Cytoplasmic Protein Tyrosine Kinases

  • Marc Thiriet
Part of the Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems book series (BBMCVS, volume 4)


Protein tyrosine kinases (PTK), i.e., enzymes that catalyze the phosphorylation of Tyr residues of proteins. are mainly associated with growth factor signaling. They actually modulate multiple cellular events, such as differentiation, growth, metabolism, and apoptosis. On the other hand, protein serine/ threonine kinases are principally related to second messengers, such as cyclic nucleotides cAMP (Sect. 11.1) and cGMP (Sect. 11.2), lipidic and related mediators diacylglycerol and inositol trisphosphate (Chap. 2), and calmodulin (Sect. 11.5.3).


  1. 1.
    Ezkurdia I, Del Pozo A, Frankish A, Rodriguez JM, Harrow J, Ashman K, Valencia A, Tress ML (2012) Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Molecular Biology and Evolution( Scholar
  2. 2.
    Chavent G (2010) Nonlinear Least Squares for Inverse Problems, Theoretical Foundations and Step-by-Step Guide for Applications. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Bensoussan A (1971) Filtrage optimal des systèmes linéaires [Optimal filtering of linear systems] Dunod, ParisGoogle Scholar
  4. 4.
    Bertoglio C, Moireau P, Gerbeau JF (2012) Sequential parameter estimation for fluid-structure problems. Application to hemodynamics. International Journal for Numerical Methods in Biomedical Engineering 28:434–455MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lombardi D, Iollo A, Colin T, Saut O (2009) Inverse problems in tumor growth modelling (communication at CEMRACS summer school)Google Scholar
  6. 6.
    Lagaert JB (2011) Modélisation de la croissance tumorale [Tumor Growth Modeling], PhD thesis, Bordeaux UniversityGoogle Scholar
  7. 7.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nature Reviews – Molecular Cell Biology 9:112–124Google Scholar
  8. 8.
    D’Arrigo P, Servi S (2010) Synthesis of lysophospholipids. Molecules 15:1354–1377CrossRefGoogle Scholar
  9. 9.
    Voet D, Voet JG (2011) Signal Transduction (Chap 19). Biochemistry (4th edition), Wiley, Hoboken, New JerseyGoogle Scholar
  10. 10.
    Berridge MJ (2009) Module 2: Cell Signalling Pathways. Cell Signalling Biology. Biochemical Journal’s Signal Knowledge Environment Portland Press Ltd., London, UK (
  11. 11.
    Delon C, Manifava M, Wood E, Thompson D, Krugmann S, Pyne S, Ktistakis NT (2004) Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. Journal of Biological Chemistry 279:44763–44774CrossRefGoogle Scholar
  12. 12.
    Carricaburu V, Lamia KA, Lo E, Favereaux L, Payrastre B, Cantley LC, Rameh LE (2003) The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proceedings of the National Academy of Sciences of the United States of America 100:9867–9872ADSCrossRefGoogle Scholar
  13. 13.
    Maag D, Maxwell MJ, Hardesty DA, Boucher KL, Choudhari N, Hanno AG, Ma JF, Snowman AS, Pietropaoli JW, Xu R, Storm PB, Saiardi A, Snyder SH, Resnick AC (2011) Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proceedings of the National Academy of Sciences of the United States of America 108: 1391–1396ADSCrossRefGoogle Scholar
  14. 14.
    Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K (2006) Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature – Cell Biology 8:668–676Google Scholar
  15. 15.
    Alcázar-Román AR, Tran EJ, Guo S, Wente SR (2006) Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nature – Cell Biology 8: 711–716Google Scholar
  16. 16.
    Macbeth MR, Schubert HL, VanDemark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309:1534–1539ADSCrossRefGoogle Scholar
  17. 17.
    Huang YH, Grasis JA, Miller AT, Xu R, Soonthornvacharin S, Andreotti AH, Tsoukas CD, Cooke MP, Sauer K (2007) Positive regulation of Itk PH domain function by soluble IP4. Science 316:886–889ADSCrossRefGoogle Scholar
  18. 18.
    Shen X, Xiao H, Ranallo R, Wu WH, Wudagger C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114ADSCrossRefGoogle Scholar
  19. 19.
    Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316:106–109ADSCrossRefGoogle Scholar
  20. 20.
    Lee YS, Mulugu S, York JD, O’Shea EK (2007) Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 316:109–112ADSCrossRefGoogle Scholar
  21. 21.
    Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306:2101–2105ADSCrossRefGoogle Scholar
  22. 22.
    Chakraborty A, Koldobskiy MA, Sixt KM, Juluri KR, Mustafa AK, Snowman AM, van Rossum DB, Patterson RL, Snyder SH (2008) HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proceedings of the National Academy of Sciences of the United States of America 105:1134-1139ADSCrossRefGoogle Scholar
  23. 23.
    Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Söderberg O, Bootman MD, Roderick HL (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proceedings of the National Academy of Sciences of the United States of America 105: 2427–2432ADSCrossRefGoogle Scholar
  24. 24.
    Otto JC, Kelly P, Chiou ST, York JD (2007) Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases. Proceedings of the National Academy of Sciences of the United States of America 104:15653–15658ADSCrossRefGoogle Scholar
  25. 25.
    Zhang C, Majerus PW, Wilson MP (2012) Regulation of inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) by reversible lysine acetylation. Proceedings of the National Academy of Sciences of the United States of America 109:2290–2295ADSCrossRefGoogle Scholar
  26. 26.
    Ohnishi T, Ohba H, Seo KC, Im J, Sato Y, Iwayama Y, Furuichi T, Chung SK, Yoshikawa T (2007) Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1. Journal of Biological Chemistry 282: 637–646CrossRefGoogle Scholar
  27. 27.
    Berggard T, Szczepankiewicz O, Thulin E, Linse S (2002) Myo-inositol monophosphatase is an activated target of calbindin D28k. Journal of Biological Chemistry 277:41954–41959CrossRefGoogle Scholar
  28. 28.
    Irvine RF (2002) Nuclear lipid signaling. Science Signaling 150:re13Google Scholar
  29. 29.
    Schouten A, Agianian B, Westerman J, Kroon J, Wirtz KWA, Gros P (2002) Structure of apo-phosphatidylinositol transfer protein α provides insight into membrane association. EMBO Journal 21:2117–2121CrossRefGoogle Scholar
  30. 30.
    Woodcock EA, Kistler PM, Ju YK (2009) Phosphoinositide signalling and cardiac arrhythmias. Cardiovascular Research 82:286–295CrossRefGoogle Scholar
  31. 31.
    Jao CY, Roth M, Welti R, Salic A (2009) Metabolic labeling and direct imaging of choline phospholipids in vivo. Proceedings of the National Academy of Sciences of the United States of America 106:15332–15337ADSCrossRefGoogle Scholar
  32. 32.
    Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS, Weissman JS (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463:1048–1053ADSCrossRefGoogle Scholar
  33. 33.
    Pavoine C, Pecker F (2009) Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovascular Research 82:175–183CrossRefGoogle Scholar
  34. 34.
    Cogolludo A, Moreno L, Frazziano G, Moral-Sanz J, Menendez C, Castañeda J, González C, Villamor E, Perez-Vizcaino F (2009) Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovascular Research 82:296–302CrossRefGoogle Scholar
  35. 35.
    Karliner JS (2009) Sphingosine kinase regulation and cardioprotection. Cardiovascular Research 82:184–192CrossRefGoogle Scholar
  36. 36.
    Means CK, Brown JH (2009) Sphingosine-1-phosphate receptor signalling in the heart. Cardiovascular Research 82:193–200CrossRefGoogle Scholar
  37. 37.
    Gellings Lowe N, Swaney JS, Moreno KM, Sabbadini RA (2009) Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-beta-stimulated collagen production by cardiac fibroblasts. Cardiovascular Research 82:303–312CrossRefGoogle Scholar
  38. 38.
    Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T (2007) Induction of vascular permeability by the sphingosine 1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arteriosclerosis, Thrombosis, and Vascular Biology 27:1312–1318CrossRefGoogle Scholar
  39. 39.
    Sattler K, Levkau B (2009) Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovascular Research 82:201–211CrossRefGoogle Scholar
  40. 40.
    Igarashi J, Michel T (2009) Sphingosine-1-phosphate and modulation of vascular tone. Cardiovascular Research 82:212-220CrossRefGoogle Scholar
  41. 41.
    Frias MA, James RW, Gerber-Wicht C, Lang U (2009) Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: Role of sphingosine-1-phosphate. Cardiovascular Research 82:313–323CrossRefGoogle Scholar
  42. 42.
    Ke Y, Lei M, Solaro RJ (2008) Regulation of cardiac excitation and contraction by p21 activated kinase-1. Progress in Biophysics and Molecular Biology 98:238–250CrossRefGoogle Scholar
  43. 43.
    Jenkins CM, Cedars A, Gross RW (2009) Eicosanoid signalling pathways in the heart. Cardiovascular Research 82:240–249CrossRefGoogle Scholar
  44. 44.
    Zhao J, O’Donnell VB, Balzar S, St Croix CM, Trudeau JB, Wenzel SE (2011) 15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells. Proceedings of the National Academy of Sciences of the United States of America 108:14246–14251ADSCrossRefGoogle Scholar
  45. 45.
    Jacobs ER, Zeldin DC (2001) The lung HETEs (and EETs) up. American Journal of Physiology – Heart and Circulatory Physiology 280:H1–H10Google Scholar
  46. 46.
    Watanabe K (2011) Recent reports about enzymes related to the synthesis of prostaglandin (PG) F2 (PGF2α and 9α, 11β-PGF2). Journal of Biochemistry 150:593–596CrossRefGoogle Scholar
  47. 47.
