Percy MJ, Ratcliffe PJ, Smith TG, Treacy M, Frayn KN, Greenhaff PL, Karpe F, Clarke K, Robbins PA (2010) Regulation of human metabolism by hypoxia-inducible factor. Proceedings of the National Academy of Sciences of the United States of America 107:12722–12727

    Article  ADS  Google Scholar 

  1367. Wei H, Bedja D, Koitabashi N, Xing D, Chen J, Fox-Talbot K, Rouf R, Chen S, Steenbergen C, Harmon JW, Dietz HC, Gabrielson KL, Kass DA, Semenza GL (2012) Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America 109:E841–E850

    Article  ADS  Google Scholar 

  1368. Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nature Reviews – Genetics 10:233–240

    Google Scholar 

  1369. Tuteja G, Kaestner KH (2007) SnapShot: forkhead transcription factors I. Cell 130:1160

    Article  Google Scholar 

  1370. Tuteja G, Kaestner KH (2007) Forkhead transcription factors II. Cell 131:192

    Article  Google Scholar 

  1371. van der Horst A, Burgering BMT (2007) Stressing the role of FoxO proteins in lifespan and disease. Nature Reviews – Molecular Cell Biology 8:440–450

    Google Scholar 

  1372. Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ, Gerard RD, Kuro-o M, Rothermel BA, Hill JA (2007) FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proceedings of the National Academy of Sciences of the United States of America 104:20517–20522

    Article  ADS  Google Scholar 

  1373. Patel PH, Tamanoi F (2006) Increased Rheb-TOR signaling enhances sensitivity of the whole organism to oxidative stress. Journal of Cell Science 119:4285–4292

    Article  Google Scholar 

  1374. Yuan Z, Becker EBE, Merlo P, Yamada T, DiBacco S, Konishi Y, Schaefer EM, Bonni A (2008) Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science 319:1665–1668

    Article  ADS  Google Scholar 

  1375. Van der Heide LP, Hoekman MFM, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochemical Journal 380:297–309

    Article  Google Scholar 

  1376. Ni YG, Berenji K, Wang N, Oh M, Sachan N, Dey A, Cheng J, Lu G, Morris DJ, Castrillon DH, Gerard RD, Rothermel BA, Hill JA (2006) Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 114:1159–1168

    Article  Google Scholar 

  1377. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  Google Scholar 

  1378. Dobson ME, Tzivion G (2011) Foxo3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1379. Randell JCW, Bowers JL, Rodrguez HK, Bell SP (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Molecular Cell 21:29–39

    Article  Google Scholar 

  1380. Zhang Y, Xing Y, Zhang L, Mei Y, Yamamoto K, Mak TW, You H (2012) Regulation of cell cycle progression by forkhead transcription factor FOXO3 through its binding partner DNA replication factor Cdt1. Proceedings of the National Academy of Sciences of the United States of America 109:5717–5722

    Article  ADS  Google Scholar 

  1381. Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. Journal of Biological Chemistry 280:20814–20823

    Article  Google Scholar 

  1382. An BS, Tavera-Mendoza LE, Dimitrov V, Wang X, Calderon MR, Wang HJ, White JH (2010) Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. Molecular and Cellular Biology 30:4890–4900

    Article  Google Scholar 

  1383. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. Journal of Biological Chemistry 278:35959–35967

    Article  Google Scholar 

  1384. van der Heide LP, Jacobs FM, Burbach JP, Hoekman MF, Smidt MP (2005) FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. Biochemical Journal 391:623–629

    Article  Google Scholar 

  1385. Kim DH, Perdomo G, Zhang T, Slusher S, Lee S, Phillips BE, Fan Y, Giannoukakis N, Gramignoli R, Strom S, Ringquist S, Dong HH (2011) FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes 60:2763–2774

    Article  Google Scholar 

  1386. Joerger AC, Rajagopalan S, Natan E, Veprintsev DB, Robinson CV, Fersht AR (2009) Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Proceedings of the National Academy of Sciences of the United States of America 106:17705–17710

    Article  ADS  Google Scholar 

  1387. Holmberg CI, Tran SE, Eriksson JE, Sistonen L (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends in Biochemical Sciences 27: 619–627

    Article  Google Scholar 

  1388. Huang J, Berger SL (2008) The emerging field of dynamic lysine methylation of non-histone proteins. Current Opinion in Genetics and Development 18:152–158

    Article  Google Scholar 

  1389. Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB (2008) Arginine methylation regulates the p53 response. Nature – Cell Biology 10:1431–1439

    Google Scholar 

  1390. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nature Reviews – Molecular Cell Biology 9:402–412

    Google Scholar 

  1391. Brooks CL, Gu W (2010) New insights into p53 activation. Cell Research 20:614–621

    Article  Google Scholar 

  1392. Meyer KD, Lin SC, Bernecky C, Gao Y, Taatjes DJ (2010) p53 Activates transcription by directing structural shifts in Mediator. Nature – Structural and Molecular Biology 17: 753–760

    Google Scholar 

  1393. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130

    Article  ADS  Google Scholar 

  1394. Geva-Zatorsky N, Dekel E, Batchelor E, Lahav G, Alon U (2010) Fourier analysis and systems identification of the p53 feedback loop. Proceedings of the National Academy of Sciences of the United States of America 107:13550–13555

    Article  ADS  Google Scholar 

  1395. Shi D, Pop MS, Kulikov R, Love IM, Kung A, Grossman SR (2009) CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53. Proceedings of the National Academy of Sciences of the United States of America 106:16275–16280