    Yeaman SJ (2004) Hormone-sensitive lipase – new roles for an old enzyme. Biochemical Journal 379:11–22CrossRefGoogle Scholar
  48. 48.
    Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, Takase S, Takanashi M, Ohta K, Tamura Y, Okazaki S, Yahagi N, Ohashi K, Amemiya-Kudo M, Nakagawa Y, Nagai R, Kadowaki T, Osuga J, Ishibashi S (2008) Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. Journal of Biological Chemistry 283:33357–33364CrossRefGoogle Scholar
  49. 49.
    Jaye M, Lynch KJ, Krawiec J, Marchadier D, Maugeais C, Doan K, South V, Amin D, Perrone M, Rader DJ (1999) A novel endothelial-derived lipase that modulates HDL metabolism. Nature – Genetics 21:424–428Google Scholar
  50. 50.
    Strauss JG, Zimmermann R, Hrzenjak A, Zhou Y, Kratky D, Levak-Frank S, Kostner GM, Zechner R, Frank S (2002) Endothelial cell-derived lipase mediates uptake and binding of high-density lipoprotein (HDL) particles and the selective uptake of HDL-associated cholesterol esters independent of its enzymic activity. Biochemical Journal 368:69–79CrossRefGoogle Scholar
  51. 51.
    Kojima Y, Ishida T, Sun L, Yasuda T, Toh R, Rikitake Y, Fukuda A, Kume N, Koshiyama H, Taniguchi A, Hirata KI (2010) Pitavastatin decreases the expression of endothelial lipase both in vitro and in vivo. Cardiovascular Research 87:385–393CrossRefGoogle Scholar
  52. 52.
    Yano M, Matsumura T, Senokuchi T, Ishii N, Murata Y, Taketa K, Motoshima H, Taguchi T, Sonoda K, Kukidome D, Takuwa Y, Kawada T, Brownlee M, Nishikawa T, Araki E (2007) Statins activate peroxisome proliferator-activated receptor γthrough extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circulation Research 100:1442–1451CrossRefGoogle Scholar
  53. 53.
    Favari E, Zanotti I, Zimetti F, Ronda N, Bernini F, Rothblat GH (2004) Probucol inhibits ABCA1-mediated cellular lipid efflux. Arteriosclerosis, Thrombosis, and Vascular Biology 24:2345–2350CrossRefGoogle Scholar
  54. 54.
    Aoki J, Inoue A, Makide K, Saiki N, Arai H (2007) Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89:197–204CrossRefGoogle Scholar
  55. 55.
    Aoki J, Nagai Y, Hosono H, Inoue K, Arai H (2002) Structure and function of phosphatidylserine-specific phospholipase A1. Biochimica et Biophysica Acta 1582:26–32CrossRefGoogle Scholar
  56. 56.
    Wassum KM, Ostlund SB, Maidment NT, Balleine BW (2009) Distinct opioid circuits determine the palatability and the desirability of rewarding events. Proceedings of the National Academy of Sciences of the United States of America 106:12512–12517ADSCrossRefGoogle Scholar
  57. 57.
    D’Agostino D, Lowe ME (2004) Pancreatic lipase-related protein 2 is the major colipase-dependent pancreatic lipase in suckling mice. Journal of Nutrition 134:132–134Google Scholar
  58. 58.
    Alexander SPH, Mathie A, Peters JA (2009) Guide to Receptors and Channels (GRAC), 4th edn., British Journal of Pharmacology 158:S1–S254 ( journal/122684220/issue)Google Scholar
  59. 59.
    Burke JE, Dennis EA (2009) Phospholipase A2 structure/function, mechanism, and signaling. Journal of Lipid Research 50:S237–S242CrossRefGoogle Scholar
  60. 60.
    Schaloske RH, Dennis EA (2006) The phospholipase A2 superfamily and its group numbering system. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids 1761:1246–1259Google Scholar
  61. 61.
    Rosa AO, Rapoport SI (2009) Intracellular- and extracellular-derived Ca2 +  influence phospholipase A2-mediated fatty acid release from brain phospholipids. Biochimica et Biophysica Acta 1791:697–705CrossRefGoogle Scholar
  62. 62.
    Murakami M, Taketomi Y, Sato H, Yamamoto K (2011) Secreted phospholipase-A2 revisited. Journal of Biochemistry 150:233–255CrossRefGoogle Scholar
  63. 63.
    Lee JC, Simonyi A, Sun AY, Sun GY (2011) Phospholipases A2 and neural membrane dynamics: implications for Alzheimer’s disease. Journal of Neurochemistry 116:813–819CrossRefGoogle Scholar
  64. 64.
    Perrin-Cocon L, Agaugué S, Coutant F, Masurel A, Bezzine S, Lambeau G, André P, Lotteau V (2004) Secretory phospholipase A2 induces dendritic cell maturation. European Journal of Immunology 34:2293–2302CrossRefGoogle Scholar
  65. 65.
    Ancian P, Lambeau G, Mattéi MG, Lazdunski M (1995) The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. Journal of Biological Chemistry 270:8963–8970CrossRefGoogle Scholar
  66. 66.
    Triggiani M, Granata F, Oriente A, De Marino V, Gentile M, Calabrese C, Palumbo C, Marone G (2000) Secretory phospholipase A2 induce β-glucuronidase release and IL-6 production from human lung macrophages. Journal of Immunology 164:4908–4915Google Scholar
  67. 67.
    Tada K, Murakami M, Kambe T, Kudo I (1998) Induction of cyclooxygenase-2 by secretory phospholipases A2 in nerve growth factor-stimulated rat serosal mast cells is facilitated by interaction with fibroblasts and mediated by a mechanism independent of their enzymatic functions. Journal of Immunology 161:5008–5015Google Scholar
  68. 68.
    Ibeas E, Fuentes L, Martin R, Hernandez M, Nieto ML (2009) Secreted phospholipase A2 type IIA as a mediator connecting innate and adaptive immunity: new role in atherosclerosis. Cardiovascular Research 81(1):54-63CrossRefGoogle Scholar
  69. 69.
    Murakami M, Kudo I (2003) New phospholipase A2 isozymes with a potential role in atherosclerosis. Current Opinion in Lipidology 14:431–436CrossRefGoogle Scholar
  70. 70.
    Kuksis A, Pruzanski W (2008) Phase composition of lipoprotein SM/cholesterol/PtdCho affects FA specificity of sPLA2s. Journal of Lipid Research 49:2161–2168CrossRefGoogle Scholar
  71. 71.
    The HUGO Gene Nomenclature Committee (HGNC; PNPLA) Phospholipases
  72. 72.
    Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ (2006) Characterization of the human patatin-like phospholipase family. Journal of Lipid Research 47:1940–1949CrossRefGoogle Scholar
  73. 73.
    Kienesberger PC, Oberer M, Lass A, Zechner R (2009) Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. Journal of Lipid Research 50:S63–S68CrossRefGoogle Scholar
  74. 74.
    Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A (2010) Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Medicine 12:133–148CrossRefGoogle Scholar
  75. 75.
    Ohto T, Uozumi N, Hirabayashi T, Shimizu T (2005) Identification of novel cytosolic phospholipase A2s, murine cPLA2δ, ε, and ζ, which form a gene cluster with cPLA2β. Journal of Biological Chemistry 280:24576–24583CrossRefGoogle Scholar
  76. 76.
    Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nature – Genetics 36:664 (Information Hyperlinked over Proteins
  77. 77.
    Alberghina M (2010) Phospholipase-A2: new lessons from endothelial cells. Microvascular Research 80:280–285CrossRefGoogle Scholar
  78. 78.
    Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S, Ryu SH (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Reports 41:415–434CrossRefGoogle Scholar
  79. 79.
    Waldo GL, Ricks TK, Hicks SN, Cheever ML, Kawano T, Tsuboi K, Wang X, Montell C, Kozasa T, Sondek J, Harden TK (2010) Kinetic scaffolding mediated by a phospholipase C-β and Gq signaling complex. Science 330:974–980ADSCrossRefGoogle Scholar
  80. 80.
    Gutman O, Walliser C, Piechulek T, Gierschik P, Henis YI (2010) Differential regulation of phospholipase C-β2 activity and membrane interaction by Gαq, Gβ1γ2, and Rac2. Journal of Biological Chemistry 285:3905–3915CrossRefGoogle Scholar
  81. 81.
    Hunter I, Mascall KS, Ramos JW, Nixon GF (2011) A phospholipase Cγ1-activated pathway regulates transcription in human vascular smooth muscle cells. Cardiovascular Research 90:557–564CrossRefGoogle Scholar
  82. 82.
    von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C (2010) Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nature – Immunology 11:344–349Google Scholar
  83. 83.
    Kobayashi M, Lomasney JW (2010) Phospholipase C δ4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  84. 84.
    Wing MR, Bourdon DM, Harden TK (2003) PLC-ε: a shared effector protein in Ras-, Rho-, and Gαβγ-mediated signaling. Molecular Interventions 3:273–280CrossRefGoogle Scholar
  85. 85.
    Hu L, Edamatsu H, Takenaka N, Ikuta S, Kataoka T (2010) Crucial role of phospholipase Cepsilon in induction of local skin inflammatory reactions in the elicitation stage of allergic contact hypersensitivity. Journal of Immunology 184:993–1002CrossRefGoogle Scholar
  86. 86.
    Stewart AJ, Morgan K, Farquharson C, Millar RP (2007) Phospholipase C-η enzymes as putative protein kinase C and Ca2 +  signalling components in neuronal and neuroendocrine tissues. Neuroendocrinology 86:243–248CrossRefGoogle Scholar
  87. 87.