    Article  ADS  Google Scholar 

  1396. Kulikov R, Letienne J, Kaur M, Grossman SR, Arts J, Blattner C (2010) Mdm2 facilitates the association of p53 with the proteasome. Proceedings of the National Academy of Sciences of the United States of America 107:10038–10043

    Article  ADS  Google Scholar 

  1397. Ferreon JC, Lee CW, Arai M, Martinez-Yamout HJ, Wright PE (2009) Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proceedings of the National Academy of Sciences of the United States of America 106:6591–6596

    Article  ADS  Google Scholar 

  1398. Tai E, Benchimol S (2009) TRIMming p53 for ubiquitination. Proceedings of the National Academy of Sciences of the United States of America 106:11431–11432

    Article  ADS  Google Scholar 

  1399. Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, Nagashima M, Takenoshita S, Yokota J, Harris CC (2008) Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Research 68:3193–3203

    Article  Google Scholar 

  1400. Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, Qin J, Bergmann A, Johnson RL, Barton MC (2009) Trim24 targets endogenous p53 for degradation. Proceedings of the National Academy of Sciences of the United States of America 106:11612–11616

    Article  ADS  Google Scholar 

  1401. Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E, Triboulet R, Bossis G, Shmueli A, Rodriguez MS, Coux O, Sardet C (2006) E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127:775–788

    Article  Google Scholar 

  1402. Coutts AS, Weston L, La Thangue NB (2009) A transcription co-factor integrates cell adhesion and motility with the p53 response. Proceedings of the National Academy of Sciences of the United States of America 106:19872–19877

    Google Scholar 

  1403. Cho YY, He Z, Zhang Y, Choi HS, Zhu F, Choi BY, Kang BS, Ma WY, Bode AM, Dong Z (2005) The p53 protein is a novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction. Cancer Research 65:3596–3603

    Article  Google Scholar 

  1404. Llanos S, Cuadrado A, Serrano M (2009) MSK2 inhibits p53 activity in the absence of stress. Science Signaling 2:ra57

    Google Scholar 

  1405. Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proceedings of the National Academy of Sciences of the United States of America 107:19290–19295

    Article  ADS  Google Scholar 

  1406. Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H, Kerkhoven R, Jonkers J, Voorhoeve PM, Agami R, Del Sal G (2010) BRD7 is a candidate tumour suppressor gene required for p53 function. Nature – Cell Biology 12:380–389

    Google Scholar 

  1407. Park SY, Lee JH, Ha M, Nam JW, Kim VN (2008) miR-29 miRNAs activate p53 by targeting p85α and CDC42. Nature – Structural and Molecular Biology 16:23–29

    Google Scholar 

  1408. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  ADS  Google Scholar 

  1409. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460:529-533

    Article  ADS  Google Scholar 

  1410. Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America 107:6334–6339

    Article  ADS  Google Scholar 

  1411. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America 106:3207–3212

    Article  ADS  Google Scholar 

  1412. Vousden KH, Lane DP (2007) p53 in health and disease. Nature Reviews – Molecular Cell Biology 8:275–283

    Google Scholar 

  1413. Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S (2007) Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843

    Article  ADS  Google Scholar 

  1414. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences of the United States of America 107:7455–7460

    Article  ADS  Google Scholar 

  1415. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, Sugano S, Sato E, Nagao T, Yokote K, Tatsuno I, Prives C (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America 107:7461–7466

    Article  ADS  Google Scholar 

  1416. Zhang XP, Liu F, Cheng Z, Wang W (2009) Cell fate decision mediated by p53 pulses. Proceedings of the National Academy of Sciences of the United States of America 106:12245–12250

    Article  ADS  Google Scholar 

  1417. Cho YJ, Liang P (2008) Killin is a p53-regulated nuclear inhibitor of DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America 105:5396–5401

    Article  ADS  Google Scholar 

  1418. Sendoel A, Kohler I, Fellmann C, Lowe SW, Hengartner MO (2010) HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 465:577–583

    Article  ADS  Google Scholar 

  1419. Kim HJ, Lee HJ, Jun JI, Oh Y, Choi SG, Kim H, Chung CW, Kim IK, Park IS, Chae HJ, Kim HR, Jung YK (2009) Intracellular cleavage of osteopontin by caspase-8 modulates hypoxia/reoxygenation cell death through p53. Proceedings of the National Academy of Sciences of the United States of America 106:15326-15331

    Article  ADS  Google Scholar 

  1420. Koldobskiy MA, Chakraborty A, Werner JK, Snowman AM, Juluri KR, Vandiver MS, Kim S, Heletz S, Snyder SH (2010) p53-mediated apoptosis requires inositol hexakisphosphate kinase-2. Proceedings of the National Academy of Sciences of the United States of America 107:20947–20951

    Article  ADS  Google Scholar 

  1421. Li L, Deng B, Xing G, Teng Y, Tian C, Cheng X, Yin X, Yang J, Gao X, Zhu Y, Sun Q, Zhang L, Yang X, He F (2007) PACT is a negative regulator of p53 and essential for cell growth and embryonic development. Proceedings of the National Academy of Sciences of the United States of America 104:7951–7956

    Article  ADS  Google Scholar 

  1422. Jänicke RL, Sohn D, Schulze-Osthoff K (2008) The dark side of a tumor suppressor: anti-apoptotic p53. Cell Death and Differentiation 15:959–976

    Article  Google Scholar 

  1423. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G (2008) Regulation of autophagy by cytoplasmic p53. Nature – Cell Biology 10:676–687

    Google Scholar 

  1424. Lee KH, Li M, Michalowski AM, Zhang X, Liao H, Chen L, Xu Y, Wu X, Huang J (2010) A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 107:69–74