    Nomikos M, Blayney LM, Larman MG, Campbell K, Rossbach A, Saunders CM, Swann K, Lai FA (2005) Role of phospholipase C-ζdomains in Ca2 + -dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and cytoplasmic Ca2 +  oscillations. Journal of Biological Chemistry 280:31011–31018CrossRefGoogle Scholar
  88. 88.
    Martinson EA, Scheible S, Greinacher A, Presek P (1995) Platelet phospholipase D is activated by protein kinase C via an integrin α2bβ3-independent mechanism. Biochemical Journal 310:623–628Google Scholar
  89. 89.
    Gironcel D, Racaud-Sultan C, Payrastre B, Haricot M, Borchert G, Kieffer N, Breton M, Chap H (1996) α2bβ3-integrin mediated adhesion of human platelets to a fibrinogen matrix triggers phospholipase C activation and phosphatidylinositol 3’,4’-biphosphate accumulation. FEBS Letters 389:253–256CrossRefGoogle Scholar
  90. 90.
    Elvers M, Stegner D, Hagedorn I, Kleinschnitz C, Braun A, Kuijpers ME, Boesl M, Chen Q, Heemskerk JW, Stoll G, Frohman MA, Nieswandt B (2010) Impaired α2bβ3 integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Science Signaling 3:ra1Google Scholar
  91. 91.
    Mahankali M, Peng HJ, Henkels KM, Dinauer MC, Gomez-Cambronero J (2011) Phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for the GTPase Rac2. Proceedings of the National Academy of Sciences of the United States of America 108:19617–19622ADSCrossRefGoogle Scholar
  92. 92.
    Medina-Tato DA, Ward SG, Watson ML (2007) Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond. Immunology 121:448–461CrossRefGoogle Scholar
  93. 93.
    Foster FM, Traer CJ, Abraham SM, Fry MJ (2003) The phosphoinositide (PI) 3-kinase family. Journal of Cell Science 116:3037–3040CrossRefGoogle Scholar
  94. 94.
    Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilange B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nature Reviews – Molecular Cell Biology 11:329–341Google Scholar
  95. 95.
    Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J, Frangioni JV, Cantley LC (2008) Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America 105:9739–9744ADSCrossRefGoogle Scholar
  96. 96.
    Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B (2010) Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proceedings of the National Academy of Sciences of the United States of America 107:11381–11386ADSCrossRefGoogle Scholar
  97. 97.
    Kurig B, Shymanets A, Bohnacker T, Prajwal, Brock C, Ahmadian MR, Schaefer M, Gohla A, Harteneck C, Wymann MP, Jeanclos E, Nürnberg B (2009) Ras is an indispensable coregulator of the class IB phosphoinositide 3-kinase p87/p110γ. Proceedings of the National Academy of Sciences of the United States of America 106:20312–20317ADSCrossRefGoogle Scholar
  98. 98.
    Shinohara M, Terada Y, Iwamatsu A, Shinohara A, Mochizuki N, Higuchi M, Gotoh Y, Ihara S, Nagata S, Itoh H, Fukui Y, Jessberger R (2002) SWAP-70 is a guanine-nucleotide-exchange factor that mediates signalling of membrane ruffling. Nature 416:759–763ADSCrossRefGoogle Scholar
  99. 99.
    Ihara S, Oka T, Fukui Y (2006) Direct binding of SWAP-70 to non-muscle actin is required for membrane ruffling. Journal of Cell Science 119:500–507CrossRefGoogle Scholar
  100. 100.
    Donald S, Humby T, Fyfe I, Segonds-Pichon A, Walker SA, Andrews SR, Coadwell WJ, Emson P, Wilkinson LS, Welch HC (2008) P-Rex2 regulates Purkinje cell dendrite morphology and motor coordination. Proceedings of the National Academy of Sciences of the United States of America 105:4483–4488ADSCrossRefGoogle Scholar
  101. 101.
    Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovascular Research 82:250–260CrossRefGoogle Scholar
  102. 102.
    Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, Sancho S, Smith AJ, Withers DJ, Vanhaesebroeck B (2006) Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366–370ADSCrossRefGoogle Scholar
  103. 103.
    Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125:647–649CrossRefGoogle Scholar
  104. 104.
    Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM, Zhao JJ (2008) Essential roles of PI(3)K-p110β in cell growth, metabolism and tumorigenesis. Nature 454:776–779ADSGoogle Scholar
  105. 105.
    Kumar A, Fernadez-Capetillo O, Carrera AC (2010) Nuclear phosphoinositide 3-kinase β controls double-strand break DNA repair. Proceedings of the National Academy of Sciences of the United States of America 107:7491–7496ADSCrossRefGoogle Scholar
  106. 106.
    Hawkins PT, Stephens LR (2007) PI3Kγ is a key regulator of inflammatory responses and cardiovascular homeostasis. Science 318:64–66ADSCrossRefGoogle Scholar
  107. 107.
    Park SJ, Lee KS, Kim SR, Min KH, Moon H, Lee MH, Chung CR, Han HJ, Puri KD, Lee YC (2010) Phosphoinositide 3-kinase δ inhibitor suppresses IL-17 expression in a murine asthma model. European Respiratory Journal (doi:10.1183/09031936.00106609)Google Scholar
  108. 108.
    Marwick JA, Caramori G, Casolari P, Mazzoni F, Kirkham PA, Adcock IM, Chung KF, Papi A (2010) A role for phosphoinositol 3-kinase δ in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology 125:1146–1153CrossRefGoogle Scholar
  109. 109.
    Beltran L, Chaussade C, Vanhaesebroeck B, Cutillas PR (2011) Calpain interacts with class IA phosphoinositide 3-kinases regulating their stability and signaling activity. Proceedings of the National Academy of Sciences of the United States of America 108:16217–16222ADSCrossRefGoogle Scholar
  110. 110.
    Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM, Williams RL (2010) Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638–1642ADSCrossRefGoogle Scholar
  111. 111.
    Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature – Cell Biology 11:385–396Google Scholar
  112. 112.
    Yan Y, Flinn RJ, Wu H, Schnur RS, Backer JM (2009) hVps15, but not Ca2 + /CaM, is required for the activity and regulation of hVps34 in mammalian cells. Biochemical Journal 417: 747–755CrossRefGoogle Scholar
  113. 113.
    Okada M, Jang SW, Ye K (2008) Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proceedings of the National Academy of Sciences of the United States of America 105:8649–8654ADSCrossRefGoogle Scholar
  114. 114.
    Platanias LC (2005) Mechanisms of type-I and type-II-interferon-mediated signalling. Nature Reviews – Immunology 5:375–386Google Scholar
  115. 115.
    Higuchi M, Onishi K, Kikuchi C, Gotoh Y (2008) Scaffolding function of PAK in the PDK1–Akt pathway. Nature – Cell Biology 10:1356–1364Google Scholar
  116. 116.
    Park SW, Zhou Y, Lee J, Lu A, Sun C, Chung J, Ueki K, Ozcan U (2010) The regulatory subunits of PI3K, p85α and p85β, interact with XBP-1 and increase its nuclear translocation. Nature – Medicine 16:429–437Google Scholar
  117. 117.
    Morello F, Perino A, Hirsch E (2009) Phosphoinositide 3-kinase signalling in the vascular system. Cardiovascular Research 82:261–271CrossRefGoogle Scholar
  118. 118.
    Blero D, Payrastre B, Schurmans S, Erneux C (2007) Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Archiv – European Journal of Physiology 455: 31–44Google Scholar
  119. 119.
    Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE, Goldowitz D, Meisler MH, Weisman LS (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO Journal 27:3221–3234CrossRefGoogle Scholar
  120. 120.
    Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends in Cell Biology 16:351–361CrossRefGoogle Scholar
  121. 121.
    Hsuan J, Waugh MG, Minogue S (2008) Phosphatidylinositol 4-kinase type 2α. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  122. 122.
    Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME (1997) A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. Journal of Biological Chemistry 272:2595–2598CrossRefGoogle Scholar
  123. 123.
    Nishikawa K, Toker A, Wong K, Marignani PA, Johannes FJ, Cantley LC (1998) Association of protein kinase Cμ with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase. Journal of Biological Chemistry 273: 23126–23133CrossRefGoogle Scholar
  124. 124.
    Kauffmann-Zeh A, Thomas GM, Ball A, Prosser S, Cunningham E, Cockcroft S, Hsuan JJ (1995) Requirement for phosphatidylinositol transfer protein in epidermal growth factor signaling. Science 268:1188–1190ADSCrossRefGoogle Scholar
  125. 125.
    Minogue S, Hsuan J (2008) Phosphatidylinositol 4-kinase type IIβ. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  126. 126.
    Kakuk A, Friedländer E, Vereb G Jr, Kása A, Balla A, Balla T, Heilmeyer LM Jr, Gergely P, Vereb G (2006) Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytometry A 69:1174–1183Google Scholar
  127. 127.
    Balla A, Tuymetova G, Tsiomenko A, Várnai P, Balla T (2005) A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-IIIα: studies with the PH domains of the oxysterol binding protein and FAPP1. Molecular Biology of the Cell 16:1282–1295CrossRefGoogle Scholar
  128. 128.
    Balla A, Kim YJ, Varnai P, Szentpetery Z, Knight Z, Shokat KM, Balla T (2008) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIα. Molecular Biology of the Cell 19:711–721CrossRefGoogle Scholar
  129. 129.
    Trotard M, Lepère-Douard C, Régeard M, Piquet-Pellorce C, Lavillette D, Cosset FL, Gripon P, Le Seyec J (2009) Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening. FASEB JournalGoogle Scholar
  130. 130.
    Guerriero CJ, Weixel KM, Bruns JR, Weisz OA (2006) Phosphatidylinositol 5-kinase stimulates apical biosynthetic delivery via an Arp2/3-dependent mechanism. Journal of Biological Chemistry 281:15376–15384CrossRefGoogle Scholar
  131. 131.
    Clarke JH, Emson PC, Irvine RF (2008) Localization of phosphatidylinositol phosphate kinase IIγin kidney to a membrane trafficking compartment within specialized cells of the nephron. American Journal of Physiology – Renal Physiology 295:F1422–F1430Google Scholar
  132. 132.
    Loijens JC, Anderson RA (2006) Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. Journal of Biological Chemistry 271: 32937–32943Google Scholar
  133. 133.
    Chao WT, Daquinag AC, Ashcroft F, Kunz J (2010) Type I PIPK-α regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation. Journal of Cell Biology 190:247–262CrossRefGoogle Scholar
  134. 134.
    Nakano-Kobayashi A, Yamazaki M, Unoki T, Hongu T, Murata C, Taguchi R, Katada T, Frohman MA, Yokozeki T, Kanaho Y (2007) Role of activation of PIP5Kγ661 by AP-2 complex in synaptic vesicle endocytosis. EMBO Journal 26:1105–1116CrossRefGoogle Scholar
  135. 135.
    Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN (2009) A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proceedings of the National Academy of Sciences of the United States of America 106:480–485ADSCrossRefGoogle Scholar
  136. 136.
    Yu J, Zhang SS, Saito K, Williams S, Arimura Y, Ma Y, Ke Y, Baron V, Mercola D, Feng GS, Adamson E, Mustelin T (2009) PTEN regulation by Akt–EGR1–ARF–PTEN axis. EMBO Journal 28:21–33CrossRefGoogle Scholar
  137. 137.
    Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network. Nature 455:813–817ADSCrossRefGoogle Scholar
  138. 138.
    Sigal YJ, McDermott MI, Morris AJ (2005) Integral membrane lipid phosphatases/ phosphotransferases: common structure and diverse functions.Google Scholar
  139. 139.
    Begley MJ, Dixon JE (2005) The structure and regulation of myotubularin phosphatases. Current Opinion in Structural Biology 15:614–620CrossRefGoogle Scholar
  140. 140.
    Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, Chida S, Tsuya Y, Takasuga S, Eguchi S, Asanuma K, Horie Y, Miura K, Davies EM, Mitchell C, Yamazaki M, Hirai H, Takenawa T, Suzuki A, Sasaki T (2010) The PtdIns(3,4)P2 phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Natur 465:497–501ADSCrossRefGoogle Scholar
  141. 141.
    Munday AD, Norris FA, Caldwell KK, Brown S, Majerus PW, Mitchell CA (1999) The inositol polyphosphate 4-phosphatase forms a complex with phosphatidylinositol 3-kinase in human platelet cytosol. Proceedings of the National Academy of Sciences of the United States of America 96:3640–3645ADSCrossRefGoogle Scholar
  142. 142.
    Minagawa T, Ijuin T, Mochizuki Y, Takenawa T (2001) Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. Journal of Biological Chemistry 276:22011–22015CrossRefGoogle Scholar
  143. 143.
    Symons MH, Chuang Y (2011) Synaptojanin 2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  144. 144.
    Nemoto Y, De Camilli P (1999) Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO Journal 18:2991–3006CrossRefGoogle Scholar
  145. 145.
    Liu Y, Boukhelifa M, Tribble E, Morin-Kensicki E, Uetrecht A, Bear JE, Bankaitis VA (2008) The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals. Molecular Biology of the Cell 19:3080–3096CrossRefGoogle Scholar
  146. 146.
    Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE, Goldowitz D, Meisler MH, Weisman LS (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO Journal 27:3221–3234CrossRefGoogle Scholar
  147. 147.
    Rudge SA, Anderson DM, Emr SD (2004) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Molecular Biology of the Cell 15:24–36CrossRefGoogle Scholar
  148. 148.
    Harris SJ, Parry RV, Westwick J, Ward SG (2008) Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes. Journal of Biological Chemistry 283:2465–2469CrossRefGoogle Scholar
  149. 149.
    Halaszovich CR, Schreiber DN, Oliver D (2009) Ci-VSP is a depolarization-activated phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate 5’-phosphatase. Journal of Biological Chemistry 284:2106–2113CrossRefGoogle Scholar
  150. 150.
    Brindley DN (2004) Lipid phosphate phosphatases and related proteins: Signaling functions in development, cell division, and cancer. Journal of Cellular Biochemistry 92:900–912CrossRefGoogle Scholar
  151. 151.
    Nakanaga K, Hama K, Aoki J (2010) Autotaxin: an LPA producing enzyme with diverse functions. Journal of Biochemistry 148:13–24CrossRefGoogle Scholar
  152. 152.
    Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochimica et Biophysica Acta 1638:1–19CrossRefGoogle Scholar
  153. 153.
    Ubersax JA, Ferrell JE (2007) Mechanisms of specificity in protein phosphorylation. Nature Reviews – Molecular Cell Biology 8:530–541Google Scholar
  154. 154.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934 ( Scholar
  155. 155.
    Manning BD, Cantley LC (2002) Hitting the target: emerging technologies in the search for kinase substrates. Science STKE 2002:pe49Google Scholar
  156. 156.
    Phylogenetic tree of the human kinome in Signal Transduction Knowledge Environment ( and
  157. 157.
    Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L, Okamoto M (2004) Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Molecular and Cellular Endocrinology 217:109–112CrossRefGoogle Scholar
  158. 158.
    LaRonde-LeBlanc N, Wlodawer A (2005) The RIO kinases: An atypical protein kinase family required for ribosome biogenesis and cell cycle progression. Biochimica et Biophysica Acta – Proteins and Proteomics 1754:14–24Google Scholar
  159. 159.
    Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rötig A (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. American Journal of Human Genetics 82:623–630CrossRefGoogle Scholar
  160. 160.
    Macinga DR, Cook GM, Poole RK, Rather PN (1998) Identification and characterization of aarF, a locus required for production of ubiquinone in Providencia stuartii and Escherichia coli and for expression of 2-N-acetyltransferase in P. stuartii. Journal of Bacteriology 180: 128–135Google Scholar
  161. 161.
    Sargent CA, Anderson MJ, Hsieh SL, Kendall E, Gomez-Escobar N, Campbell RD (1994) Characterisation of the novel gene G11 lying adjacent to the complement C4A gene in the human major histocompatibility complex. Human Molecular Genetics 3:481–488CrossRefGoogle Scholar
  162. 162.
    Fraser RA, Heard DJ, Adam S, Lavigne AC, Le Douarin B, Tora L, Losson R, Rochette-Egly C, Chambon P (1998) The putative cofactor TIF1α is a protein kinase that is hyperphosphorylated upon interaction with liganded nuclear receptors. Journal of Biological Chemistry 273:16199–16204CrossRefGoogle Scholar
  163. 163.
    Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, Qin J, Bergmann A, Johnson RL, Barton MC (2009) Trim24 targets endogenous p53 for degradation. Proceedings of the National Academy of Sciences of the United States of America 106:11612–11616ADSCrossRefGoogle Scholar
  164. 164.
    Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, Piccolo S (2005) Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121:87–99CrossRefGoogle Scholar
  165. 165.
    Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136:123–135CrossRefGoogle Scholar
  166. 166.
    He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massagué J (2006) Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell 125:929–941CrossRefGoogle Scholar
  167. 167.
    Forrest AR, Taylor DF, Crowe ML, Chalk AM, Waddell NJ, Kolle G, Faulkner GJ, Kodzius R, Katayama S, Wells C, Kai C, Kawai J, Carninci P, Hayashizaki Y, Grimmond SM (2006) Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases. Genome Biology 7:R5CrossRefGoogle Scholar
  168. 168.
    Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (2006) Emerging roles of pseudokinases. Trends in Cell Biology 16:443–452CrossRefGoogle Scholar
  169. 169.
    Lange A, Wickström SA, Jakobson M, Zent R, Sainio K, Fässler R (2009) Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461:1002–1006ADSCrossRefGoogle Scholar
  170. 170.
    Dougherty MK, Ritt DA, Zhou M, Specht SI, Monson DM, Veenstra TD, Morrison DK (2009) KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals. Molecular Cell 34:652–662CrossRefGoogle Scholar
  171. 171.
    Rajakulendran T, Sicheri F (2010) Allosteric protein kinase regulation by pseudokinases: insights from STRAD. Science Signaling 3:pe8Google Scholar
  172. 172.
    Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA, Alessi DR, Clevers HC (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO Journal 22:3062–3072CrossRefGoogle Scholar
  173. 173.
    Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of Biology 2:28CrossRefGoogle Scholar
  174. 174.
    Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO Journal 23:833–843CrossRefGoogle Scholar
  175. 175.
    Kiss-Toth E, Bagstaff SM, Sung HY, Jozsa V, Dempsey C, Caunt JC, Oxley KM, Wyllie DH, Polgar T, Harte M, O’Neill LA, Qwarnstrom EE, Dower SK (2004) Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. Journal of Biological Chemistry 279:42703–42708CrossRefGoogle Scholar
  176. 176.
    Kiss-Toth E (2007) Trb1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  177. 177.
    Hegedus Z, Czibula A, Kiss-Toth E (2006) Tribbles: novel regulators of cell function; evolutionary aspects. Cellular and Molecular Life Sciences 63:1632–1641CrossRefGoogle Scholar
  178. 178.
    Sung HY, Guan H, Czibula A, King AR, Eder K, Heath E, Suvarna SK, Dower SK, Wilson AG, Francis SE, Crossman DC, Kiss-Toth E (2007) Human tribbles-1 controls proliferation and chemotaxis of smooth muscle cells via MAPK signaling pathways. Journal of Biological Chemistry 282:18379–18387CrossRefGoogle Scholar
  179. 179.