    Article  ADS  Google Scholar 

  1425. Xia M, Land H (2007) Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nature – Structural and Molecular Biology 14:215–223

    Google Scholar 

  1426. Zhang J, Jun Cho S, Chen X (2010) RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proceedings of the National Academy of Sciences of the United States of America 107:9614–9619

    Article  ADS  Google Scholar 

  1427. Vikhanskaya F, Toh WH, Dulloo I, Wu Q, Boominathan L, Ng HH, Vousden KH, Sabapathy K (2007) p73 supports cellular growth through c-Jun-dependent AP-1 transactivation. Nature – Cell Biology 9:698–706

    Google Scholar 

  1428. Hauck L, Harms C, An J, Rohne J, Gertz K, Dietz K, Endres M, von Harsdorf R (2008) Protein kinase CK2 links extracellular growth factor signaling with the control of p27Kip1 stability in the heart. Nature – Medicine 14:315–324

    Google Scholar 

  1429. Tour O, Adams SR, Kerr RA, Meijer RM, Sejnowski TJ, Tsien RW, Tsien RY (2007) Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. Nature – Chemical Biology 3:423–431

    Google Scholar 

  1430. McNeill H, Woodgett JR (2010) When pathways collide: collaboration and connivance among signalling proteins in development. Nature Reviews – Molecular Cell Biology 11:404–413

    Google Scholar 

  1431. Wilson LS, Elbatarny HS, Crawley SW, Bennett BM, Maurice DH (2008) Compartmentation and compartment-specific regulation of PDE5 by protein kinase G allows selective cGMP-mediated regulation of platelet functions. Proceedings of the National Academy of Sciences of the United States of America 105:13650–13655

    Article  ADS  Google Scholar 

  1432. Willoughby D, Wong W, Schaack J, Scott JD, Cooper DMF (2006) An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO Journal 25:2051–2061

    Article  Google Scholar 

  1433. Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annual Review of Pharmacology and Toxicology 41:751–773

    Article  Google Scholar 

  1434. Devic E, Xiang Y, Gould D, Kobilka B (2001) beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta1 and beta2 adrenoceptor knockout mice. Molecular Pharmacology 60:577–583

    Google Scholar 

  1435. Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proceedings of the National Academy of Sciences of the United States of America 93:295–299

    Article  ADS  Google Scholar 

  1436. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376

    Article  Google Scholar 

  1437. Willoughby D, Everett KL, Halls ML, Pacheco J, Skroblin P, Vaca L, Klussmann E, Cooper DMF (2012) Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2 +  and cAMP signaling. Science Signaling 5:ra29

    Google Scholar 

  1438. Houslay MD, Baillie GS (2003) The role of ERK2 docking and phosphorylation of PDE4 cAMP phosphodiesterase isoforms in mediating cross-talk between the cAMP and ERK signalling pathways. Biochemical Society Transactions 31:1186–1190

    Article  Google Scholar 

  1439. Amelio AL, Miraglia LJ, Conkright JJ, Mercer BA, Batalov S, Cavett V, Orth AP, Busby J, Hogenesch JB, Conkright MD (2007) A coactivator trap identifies NONO (p54nrb) as a component of the cAMP-signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 104:20314–20319

    Article  ADS  Google Scholar 

  1440. Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437:1109–1111

    Article  ADS  Google Scholar 

  1441. Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR 3rd, Takemori H, Okamoto M, Montminy M (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119:61–74

    Article  Google Scholar 

  1442. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of ”soluble” adenylyl cyclase. Synergism between calcium and bicarbonate. Journal of Biological Chemistry 278:15922–15926

    Google Scholar 

  1443. Geng W, Wang Z, Zhang J, Reed BY, Pak CY, Moe OW (2005) Cloning and characterization of the human soluble adenylyl cyclase. American Journal of Physiology – Cell Physiology 288:C1305–C1316

    Google Scholar 

  1444. Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proceedings of the National Academy of Sciences of the United States of America 96:79–84

    Article  ADS  Google Scholar 

  1445. Farrell J, Ramos L, Tresguerres M, Kamenetsky M, Levin LR, Buck J (2008) Somatic “soluble” adenylyl cyclase isoforms are unaffected in Sacytm1Lex/Sacytm1Lex “knockout” mice. PLoS ONE 3:e3251

    Article  ADS  Google Scholar 

  1446. Cooper DMF (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochemical Journal 375:517–529

    Article  Google Scholar 

  1447. Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, Rebois RV, Bouvier M, Hebert TE, Van Tol HH (2002) G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. Journal of Biological Chemistry 277: 46010–46019

    Article  Google Scholar 

  1448. Tovey SC, Dedos SG, Taylor EJ, Church JE, Taylor CW (2008) Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. Journal of Cell Biology 183:297–311

    Article  Google Scholar 

  1449. Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C (2003) Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. Journal of Biological Chemistry 278:5493–5496

    Article  Google Scholar 

  1450. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacological Reviews 58:488–520

    Article  Google Scholar 

  1451. Furman B, Ong WK, Pyne NJ (2010) Cyclic AMP signaling in pancreatic islets. Advances in Experimental Medicine and Biology 654:281–304

    Article  Google Scholar 

  1452. Maclean MR, Johnston ED, McCulloch KM, Pooley L, Houslay MD, Sweeney G (1997) Phosphodiesterase isoforms in the pulmonary arterial circulation of the rat: changes in pulmonary hypertension. Journal of Pharmacology and Experimental Therapeutics 283: 619–624