    Kiss-Toth E, Docherty LM (2007) Trb2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  180. 180.
    Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S (2008) Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134:793–803CrossRefGoogle Scholar
  181. 181.
    Pendergast AM, Zipfel P (2006) Abl; Arg. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  182. 182.
    Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652–665CrossRefGoogle Scholar
  183. 183.
    Wang B, Golemis EA, Kruh GD (1997) ArgBP2, a multiple Src homology 3 domain-containing, Arg/Abl-interacting protein, is phosphorylated in v-Abl-transformed cells and localized in stress fibers and cardiocyte Z-disks. Journal of Biological Chemistry 272: 17542–17550CrossRefGoogle Scholar
  184. 184.
    Galisteo ML, Yang Y, Ureña J, Schlessinger J (2006) Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proceedings of the National Academy of Sciences of the United States of America 103:9796–9801ADSCrossRefGoogle Scholar
  185. 185.
    Satoh T (2005) Ack1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  186. 186.
    Crompton MR (2005) Brk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  187. 187.
    Qiu H, Zappacosta F, Su W, Annan RS, Miller WT (2005) Interaction between Brk kinase and insulin receptor substrate-4. Oncogene 24:5656–5664CrossRefGoogle Scholar
  188. 188.
    Vang T, Methi T, Veillette A, Mustelin T, Tasken K (2006) Csk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  189. 189.
    Zhao M, Janas JA, Niki M, Pandolfi PP, Van Aelst L (2006) Dok-1 independently attenuates Ras/mitogen-activated protein kinase and Src/c-myc pathways to inhibit platelet-derived growth factor-induced mitogenesis. Molecular and Cellular Biology 26:2479–2489CrossRefGoogle Scholar
  190. 190.
    Lemay S, Davidson D, Latour S, Veillette A (2000) Dok-3, a novel adapter molecule involved in the negative regulation of immunoreceptor signaling. Molecular and Cellular Biology 20:2743–2754CrossRefGoogle Scholar
  191. 191.
    Frame MC, Patel H, Serrels B, Lietha D, Eck MJ (2010) The FERM domain: organizing the structure and function of FAK. Nature Reviews – Molecular Cell Biology 11:802–814Google Scholar
  192. 192.
    Cooper J, Li W, You L, Schiavon G, Pepe-Caprio A, Zhou L, Ishii R, Giovannini M, Hanemann CO, Long SB, Erdjument-Bromage H, Zhou P, Tempst P, Giancotti FG (2011) Merlin/NF2 functions upstream of the nuclear E3 ubiquitin ligase CRL4DCAF1 to suppress oncogenic gene expression. Science Signaling 4:pt6Google Scholar
  193. 193.
    Koshman YE, Engman SJ, Kim T, Iyengar R, Henderson KK, Samarel AM (2010) Role of FRNK tyrosine phosphorylation in vascular smooth muscle spreading and migration. Cardiovascular Research 85:571–581CrossRefGoogle Scholar
  194. 194.
    Hauck CR, Hsia DA, Schlaepfer DD (2002) The focal adhesion kinase – a regulator of cell migration and invasion. IUBMB Life 53:115–119CrossRefGoogle Scholar
  195. 195.
    Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nature Reviews – Molecular Cell Biology 6:56–68Google Scholar
  196. 196.
    Dalla Costa AP, Clemente CF, Carvalho HF, Carvalheira JB, Nadruz W Jr, Franchini KG (2010) FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovascular Research 86:421–431CrossRefGoogle Scholar
  197. 197.
    Seko Y, Takahashi N, Sabe H, Tobe K, Kadowaki T, Nagai R (1999) Hypoxia induces activation and subcellular translocation of focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes. Biochemical and Biophysical Research Communications 262:290–296CrossRefGoogle Scholar
  198. 198.
    Pawson T, Letwin K, Lee T, Hao QL, Heisterkamp N, Groffen J (1989) The FER gene is evolutionarily conserved and encodes a widely expressed member of the FPS/FES protein-tyrosine kinase family. Molecular and Cellular Biology 9:5722–5725Google Scholar
  199. 199.
    Greer P (2002) Closing in on the biological functions of Fps/Fes and Fer. Nature Reviews – Molecular Cell Biology 3:278–289Google Scholar
  200. 200.
    Itoh T, Hasegawa J, Tsujita K, Kanaho Y, Takenawa T (2009) The tyrosine kinase Fer is a downstream target of the PLD-PA pathway that regulates cell migration. Science Signaling 2:ra52Google Scholar
  201. 201.
    Kapus A, Di Ciano C, Sun J, Zhan X, Kim L, Wong TW, Rotstein OD (2000) Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell-cell contact sites. The role of Fyn and FER kinases. Journal of Biological Chemistry 275:32289–32298Google Scholar
  202. 202.
    Schwartz Y, Ben-Dor I, Navon A, Motro B, Nir U (1998) Tyrosine phosphorylation of the TATA element modulatory factor by the FER nuclear tyrosine kinases. FEBS Letters 434: 339–345CrossRefGoogle Scholar
  203. 203.
    Craven RJ, Cance WG, Liu ET (1995) The nuclear tyrosine kinase Rak associates with the retinoblastoma protein pRb. Cancer Research 55:3969–3972Google Scholar
  204. 204.
    Annerén C, Lindholm CK, Kriz V, Welsh M (2003) The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation. Current Molecular Medicine 3:313–324CrossRefGoogle Scholar
  205. 205.
    Serfas MS, Tyner AL (2003) Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases. Oncology Research 13:409–419Google Scholar
  206. 206.
    Yim EK, Peng G, Dai H, Hu R, Li K, Lu Y, Mills GB, Meric-Bernstam F, Hennessy BT, Craven RJ, Lin SY (2009) Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell 15:304–314CrossRefGoogle Scholar
  207. 207.
    Leonard WJ (2001) Cytokines and immunodeficiency diseases. Nature Reviews – Immunology 1:200–208Google Scholar
  208. 208.
    Kurdi M, Booz GW (2009) JAK redux: a second look at the regulation and role of JAKs in the heart. American Journal of Physiology – Heart and Circulatory Physiology 297: H1545–H1556Google Scholar
  209. 209.
    Yang J, Stark GR (2008) Roles of unphosphorylated STATs in signaling. Cell Research 18:443–451CrossRefGoogle Scholar
  210. 210.
    Kile BT, Nicola NA, Alexander WS (2001) Negative regulators of cytokine signaling. International Journal of Hematology 73:292–298CrossRefGoogle Scholar
  211. 211.
    Nicholson SE, Willson TA, Farley A, Starr R, Zhang JG, Baca M, Alexander WS, Metcalf D, Hilton DJ, Nicola NA (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO Journal 18:375–385CrossRefGoogle Scholar
  212. 212.
    Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M, Yoshida H, Kubo M, Yoshimura A (2002) SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17:583–591CrossRefGoogle Scholar
  213. 213.
    Gingras S, Parganas E, de Pauw A, Ihle JN, Murray PJ (2004) Re-examination of the role of suppressor of cytokine signaling 1 (SOCS1) in the regulation of toll-like receptor signaling. Journal of Biological Chemistry 79:54702–54707CrossRefGoogle Scholar
  214. 214.
    Cohney SJ, Sanden D, Cacalano NA, Yoshimura A, Mui A, Migone TS, Johnston JA (1999) SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Molecular and Cellular Biology 19: 4980–4988Google Scholar
  215. 215.
    Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Förster I, Clausen BE, Nicola NA, Metcalf D, Hilton DJ, Roberts AW, Alexander WS (2003) SOCS3 negatively regulates IL-6 signaling in vivo. Nature – Immunology 4:540–545Google Scholar
  216. 216.
    Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Molecular and Cellular Biology 24:5434–5446CrossRefGoogle Scholar
  217. 217.
    Mooney RA, Senn J, Cameron S, Inamdar N, Boivin LM, Shang Y, Furlanetto RW (2001) Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance. Journal of Biological Chemistry 276:25889–25893Google Scholar
  218. 218.
    Cheng HC, Chong YP, Ia KK, Tan O, Mulhern TD (2006) Csk homologous kinase. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  219. 219.
    Jhun BH, Rivnay B, Price D, Avraham H (1995) The MATK tyrosine kinase interacts in a specific and SH2-dependent manner with c-Kit. Journal of Biological Chemistry 270: 9661–9666CrossRefGoogle Scholar
  220. 220.
    Yamashita H, Avraham S, Jiang S, Dikic I, Avraham H (1999) The Csk homologous kinase associates with TrkA receptors and is involved in neurite outgrowth of PC12 cells. Journal of Biological Chemistry 274:15059–15065CrossRefGoogle Scholar
  221. 221.
    Kohmura N, Yagi T, Tomooka Y, Oyanagi M, Kominami R, Takeda N, Chiba J, Ikawa Y, Aizawa S (1994) A novel nonreceptor tyrosine kinase, Srm: cloning and targeted disruption. Molecular and Cellular Biology 14:6915–6925Google Scholar
  222. 222.
    Mano H, Yamashita Y, Miyazato A, Miura Y, Ozawa K (1996) Tec protein-tyrosine kinase is an effector molecule of Lyn protein-tyrosine kinase. FASEB Journal 10:637-642.Google Scholar
  223. 223.
    Sandilands E, Cans C, Fincham VJ, Brunton VG, Mellor H, Prendergast GC, Norman JC, Superti-Furga G, Frame MC (2004) RhoB and actin polymerization coordinate Src activation with endosome-mediated delivery to the membrane. Developmental Cell 7:855–869CrossRefGoogle Scholar
  224. 224.
    Knock GA, Snetkov VA, Shaifta Y, Drndarski S, Ward JPT, Aaronson PI (2008) Role of src-family kinases in hypoxic vasoconstriction of rat pulmonary artery. Cardiovascular Research 80:453–462CrossRefGoogle Scholar
  225. 225.
    Seko Y, Tobe K, Takahashi N, Kaburagi Y, Kadowaki T, Yazaki Y (1996) Hypoxia and hypoxia/reoxygenation activate Src family tyrosine kinases and p21ras in cultured rat cardiac myocytes. Biochemical and Biophysical Research Communications 226:530–535CrossRefGoogle Scholar
  226. 226.
    Yin H, Chao L, Chao J (2005) Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways. Journal of Biological Chemistry 280:8022–8030CrossRefGoogle Scholar
  227. 227.
    Sato H, Sato M, Kanai H, Uchiyama T, Iso T, Ohyama Y, Sakamoto H, Tamura J, Nagai R, Kurabayashi M (2005) Mitochondrial reactive oxygen species and c-Src play a critical role in hypoxic response in vascular smooth muscle cells. Cardiovascular Research 67:714–722CrossRefGoogle Scholar
  228. 228.
    Pleiman CM, Clark MR, Gauen LK, Winitz S, Coggeshall KM, Johnson GL, Shaw AS, Cambier JC (1993) Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, and p56lyn which interact with the effector molecules phospholipase C-γ2, microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase. Molecular and Cellular Biology 13:5877–5887Google Scholar
  229. 229.
    Hegde R, Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Blk, a BH3-containing mouse protein that interacts with Bcl-2 and Bcl-xL, is a potent death agonist. Journal of Biological Chemistry 273:7783–7786CrossRefGoogle Scholar
  230. 230.
    Dymecki SM, Niederhuber JE, Desiderio SV (1990) Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Science 247:332–336ADSCrossRefGoogle Scholar
  231. 231.
    Lin YH, Shin EJ, Campbell MJ, Niederhuber JE (1995) Transcription of the blk gene in human B lymphocytes is controlled by two promoters. Journal of Biological Chemistry 270:25968–25975CrossRefGoogle Scholar
  232. 232.
    Bagheri-Yarmand R, Mandal M, Taludker AH, Wang RA, Vadlamudi RK, Kung HJ, Kumar R (2001) Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. Journal of Biological Chemistry 276:29403–29409CrossRefGoogle Scholar
  233. 233.
    Mitchell-Jordan SA, Holopainen T, Ren S, Wang S, Warburton S, Zhang MJ, Alitalo K, Wang Y, Vondriska TM (2008) Loss of Bmx nonreceptor tyrosine kinase prevents pressure overload-induced cardiac hypertrophy. Circulation Research 103:1359–1362CrossRefGoogle Scholar
  234. 234.
    Pan S, An P, Zhang R, He X, Yin G, Min W (2002) Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Molecular and Cellular Biology 22:7512–7523CrossRefGoogle Scholar
  235. 235.
    Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M, Malli R, Graier WF (2008) Integrin clustering enables anandamide-induced Ca2 +  signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. Journal of Cell Science 121:1704–1717CrossRefGoogle Scholar
  236. 236.
    Semaan N, Alsaleh G, Gottenberg JE, Wachsmann D, Sibilia J (2008) Etk/BMX, a Btk family tyrosine kinase, and Mal contribute to the cross-talk between MyD88 and FAK pathways. Journal of Immunology 180:3485–3491Google Scholar
  237. 237.
    Palmer CD, Mutch BE, Workman S, McDaid JP, Horwood NJ, Foxwell BM (2008) Bmx tyrosine kinase regulates TLR4-induced IL-6 production in human macrophages independently of p38 MAPK and NFκB activity. Blood 111:1781–1788CrossRefGoogle Scholar
  238. 238.
    Carpenter CL (2004) Btk-dependent regulation of phosphoinositide synthesis. Biochemical Society Transactions 32:326–329CrossRefGoogle Scholar
  239. 239.
    Uckun FM (2008) Bruton’s tyrosine kinase (BTK) as a dual-function regulator of apoptosis. Biochemical Pharmacology 56:683–691CrossRefGoogle Scholar
  240. 240.
    Lowell CA, Berton G (1999) Integrin signal transduction in myeloid leukocytes. Journal of Leukocyte Biology 65:313–320Google Scholar
  241. 241.
    Resh M (2006) Fyn. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  242. 242.
    Banin S, Truong O, Katz DR, Waterfield MD, Brickell PM, Gout I (1996) Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein-tyrosine kinases. Current Biology 6:981–988CrossRefGoogle Scholar
  243. 243.
    Stanglmaier M, Warmuth M, Kleinlein I, Reis S, Hallek M (2003) The interaction of the Bcr-Abl tyrosine kinase with the Src kinase Hck is mediated by multiple binding domains. Leukemia 17:283–289CrossRefGoogle Scholar
  244. 244.
    Scott MP, Zappacosta F, Kim EY, Annan RS, Miller WT (2002) Identification of novel SH3 domain ligands for the Src family kinase Hck. Wiskott-Aldrich syndrome protein (WASP), WASP-interacting protein (WIP), and ELMO1. Journal of Biological Chemistry 277: 28238–28246CrossRefGoogle Scholar
  245. 245.
    Briggs SD, Bryant SS, Jove R, Sanderson SD, Smithgall TE (1995) The Ras GTPase-activating protein (GAP) is an SH3 domain-binding protein and substrate for the Src-related tyrosine kinase, Hck. Journal of Biological Chemistry 270:14718–14724CrossRefGoogle Scholar
  246. 246.
    Shivakrupa R, Radha V, Sudhakar Ch, Swarup G (2003) Physical and functional interaction between Hck tyrosine kinase and guanine nucleotide exchange factor C3G results in apoptosis, which is independent of C3G catalytic domain. Journal of Biological Chemistry 278:52188–52194CrossRefGoogle Scholar
  247. 247.
    Ward AC, Monkhouse JL, Csar XF, Touw IP, Bello PA (1998) The Src-like tyrosine kinase Hck is activated by granulocyte colony-stimulating factor (G-CSF) and docks to the activated G-CSF receptor. Biochemical and Biophysical Research Communications 251:117–123CrossRefGoogle Scholar
  248. 248.
    Poghosyan Z, Robbins SM, Houslay MD, Webster A, Murphy G, Edwards DR (2002) Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases. Journal of Biological Chemistry 277:4999-5007CrossRefGoogle Scholar
  249. 249.
    Hao S, August A (2002) The proline rich region of the Tec homology domain of ITK regulates its activity. FEBS Letters 525:53–58CrossRefGoogle Scholar
  250. 250.
    Bunnell SC, Henry PA, Kolluri R, Kirchhausen T, Rickles RJ, Berg LJ (1996) Identification of Itk/Tsk Src homology 3 domain ligands. Journal of Biological Chemistry 271:25646–25656CrossRefGoogle Scholar
  251. 251.
    BioGRID: General Repository for Interaction Datasets; database of physical and genetic interactions for model organisms (
  252. 252.
    Bléry M, Kubagawa H, Chen CC, Vély F, Cooper MD, Vivier E (1998) The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proceedings of the National Academy of Sciences of the United States of America 95: 2446–2451ADSCrossRefGoogle Scholar
  253. 253.
    Belsches AP, Haskell MD, Parsons SJ (1997) Role of c-Src tyrosine kinase in EGF-induced mitogenesis. Frontiers in Bioscience 2:d501–d518Google Scholar
  254. 254.
    Amanchy R, Zhong J, Hong R, Kim JH, Gucek M, Cole RN, Molina H, Pandey A (2009) Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling. Molecular Oncology 3:439–450CrossRefGoogle Scholar
  255. 255.
    Goldman TL, Du Y, Buttrick PM, Walker LA (2009) Src kinase expression, phosphorylation and activation in human and bovine left ventricles. FASEB Journal 23:524.7Google Scholar
  256. 256.
    Yang WC, Ghiotto M, Castellano R, Collette Y, Auphan N, Nunès JA, Olive D (2000) Role of Tec kinase in nuclear factor of activated T cells signaling. International Immunology 12: 1547–1552CrossRefGoogle Scholar
  257. 257.
    Kane LP, Watkins SC (2005) Dynamic regulation of Tec kinase localization in membrane-proximal vesicles of a T cell clone revealed by total internal reflection fluorescence and confocal microscopy. Journal of Biological Chemistry 280:21949–21954CrossRefGoogle Scholar
  258. 258.
    Felices M, Falk M, Kosaka Y, Berg LJ (2007) Tec kinases in T cell and mast cell signaling. Advances in Immunology 93:145–184CrossRefGoogle Scholar
  259. 259.
    Smith CI, Islam TC, Mattsson PT, Mohamed AJ, Nore BF, Vihinen M (2001) The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. Bioessays 23:436–446CrossRefGoogle Scholar
  260. 260.
    Yang WC, Collette Y, Nunès JA, Olive D (2000) Tec kinases: a family with multiple roles in immunity. Immunity 12:373–382CrossRefGoogle Scholar
  261. 261.
    Rajagopal K, Sommers CL, Decker DC, Mitchell EO, Korthauer U, Sperling AI, Kozak CA, Love PE, Bluestone JA (1999) RIBP, a novel Rlk/Txk- and itk-binding adaptor protein that regulates T cell activation. Journal of Experimental Medicine 190:1657–1668CrossRefGoogle Scholar
  262. 262.