    Google Scholar 

  1453. Kessler T, Lugnier C (1995) Rolipram increases cyclic GMP content in L-arginine-treated cultured bovine aortic endothelial cells. European Journal of Pharmacology 290:163–167

    Article  Google Scholar 

  1454. Conti M, Jin SL (1999) The molecular biology of cyclic nucleotide phosphodiesterases. Progress in Nucleic Acid Research and Molecular Biology 63:1–38

    Article  Google Scholar 

  1455. Soderling SH, Beavo JA (2000) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Current Opinion in Cell Biology 12:174–179

    Article  Google Scholar 

  1456. Shrivastav A, Selvakumar P, Wang JH, Sharma RK (2009) Phosphodiesterase 1A, calmodulin dependent; Phosphodiesterase 1B, calmodulin dependent; Phosphodiesterase 1C, calmodulin dependent. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1457. Goraya TA, Cooper DM (2005) Ca2 + -calmodulin-dependent phosphodiesterase (PDE1): current perspectives. Cellular Signalling 17:789–797

    Article  Google Scholar 

  1458. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OP, Koniaris A (2011) Leptin in human physiology and pathophysiology. American Journal of Physiology – Endocrinology and Metabolism 301:E567–E584

    Google Scholar 

  1459. Houslay MD (2001) PDE4 cAMP-specific phosphodiesterases. Progress in Nucleic Acid Research and Molecular Biology 69:249–315

    Article  Google Scholar 

  1460. Houslay MD, Conti M (2010) Phosphodiesterase 4D, cAMP specific. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1461. Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO Journal 20:1921–1930

    Article  Google Scholar 

  1462. Perry SJ, Baillie G, Kohout TA, McPhee I, Magiera MM, Ang KL, Miller WE, McLean AJ, Conti M, Houslay MD, Lefkowitz RJ (2002) Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298:834–836

    Article  ADS  Google Scholar 

  1463. Raymond DR, Carter RL, Ward CA, Maurice DH (2009) Distinct phosphodiesterase-4D variants integrate into protein kinase A-based signaling complexes in cardiac and vascular myocytes. American Journal of Physiology – Heart and Circulatory Physiology 296:H263–H271

    Google Scholar 

  1464. Liu S, Li Y, Kim S, Fu Q, Parikh D, Sridhar B, Shi Q, Zhang X, Guan Y, Chen X, Xiang YK (2012) Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts. Proceedings of the National Academy of Sciences of the United States of America 109:6578–6583

    Article  ADS  Google Scholar 

  1465. Gebska MA, Stevenson BK, Hemnes AR, Bivalacqua TJ, Haile A, Hesketh GG, Murray CI, Zaiman AL, Halushka MK, Krongkaew N, Strong TD, Cooke CA, El-Haddad H, Tuder RM, Berkowitz DE, Champion HC (2011) Phosphodiesterase-5A (PDE5A) is localized to the endothelial caveolae and modulates NOS3 activity. Cardiovascular Research 90:353–363

    Article  Google Scholar 

  1466. Patrucco E, Kraynik S, Beavo JA (2012) Phosphodiesterase 8A, cAMP-specific. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1467. Omori K (2006) Phosphodiesterase 8B. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1468. Feil R, Kemp-Harper B (2006) cGMP signalling: from bench to bedside. EMBO Reports 7:149–153

    Article  Google Scholar 

  1469. Guo D, Tan YC, Wang D, Madhusoodanan KS, Zheng Y, Maack T, Zhang JJ, Huang XY (2007) A Rac-cGMP signaling pathway. Cell 128:341–355

    Article  Google Scholar 

  1470. Jacob MP, Fulop T, Foris G, Robert L (1987) Effect of elastin peptides on ion fluxes in mononuclear cells, fibroblasts, and smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America 84:995–999

    Article  ADS  Google Scholar 

  1471. Faury, G, Usson Y, Robert-Nicoud M, Robert L, Verdetti J (1998) Nuclear and cytoplasmic free calcium level changes induced by elastin peptides in human endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 95:2967–2972

    Article  ADS  Google Scholar 

  1472. Spofford CM, Chilian WM (2001) The elastin-laminin receptor functions as a mechanotransducer in vascular smooth muscle. American Journal of Physiology – Heart and Circulation Physiology 280:H1354–H1360

    Google Scholar 

  1473. Vogel WF (2001) Collagen-receptor signaling in health and disease. European Journal of Dermatology 11:506–514

    Google Scholar 

  1474. Kehrel B, Wierwille S, Clemetson KJ, Anders O, Steiner M, Knight CG, Farndale RW, Okuma M, Barnes MJ (1998) Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 91:491–499

    Google Scholar 

  1475. Xu P, Liu J, Sakaki-Yumoto M, Derynck R (2012) TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Science Signaling 5:ra34

    Google Scholar 

  1476. Comoglio PM, Boccaccio C, Trusolino L (2003) Interactions between growth factor receptors and adhesion molecules: breaking the rules. Current Opinion in Cell Biology 15:565–571

    Article  Google Scholar 

  1477. Sundberg C, Rubin K (1996) Stimulation of β1 integrins on fibroblasts induces PDGF-independent tyrosine phosphorylation of PDGF β receptors. Journal of Cell Biology 132:741–752

    Article  Google Scholar 

  1478. Wang JF, Zhang XF, Groopman JE (2001) Stimulation of β1 integrin induces tyrosine phosphorylation of vascular endothelial growth factor receptor-3 and modulates cell migration. Journal of Biological Chemistry 276:41950–41957