    Maruyama T, Nara K, Yoshikawa H, Suzuki N (2006) Txk, a member of the non-receptor tyrosine kinase of the Tec family, forms a complex with poly(ADP-ribose) polymerase 1 and elongation factor 1α and regulates interferon-γ gene transcription in Th1 cells. Clinical and Experimental Immunology 147:164–175CrossRefGoogle Scholar
  263. 263.
    Chen YH, Lu Q, Goodenough DA, Jeansonne B (2002) Nonreceptor tyrosine kinase c-Yes interacts with occludin during tight junction formation in canine kidney epithelial cells. Molecular Biology of the Cell 13:1227–1237CrossRefGoogle Scholar
  264. 264.
    Mócsai A, Ruland J, Tybulewicz VLJ (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nature Reviews – Immunology 10:387–402Google Scholar
  265. 265.
    Geahlen RL (2007) Syk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  266. 266.
    Tohyama Y, Yamamura H (2009) Protein tyrosine kinase, Syk: a key player in phagocytic cells. Journal of Biochemistry 145:267–273CrossRefGoogle Scholar
  267. 267.
    Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 81:807–869Google Scholar
  268. 268.
    Chaar Z, O’Reilly P, Gelman I, Sabourin LA (2006) v-Src-dependent down-regulation of the Ste20-like kinase SLK by casein kinase II. Journal of Biological Chemistry 281:28193–28199CrossRefGoogle Scholar
  269. 269.
    Sabourin LA, Tamai K, Seale P, Wagner J, Rudnicki MA (2000) Caspase 3 cleavage of the Ste20-related kinase SLK releases and activates an apoptosis-inducing kinase domain and an actin-disassembling region. Molecular and Cellular Biology 20:684–696CrossRefGoogle Scholar
  270. 270.
    Oehrl W, Kardinal C, Ruf S, Adermann K, Groffen J, Feng GS, Blenis J, Tan TH, Feller SM (1998) The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins. Oncogene 17:1893–1901CrossRefGoogle Scholar
  271. 271.
    Kyriakis JM (1999) Signaling by the germinal center kinase family of protein kinases. Journal of Biological Chemistry 274:5259–5262CrossRefGoogle Scholar
  272. 272.
    Chen YR, Tan TH (1999) Mammalian c-Jun N-terminal kinase pathway and STE20-related kinases. Gene Therapy and Molecular Biology 4:83–98Google Scholar
  273. 273.
    Kiefer F, Arnold R (2010) Hpk1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  274. 274.
    Ensenat D, Yao Z, Wang XS, Kori R, Zhou G, Lee SC, Tan TH (1999) A novel src homology 3 domain-containing adaptor protein, HIP-55, that interacts with hematopoietic progenitor kinase 1. Journal of Biological Chemistry 274:33945–33950CrossRefGoogle Scholar
  275. 275.
    Han J, Kori R, Shui JW, Chen YR, Yao Z, Tan TH (2003) The SH3 domain-containing adaptor HIP-55 mediates c-Jun N-terminal kinase activation in T cell receptor signaling. Journal of Biological Chemistry 278:52195–52202CrossRefGoogle Scholar
  276. 276.
    Liu SK, Fang N, Koretzky GA, McGlade CJ (1999) The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Current Biology 9:67–75CrossRefGoogle Scholar
  277. 277.
    Zhou G, Boomer JS, Tan TH (2004) Protein phosphatase 4 is a positive regulator of hematopoietic progenitor kinase 1. Journal of Biological Chemistry 279:49551–49561CrossRefGoogle Scholar
  278. 278.
    Findlay GM, Yan L, Procter J, Mieulet V, Lamb RF (2007) A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochemical Journal 403:13–20CrossRefGoogle Scholar
  279. 279.
    Chernoff J (2008) Mst1; Mst2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  280. 280.
    Braun H, Suske G (1998) Combinatorial action of HNF3 and Sp family transcription factors in the activation of the rabbit uteroglobin/CC10 promoter. Journal of Biological Chemistry 273:9821–9828CrossRefGoogle Scholar
  281. 281.
    Glantschnig H, Rodan GA, Reszka AA (2002) Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. Journal of Biological Chemistry 277:42987–42996Google Scholar
  282. 282.
    Nakano K, Kanai-Azuma M, Kanai Y, Moriyama K, Yazaki K, Hayashi Y, Kitamura N (2003) Cofilin phosphorylation and actin polymerization by NRK/NESK, a member of the germinal center kinase family. Experimental Cell Research 287:219–227CrossRefGoogle Scholar
  283. 283.
    Fu CA, Shen M, Huang BC, Lasaga J, Payan DG, Luo Y (1999) TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. Journal of Biological Chemistry 274:30729–30737CrossRefGoogle Scholar
  284. 284.
    Kuramochi S, Moriguchi T, Kuida K, Endo J, Semba K, Nishida E, Karasuyama H (1997) LOK is a novel mouse STE20-like protein kinase that is expressed predominantly in lymphocytes. Journal of Biological Chemistry 272:22679–22684CrossRefGoogle Scholar
  285. 285.
    Walter SA, Cutler RE Jr, Martinez R, Gishizky M, Hill RJ (2003) Stk10, a new member of the polo-like kinase kinase family highly expressed in hematopoietic tissue. Journal of Biological Chemistry 278:18221–18228CrossRefGoogle Scholar
  286. 286.
    Choe KP, Strange K (2010) OXSR1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  287. 287.
    Lee SJ, Cobb MH, Goldsmith EJ (2009) Crystal structure of domain-swapped STE20 OSR1 kinase domain. Protein Science 18:304–313CrossRefGoogle Scholar
  288. 288.
    Mudumana SP, Hentschel D, Liu Y, Vasilyev A, Drummond IA (2008) Odd skipped related 1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development 135:3355–3367CrossRefGoogle Scholar
  289. 289.
    Strange K, Denton J, Nehrke K (2006) Ste20-type kinases: evolutionarily conserved regulators of ion transport and cell volume. Physiology 21:61–68CrossRefGoogle Scholar
  290. 290.
    Russell JM (2000) Sodium–potassium–chloride cotransport. Physiological Reviews 80: 211–276Google Scholar
  291. 291.
    Anselmo AN, Earnest S, Chen W, Juang YC, Kim SC, Zhao Y, Cobb MH (2006) WNK1 and OSR1 regulate the Na + , K + , 2Cl −  cotransporter in HeLa cells. Proceedings of the National Academy of Sciences of the United States of America 103:10883–10888ADSCrossRefGoogle Scholar
  292. 292.
    Ko B, Hoover RS (2009) Molecular physiology of the thiazide-sensitive sodium-chloride cotransporter. Current Opinion in Nephrology and Hypertension 18:421–427CrossRefGoogle Scholar
  293. 293.
    Komaba S, Inoue A, Maruta S, Hosoya H, Ikebe M (2003) Determination of human myosin III as a motor protein having a protein kinase activity. Journal of Biological Chemistry 278:21352–21360CrossRefGoogle Scholar
  294. 294.
    Dosé AC, Burnside B (2002) A class III myosin expressed in the retina is a potential candidate for Bardet-Biedl syndrome. Genomics 79:621–624CrossRefGoogle Scholar
  295. 295.
    Hutchison M, Berman KS, Cobb MH (1998) Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascades. Journal of Biological Chemistry 273:28625–28632CrossRefGoogle Scholar
  296. 296.
    Zihni C, Mitsopoulos C, Tavares IA, Ridley AJ, Morris JD (2006) Prostate-derived sterile 20-like kinase 2 (PSK2) regulates apoptotic morphology via C-Jun N-terminal kinase and Rho kinase-1. Journal of Biological Chemistry 281:7317–7323CrossRefGoogle Scholar
  297. 297.
    Chen Z, Cobb MH (2001) Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2. Journal of Biological Chemistry 276:16070–16075CrossRefGoogle Scholar
  298. 298.
    Tassi E, Biesova Z, Di Fiore PP, Gutkind JS, Wong WT (1999) Human JIK, a novel member of the STE20 kinase family that inhibits JNK and is negatively regulated by epidermal growth factor. Journal of Biological Chemistry 274:33287–33295CrossRefGoogle Scholar
  299. 299.
    Hergovich A, Stegert MR, Schmitz D, Hemmings BA (2006) NDR kinases regulate essential cell processes from yeast to humans. Nature Reviews – Molecular Cell Biology 7:253–264Google Scholar
  300. 300.
    Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nature Reviews – Molecular Cell Biology 11:9–22Google Scholar
  301. 301.
    Okuzumi T, Fiedler D, Zhang C, Gray DC, Aizenstein B, Hoffman R, Shokat KM (2009) Inhibitor hijacking of Akt activation. Nature – Chemical Biology 5:484–493Google Scholar
  302. 302.
    Cameron AJM, Escribano C, Saurin AT, Kostelecky B, Parker PJ (2009) PKC maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity. Nature – Structural and Molecular Biology 16:624–630Google Scholar
  303. 303.
    Kohler RS, Schmitz D, Cornils H, Hemmings BA, Hergovich A (2010) Differential NDR/LATS interactions with the human MOB family reveal a negative role for human MOB2 in the regulation of human NDR kinases. Molecular and Cellular Biology 30:4507–4520CrossRefGoogle Scholar
  304. 304.
    Stokoe D (2007) Pdk1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  305. 305.
    Masters TA, Calleja V, Armoogum DA, Marsh RJ, Applebee CJ, Laguerre M, Bain AJ, Larijani B (2010) Regulation of 3-phosphoinositide-dependent protein kinase 1 activity by homodimerization in live cells. Science Signaling 3:ra78Google Scholar
  306. 306.