    Article  Google Scholar 

  1479. Betson M, Lozano E, Zhang J, Braga VM (2002) Rac activation upon cell-cell contact formation is dependent on signaling from the epidermal growth factor receptor. Journal of Biological Chemistry 277:36962–36969

    Article  Google Scholar 

  1480. Ma YQ (2008) Kindlin-2 (Mig-2): a coactivator of β3 integrins. Journal of Cell Biology 181:439–446

    Article  Google Scholar 

  1481. Montanez E (2008) Kindlin-2 controls bidirectional signaling of integrins. Genes and Development 22:1325–1330

    Article  Google Scholar 

  1482. Gong H, Shen B, Flevaris P, Chow C, Lam SCT, Voyno-Yasenetskaya TA, Kozasa T, Du X (2010) G Protein subunit Gα13 binds to integrin α IIb β3 and mediates integrin ”outside-in” signaling. Science 327:340–343

    Article  ADS  Google Scholar 

  1483. Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ, Ginsberg MH (2006) Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Current Biology 16: 1796–1806

    Article  Google Scholar 

  1484. Mattila E, Pellinen T, Nevo J, Vuoriluoto K, Arjonen A, Ivaska J (2005) Negative regulation of EGFR signalling through integrin-α1β1-mediated activation of protein tyrosine phosphatase TCPTP. Nature – Cell Biology 7:78–85

    Google Scholar 

  1485. Daniel JM, Spring CM, Crawford HC, Reynolds AB, Baig A (2002) The p120ctn-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Research 30:2911–2919

    Article  Google Scholar 

  1486. Kondapalli J, Flozak AS, Albuquerque MLC (2004) Laminar shear stress differentially modulates gene expression of p120 catenin, Kaiso transcription factor, and vascular endothelial cadherin in human coronary artery endothelial cells. Journal of Biological Chemistry 279:11417–11424

    Article  Google Scholar 

  1487. Baumeister U, Funke R, Ebnet K, Vorschmitt H, Koch S, Vestweber D (2005) Association of Csk to VE-cadherin and inhibition of cell proliferation. EMBO Journal 24:1686–1695

    Article  Google Scholar 

  1488. Howe A, Aplin AE, Alahari SK, Juliano RL (1998) Integrin signaling and cell growth control, Current Opinion in Cell Biology 10:220–231

    Article  Google Scholar 

  1489. Schaller MD, Otey CA, Hildebrand JD, Parsons JT (1995) Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. The Journal of Cell Biology 130:1181–1187

    Article  Google Scholar 

  1490. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  Google Scholar 

  1491. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. Journal of Cell Science 114:3583–3590

    Google Scholar 

  1492. Ezratty EJ, Partridge MA, Gundersen GG (2005) Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nature – Cell Biology 7:581–590

    Google Scholar 

  1493. De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO Journal 25:34–44

    Article  Google Scholar 

  1494. Cachero TG, Morielli AD, Peralta EG (1998) The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell 93:1077–1085

    Article  Google Scholar 

  1495. van de Graaf SF, Chang Q, Mensenkamp AR, Hoenderop JG, Bindels RJ (2006) Direct interaction with Rab11a targets the epithelial Ca2 +  channels TRPV5 and TRPV6 to the plasma membrane. Molecular and Cellular Biology 26:303–312

    Article  Google Scholar 

  1496. Yatani A, Irie K, Otani T, Abdellatif M, Wei L (2005) RhoA GTPase regulates L-type Ca2 +  currents in cardiac myocytes. American Journal of Physiology – Heart and Circulatory Physiology 288:H650–659

    Google Scholar 

  1497. Pochynyuk O, Medina J, Gamper N, Genth H, Stockand JD, Staruschenko A (2006) Rapid translocation and insertion of the epithelial Na +  channel in response to RhoA signaling. Journal of Biological Chemistry 281:26520–26527

    Article  Google Scholar 

  1498. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nature – Cell Biology 6:709–720

    Google Scholar 

  1499. Saxena SK, Horiuchi H, Fukuda M (2006) Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism. Biochemical and Biophysical Research Communications 344:651–657

    Article  Google Scholar 

  1500. Storey NM, O’Bryan JP, Armstrong DL (2002) Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Current Biology 12:27–33

    Article  Google Scholar 

  1501. Wilk-Blaszczak MA, Singer WD, Quill T, Miller B, Frost JA, Sternweis PC, Belardetti F (1997) The monomeric G-proteins Rac1 and/or Cdc42 are required for the inhibition of voltage-dependent calcium current by bradykinin. Journal of Neuroscience 17:4094–4100

    Google Scholar 

  1502. Li L, Matsuoka I, Suzuki Y, Watanabe Y, Ishibashi T, Yokoyama K, Maruyama Y, Kimura J (2002) Inhibitory effect of fluvastatin on lysophosphatidylcholine-induced nonselective cation current in Guinea pig ventricular myocytes. Molecular Pharmacology 62:602–607

    Article  Google Scholar 

  1503. Cheng J, Wang H, Guggino WB (2005) Regulation of cystic fibrosis transmembrane regulator trafficking and protein expression by a Rho family small GTPase TC10. Journal of Biological Chemistry 280:3731–3739

    Article  Google Scholar 

  1504. Tilly BC, Edixhoven MJ, Tertoolen LG, Morii N, Saitoh Y, Narumiya S, de Jonge HR (1996) Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. Molecular Biology of the Cell 7:1419–1427

    Google Scholar 

  1505. Nilius B, Voets T, Prenen J, Barth H, Aktories K, Kaibuchi K, Droogmans G, Eggermont J (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. Journal of Physiology 516:67–74

    Article  Google Scholar 

  1506. Carton I, Trouet D, Hermans D, Barth H, Aktories K, Droogmans G, Jorgensen NK, Hoffmann EK, Nilius B, Eggermont J (2002) RhoA exerts a permissive effect on volume-regulated anion channels in vascular endothelial cells. American Journal of Physiology – Cell Physiology 283:C115–C125

    Google Scholar 

  1507. Voets T, Manolopoulos V, Eggermont J, Ellory C, Droogmans G, Nilius B (1998) Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. Journal of Physiology 506:341–352

    Article  Google Scholar 

  1508. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews – Molecular Cell Biology 4:517–529

    Google Scholar 

  1509. Kar P, Bakowski D, Di Capite J, Nelson C, Parekh AB (2012) Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2 +  oscillations and gene expression. Proceedings of the National Academy of Sciences of the United States of America 109:6969–6974

    Article  ADS  Google Scholar 

  1510. Ruegg UT, Nicolas-Metral V, Challet C, Bernard-Helary K, Dorchies OM, Wagner S, Buetler TM (2002) Pharmacological control of cellular calcium handling in dystrophic skeletal muscle. Neuromuscular Disorders 12:S155-S161

    Article  Google Scholar 

  1511. Bockaert J (1986) Les récepteurs membranaires [The membrane receptors]. La Recherche 17:892–900

    Google Scholar 

  1512. Levitzki A (1988) From epinephrine to cyclic AMP. Science 241:800–806

    Article  ADS  Google Scholar 

  1513. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  ADS  Google Scholar 

  1514. Rasmussen H (1989) The cycling of calcium as an intracellular messenger. Scientific American 261:66–73

    Article  Google Scholar 

  1515. Abell E, Ahrends R, Bandara S, Park BO, Teruel MN (2011) Parallel adaptive feedback enhances reliability of the Ca2 +  signaling system. Proceedings of the National Academy of Sciences of the United States of America 108:14485–14490

    Article  ADS  Google Scholar 

  1516. Taufiq-Ur-Rahman, Skupin A, Falcke M, Taylor CW (2009) Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2 + . Nature 458:655–659

    Article  ADS  Google Scholar 

  1517. Wang Y, Deng X, Zhou Y, Hendron E, Mancarella S, Ritchie MF, Tang XD, Baba Y, Kurosaki T, Mori Y, Soboloff J, Gill DL (2009) STIM protein coupling in the activation of Orai channels. Proceedings of the National Academy of Sciences of the United States of America 106:7391–7396

    Article  ADS  Google Scholar 

  1518. Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–542

    Article  ADS  Google Scholar 

  1519. Yang S, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast cancer cell migration and metastasis. Cancer Cell 15:124–134

    Article  Google Scholar 

  1520. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2 +  entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2 +  entry. Proceedings of the National Academy of Sciences of the United States of America 106:3202–3206

    Article  ADS  Google Scholar 

  1521. Caraveo G, van Rossum DB, Patterson RL, Snyder SH, Desiderio S (2006) Action of TFII-I outside the nucleus as an inhibitor of agonist-induced calcium entry. Science 314:122–125

    Article  ADS  Google Scholar 

  1522. Min SW, Chang WP, Sudhof TC (2007) E-Syts, a family of membranous Ca2+-sensor proteins with multiple C2 domains. Proceedings of the National Academy of Sciences of the United States of America 104:3823–3828

    Article  ADS  Google Scholar 

  1523. Lefkimmiatis K, Srikanthan M, Maiellaro I, Moyer MP, Curci S, Hofer AM (2009) Store-operated cyclic AMP signalling mediated by STIM1. Nature – Cell Biology 11:433–442

    Google Scholar 

  1524. Wang X, Zeng W, Kim MS, Allen PB, Greengard P, Muallem S (2007) Spinophilin/neurabin reciprocally regulate signaling intensity by G protein-coupled receptors. EMBO Journal 26:2768–2776

    Article  Google Scholar 

  1525. Kobayashi M, Takamatsu K (2009) Hippocalcin UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org)

  1526. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2 +  signalling. Nature Reviews – Neuroscience 8:182–193

    Google Scholar 

  1527. Navedo MF, Amberg GC, Westenbroek RE, Sinnegger-Brauns MJ, Catterall WA, Striessnig J, Santana LF (2007) CaV1.3 channels produce persistent calcium sparklets, but CaV1.2 channels are responsible for sparklets in mouse arterial smooth muscle. American Journal of Physiology – Heart and Circulatory Physiology 293:H1359-H1370

    Google Scholar 

  1528. Amberg GC, Navedo MF, Nieves-Cintrón M, Molkentin JD, Santana LF (2007) Calcium sparklets regulate local and global calcium in murine arterial smooth muscle. Journal of Physiology 579:187–201

    Article  Google Scholar 

  1529. Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill-Eubanks DC, Nelson MT (2012) Elementary Ca2 +  signals through endothelial TRPV4 channels regulate vascular function. Science 336:597–601

    Article  ADS  Google Scholar 

  1530. Vig M, Kinet JP (2009) Calcium signaling in immune cells. Nature – Immunology 10:21–27

    Google Scholar 

  1531. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109:S67–S79

    Article  Google Scholar 

  1532. Huang GN, Huso DL, Bouyain S, Tu J, McCorkell KA, May MJ, Zhu Y, Lutz M, Collins S, Dehoff M, Kang S, Whartenby K, Powell J, Leahy D, Worley PF (2008) NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science 319:476–481

    Article  ADS  Google Scholar 

  1533. Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2 +  channels with distinct functional properties. Current Biology 17:794–800

    Article  Google Scholar 

  1534. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2 + -activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  Google Scholar 

  1535. Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nature – Immunology 9:89–96

    Google Scholar 

  1536. Miklavc P, Frick M, Wittekindt OH, Haller T, Dietl P (2010) Fusion-activated ca2 +  entry: an ”active zone” of elevated Ca2 +  during the postfusion stage of lamellar body exocytosis in rat type II pneumocytes. PLoS One 5:e10982

    Article  ADS  Google Scholar 

  1537. Miklavc P, Mair N, Wittekindt OH, Haller T, Dietl P, Felder E, Timmler M, Frick M (2011) Fusion-activated Ca2 +  entry via vesicular P2X4 receptors promotes fusion pore opening and exocytotic content release in pneumocytes. Proceedings of the National Academy of Sciences of the United States of America 108:14503–14508

    Article  ADS  Google Scholar 

  1538. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, Rizzuto R, Tacchetti C, Pinton P, Pandolfi PP (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330:1247–1251

    Article  ADS  Google Scholar 

  1539. Rabellino A, Carter B, Konstantinidou G, Wu SY, Rimessi A, Byers LA, Heymach JV, Girard L, Chiang CM, Teruya-Feldstein J, Scaglioni PP (2012) The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. Cancer Research 72:2275–2284

    Article  Google Scholar 

  1540. Yuan WC, Lee YR, Huang SF, Lin YM, Chen TY, Chung HC, Tsai CH, Chen HY, Chiang CT, Lai CK, Lu LT, Chen CH, Gu DL, Pu YS, Jou YS, Lu KP, Hsiao PW, Shih HM, Chen RH (2011) A Cullin3-KLHL20 ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer Cell 20:214–228

    Article  Google Scholar 

  1541. Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, Ratcliffe PJ, Maxwell PH Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 92:2260–2268

    Google Scholar 

  1542. Tanaka T, Akiyama H, Kanai H, Sato M, Takeda S, Sekiguchi K, Yokoyama T, Kurabayashi M (2002) Endothelial PAS domain protein 1 (EPAS1) induces adrenomedullin gene expression in cardiac myocytes: role of EPAS1 in an inflammatory response in cardiac myocytes. Journal of Molecular and Cellular Cardiology 34:703–707

    Article  Google Scholar 

  1543. Patel SA, Simon MC (2008) Biology of hypoxia-inducible factor-2α in development and disease. Cell Death and Differentiation 15:628–634

    Article  Google Scholar 

  1544. Weidemann A, Johnson RS (2008) Biology of HIF-1α. Cell Death and Differentiation 15:621–627

    Article  Google Scholar 

  1545. Semenza GL (2007) Life with oxygen. Science 318:62–64

    Article  ADS  Google Scholar 

  1546. Aragonés J, Schneider M, Van Geyte K, Fraisl P, Dresselaers T, Mazzone M, Dirkx R4, Zacchigna S, Lemieux H, Jeoung NH, Lambrechts D, Bishop T, Lafuste P, Diez-Juan A, Harten SK, Van Noten P, De Bock K, Willam C, Tjwa M, Grosfeld A, Navet R, Moons L, Vandendriessche T, Deroose C, Wijeyekoon B, Nuyts J, Jordan B, Silasi-Mansat R, Lupu F, Dewerchin M, Pugh C, Salmon P, Mortelmans L, Gallez B, Gorus F, Buyse J, Sluse F, Harris RA, Gnaiger E, Hespel P, Van Hecke P, Schuit F, Van Veldhoven P, Ratcliffe P, Baes M, Maxwell P, Carmeliet P (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nature – Genetics 40:170–180

    Google Scholar 

  1547. Fong GH, Takeda K (2008) Role and regulation of prolyl hydroxylase domain proteins. Cell Death and Differentiation 15:635–641

    Article  Google Scholar 

  1548. Lin X, David CA, Donnelly JB, Michaelides M, Chandel NS, Huang X, Warrior U, Weinberg F, Tormos KV, Fesik SW, Shen Y (2008) A chemical genomics screen highlights the essential role of mitochondria in HIF-1 regulation. Proceedings of the National Academy of Sciences of the United States of America 105:174–179

    Article  ADS  Google Scholar 

  1549. Emerling BM, Weinberg F, Liu JL, Mak TW, Chandel NS (2008) PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proceedings of the National Academy of Sciences of the United States of America 105:2622–2627

    Article  ADS  Google Scholar 

  1550. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Developmental Cell 9:617–628.

    Article  Google Scholar 

  1551. Zheng X, Linke S, Dias JM, Zheng X, Gradin K, Wallis TP, Hamilton BR, Gustafsson M, Ruas JL, Wilkins S, Bilton RL, Brismar K, Whitelaw ML, Pereira T, Gorman JJ, Ericson J, Peet DJ, Lendahl U, Poellinger L (2008) Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proceedings of the National Academy of Sciences of the United States of America 105:3368–3373

    Article  ADS  Google Scholar 

  1552. Wang Y, Roche O, Xu C, Moriyama EH, Heir P, Chung J, Roos FC, Chen Y, Finak G, Milosevic M, Wilson BC, Teh BT, Park M, Irwin MS, Ohh M (2012) Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor-mediated upregulation of caveolin-1. Proceedings of the National Academy of Sciences of the United States of America 109:4892–4897

    Article  ADS  Google Scholar 

  1553. Kulshreshtha R, Davuluri RV, Calin GA, Ivan M (2008) A microRNA component of the hypoxic response. Cell Death and Differentiation 15:667–671

    Article  Google Scholar 

  1554. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Reviews – Molecular Cell Biology 8:813–824

    Google Scholar 

  1555. Fish JE, Yan MS, Matouk CC, St Bernard R, Ho JJ, Gavryushova A, Srivastava D, Marsden PA (2010) Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. Journal of Biological Chemistry 285:810–826

    Article  Google Scholar 

  1556. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703

    Article  Google Scholar 

  1557. Heloterä H, Alitalo K (2007) The VEGF family, the inside story. Cell 130:591–592

    Article  Google Scholar 

  1558. Appleton BA, Wu P, Maloney J, Yin JP, Liang WC, Stawicki S, Mortara K, Bowman KK, Elliott JM, Desmarais W, Bazan JF, Bagri A, Tessier-Lavigne M, Koch AW, Wu Y, Watts RJ, Wiesmann C (2007) Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO Journal 26:4902–4912

    Article  Google Scholar 

  1559. Usui R, Shibuya M, Ishibashi S, Maru Y (2007) Ligand-independent activation of vascular endothelial growth factor receptor 1 by low-density lipoprotein. EMBO Reports 8: 1155–1161

    Article  Google Scholar 

  1560. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 451:1008–1012

    Article  ADS  Google Scholar 

  1561. Krüger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR, Mann M (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proceedings of the National Academy of Sciences of the United States of America 105:2451–2456

    Article  ADS  Google Scholar 

  1562. Grahame Hardie D (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Reviews – Molecular Cell Biology 8:774–785

    Google Scholar 

  1563. Dávalos A, Goedeke L, Smibert P, Ramírez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penalva LO, Moore KJ, Suárez Y, Lai EC, Fernández-Hernando C (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the National Academy of Sciences of the United States of America 108:9232–9237

    Article  ADS  Google Scholar 

  1564. Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nature Reviews – Molecular Cell Biology 11:545–555

    Google Scholar 

  1565. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature – Immunology 10:241–247

    Google Scholar 

  1566. Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336:481–485

    Article  ADS  Google Scholar 

  1567. Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proceedings of the National Academy of Sciences of the United States of America 109:6933–6938

    Article  ADS  Google Scholar 

  1568. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nature Reviews – Molecular Cell Biology 12:308–319

    Google Scholar 

  1569. Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, Desimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX (2012) Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels. Proceedings of the National Academy of Sciences of the United States of America 109:3359–3364

    Article  ADS  Google Scholar 

  1570. Guo CL, Ouyang M, Yu JY, Maslov J, Price A, Shen CY (2012) Long-range mechanical force enables self-assembly of epithelial tubular patterns. Proceedings of the National Academy of Sciences of the United States of America 109:5576–5582

    Article  ADS  Google Scholar 

  1571. Nikmanesh M, Shi ZD, Tarbell JM (2011) Heparan sulfate proteoglycan mediates shear stress-induced endothelial gene expression in mouse embryonic stem cell-derived endothelial cells. Biotechnology and Bioengineering 109:583–594

    Article  Google Scholar 

  1572. Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, Omens JH, McCulloch AD (2003) Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnology and Bioengineering 81:578–587

    Article  Google Scholar 

  1573. Wang JH, Yang G, Li Z (2005) Controlling cell responses to cyclic mechanical stretching. Annals of Biomedical Engineering 33:337–342

    Article  Google Scholar 

  1574. Kurpinski K, Chu J, Hashi C, Li S (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America 103:16095–16100

    Article  ADS  Google Scholar 

  1575. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nature – Cell Biology 6:499–506

    Google Scholar 

  1576. Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    Article  Google Scholar 

  1577. Gudi SRP, Clark CB, Frangos JA (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circulation Research 79:834-839

    Google Scholar 

  1578. Liu B, Lu S, Zheng S, Jiang Z, Wang Y (2011) Two distinct phases of calcium signalling under flow. Cardiovascular Research 91:124-1-133

    Google Scholar 

  1579. Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells Proceedings of the National Academy of Sciences of the United States of America 103:15463–15468

    Google Scholar 

  1580. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654.

    Article  ADS  Google Scholar 

  1581. Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026

    Article  Google Scholar 

  1582. Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America 105:6626–6631

    Article  ADS  Google Scholar 

  1583. Frey JW, Farley EE, O’Neil TK, Burkholder TJ, Hornberger TA (2009) Evidence that mechanosensors with distinct biomechanical properties allow for specificity in mechanotransduction. Biophysical Journal 97:347–356

    Article  ADS  Google Scholar 

  1584. Zhou F, Huang D, Xia Y (2010) Neuroanatomical basis of acupuncture points (Chap. 2; 32-80), In Xia Y, Cao X, Wu G, Cheng J (Eds.) Acupuncture Therapy for Neurological Diseases: A Neurobiological View, Tsinghua University Press, Beijing, China and Springer, Berlin Heidelberg

    Google Scholar 

  1585. Fei L, Cheng HS, Cai DH, Yang SX, Xu JR, Chen EY, Dang RS, Dang GH, Shen XY, Tang Y, and Yao W (1998) Experimental exploration and research prospect of physical bases and functional characteristics of meridians. Chinese Science Bulletin 43:1233–1252

    Article  Google Scholar 

  1586. Zhang ZJ, Wang XM, McAlonan GM (2012) Neural acupuncture unit: a new concept for interpreting effects and mechanisms of acupuncture. Evidence-Based Complementary and Alternative Medicine

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thiriet, M. (2013). Dual-Specificity Protein Kinases. In: Intracellular Signaling Mediators in the Circulatory and Ventilatory Systems. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4370-4_7

Download citation

Publish with us

Policies and ethics