    Ito K, Akazawa H, Tamagawa M, Furukawa K, Ogawa W, Yasuda N, Kudo Y, Liao CH, Yamamoto R, Sato T, Molkentin JD, Kasuga M, Noda T, Nakaya H, Komuro I (2009) PDK1 coordinates survival pathways and β-adrenergic response in the heart. Proceedings of the National Academy of Sciences of the United States of America 106:8689–8694ADSCrossRefGoogle Scholar
  307. 307.
    Lignitto L, Carlucci A, Sepe M, Stefan E, Cuomo O, Nisticò R, Scorziello A, Savoia C, Garbi C, Annunziato L, Feliciello A (2011) Control of PKA stability and signalling by the RING ligase praja2. Nature – Cell Biology 13:412–422Google Scholar
  308. 308.
    Masterson LR, Mascioni A, Traaseth NJ, Taylor SS, Veglia G (2008) Allosteric cooperativity in protein kinase A. Proceedings of the National Academy of Sciences of the United States of America 105:506–511ADSCrossRefGoogle Scholar
  309. 309.
    Wu J, Brown SHJ, von Daake S, Taylor SS (2007) PKA type IIα holoenzyme reveals a combinatorial strategy for isoform diversity. Science 318:274–279ADSCrossRefGoogle Scholar
  310. 310.
    Goel M, Zuo CD, Schilling WP (2010) Role of cAMP/PKA signaling cascade in vasopressin-induced trafficking of TRPC3 channels in principal cells of the collecting duct. American Journal of Physiology – Renal Physiology 298:F988–F996Google Scholar
  311. 311.
    Butterworth MB, Frizzell RA, Johnson JP, Peters KW, Edinger RS (2005) PKA-dependent ENaC trafficking requires the SNARE-binding protein complexin. American Journal of Physiology – Renal Physiology 289:F969–F977Google Scholar
  312. 312.
    Nejsum LN, Zelenina M, Aperia A, Frøkiaer J, Nielsen S (2005) Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. American Journal of Physiology – Renal Physiology 288:F930–F938Google Scholar
  313. 313.
    Faul C, Dhume A, Schecter AD, Mundel P (2007) Protein kinase A, Ca2 + /calmodulin-dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes. Molecular and Cellular Biology 27:8215–8227CrossRefGoogle Scholar
  314. 314.
    Hallaq H, Yang Z, Viswanathan PC, Fukuda K, Shen W, Wang DW, Wells KS, Zhou J, Yi J, Murray KT (2006) Quantitation of protein kinase A-mediated trafficking of cardiac sodium channels in living cells. Cardiovascular Research 72:250–261CrossRefGoogle Scholar
  315. 315.
    Lin L, Sun W, Wikenheiser AM, Kung F, Hoffman DA (2010) KChIP4a regulates Kv4.2 channel trafficking through PKA phosphorylation. Molecular and Cellular Neurosciences 43:315–325CrossRefGoogle Scholar
  316. 316.
    Esteban JA , Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nature – Neuroscience 6:136–143Google Scholar
  317. 317.
    Parvathenani LK, Buescher ES, Chacon-Cruz E, Beebe SJ (1998) Type I cAMP-dependent protein kinase delays apoptosis in human neutrophils at a site upstream of caspase-3. Journal of Biological Chemistry 273:6736–6743CrossRefGoogle Scholar
  318. 318.
    Prinz A, Herberg FW (2009) Prkx. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  319. 319.
    Semizarov D, Glesne D, Laouar A, Schiebel K, Huberman E (1998) A lineage-specific protein kinase crucial for myeloid maturation. Proceedings of the National Academy of Sciences of the United States of America 95:15412-15417ADSCrossRefGoogle Scholar
  320. 320.
    Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D, Bismuth G, Nunès JA, Payrastre B, Marguet D, He HT (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nature – Chemical Biology 4:538–547Google Scholar
  321. 321.
    Gonzalez E, McGraw TE (2009) Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proceedings of the National Academy of Sciences of the United States of America 106:7004–7009ADSCrossRefGoogle Scholar
  322. 322.
    Mîinea CP, Sano H, Kane S, Sano E, Fukuda M, Peränen J, Lane WS, Lienhard GE (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochemical Journal 391:87–93CrossRefGoogle Scholar
  323. 323.
    Xie X, Zhang D, Zhao B, Lu MK, You M, Condorelli G, Wang CY, Guan KL (2011) IκB kinase ε and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proceedings of the National Academy of Sciences of the United States of America 108:6474–6479ADSCrossRefGoogle Scholar
  324. 324.
    Miyamoto S, Rubio M, Sussman mA (2009) Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovascular Research 82:272–285Google Scholar
  325. 325.
    Kim HE, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proceedings of the National Academy of Sciences of the United States of America 102:17545–17550ADSCrossRefGoogle Scholar
  326. 326.
    Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A (2005) Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Molecular Cell 20:539–550CrossRefGoogle Scholar
  327. 327.
    Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, Natesan S, Brugge JS (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. Journal of Cell Biology 171:1023–1034CrossRefGoogle Scholar
  328. 328.
    Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes and Development 15:1406–1418CrossRefGoogle Scholar
  329. 329.
    Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Molecular Biology of the Cell 13:2276–2288CrossRefGoogle Scholar
  330. 330.
    Di Lorenzo A, Fernández-Hernando C, Cirino G, Sessa WC (2009) Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proceedings of the National Academy of Sciences of the United States of America 106:14552–14557ADSCrossRefGoogle Scholar
  331. 331.
    Ezell SA, Polytarchou C, Hatziapostolou M, Guo A, Sanidas I, Bihani T, Comb MJ, Sourvinos G, Tsichlis PN (2012) The protein kinase Akt1 regulates the interferon response through phosphorylation of the transcriptional repressor EMSY. Proceedings of the National Academy of Sciences of the United States of America 109:E613–E621ADSCrossRefGoogle Scholar
  332. 332.
    Rosse C, Linch M, Kermorgant S, Cameron AJM, Boeckeler K, Parker PJ (2010) PKC and the control of localized signal dynamics. Nature Reviews – Molecular Cell Biology 11:103–112Google Scholar
  333. 333.
    Palaniyandi SS, Sun L, Ferreira JCB, Mochly-Rosen D (2009) Protein kinase C in heart failure: a therapeutic target? Cardiovascular Research 82:229–239CrossRefGoogle Scholar
  334. 334.
    Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R (2009) PKCη regulates occludin phosphorylation and epithelial tight junction integrity. Proceedings of the National Academy of Sciences of the United States of America 106: 61–66ADSCrossRefGoogle Scholar
  335. 335.
    Chapline C, Cottom J, Tobin H, Hulmes J, Crabb J, Jaken S (1998) A major, transformation-sensitive PKC-binding protein is also a PKC substrate involved in cytoskeletal remodeling. Journal of Biological Chemistry 273:19482–19489CrossRefGoogle Scholar
  336. 336.
    Mochly-Rosen D, Gordon AS (1998) Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB Journal 12:35–42Google Scholar
  337. 337.
    Staudinger J, Lu J, Olson EN (1997) Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-α. Journal of Biological Chemistry 272: 32019–32024CrossRefGoogle Scholar
  338. 338.
    Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, Fujimoto T, Tabuse Y, Kemphues KJ, Ohno S (1998) An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. Journal of Cell Biology 143:95–106CrossRefGoogle Scholar
  339. 339.
    Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature – Cell Biology 2:531–539Google Scholar
  340. 340.
    Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J (2005) The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. Journal of Biological Chemistry 280:35625–35629CrossRefGoogle Scholar
  341. 341.
    Konopatskaya O, Gilio K, Harper MT, Zhao Y, Cosemans JM, Karim ZA, Whiteheart SW, Molkentin JD, Verkade P, Watson SP, Heemskerk JW, Poole AW (2009) PKCα regulates platelet granule secretion and thrombus formation in mice. Journal of Clinical Investigation 119:399–407Google Scholar
  342. 342.
    Rajagopal S, Fang H, Oronce CI, Jhaveri S, Taneja S, Dehlin EM, Snyder SL, Sando JJ, Kamatchi GL (2009) Site-specific regulation of Ca(V)2.2 channels by protein kinase C isozymes βII and ε. Neuroscience 159:618–628CrossRefGoogle Scholar
  343. 343.
    Rajagopal S, Fang H, Patanavanich S, Sando JJ, Kamatchi GL (2008) Protein kinase C isozyme-specific potentiation of expressed Ca(V)2.3 currents by acetyl-beta-methylcholine and phorbol-12-myristate, 13-acetate. Brain Research 1210:1–10CrossRefGoogle Scholar
  344. 344.
    Steinberg SF (2005) Protein kinase Cδ. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  345. 345.
    Robles-Flores M, Rendon-Huerta E, Gonzalez-Aguilar H, Mendoza-Hernandez G, Islas S, Mendoza V, Ponce-Castaneda MV, Gonzalez-Mariscal L, Lopez-Casillas F (2002) p32 (gC1qBP) is a general protein kinase C (PKC)-binding protein; interaction and cellular localization of P32-PKC complexes in ray hepatocytes. Journal of Biological Chemistry 277:5247–5255CrossRefGoogle Scholar
  346. 346.
    Roybal KT, Wülfing C (2010) Inhibiting the inhibitor of the inhibitor: blocking PKC-θ to enhance regulatory T cell function. Science Signaling 3:pe24Google Scholar
  347. 347.
    Moscat J, Diaz-Meco MT (2005) Protein kinase Cζ. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  348. 348.
    Hodgkinson CP, Mander A, Sale GJ (2005) Protein kinase-ζ interacts with munc18c: role in GLUT4 trafficking. Diabetologia 48:1627–1636CrossRefGoogle Scholar
  349. 349.
    Westmark PR, Westmark CJ, Wang S, Levenson J, O’Riordan KJ, Burger C, Malter JS (2010) Pin1 and PKMζ sequentially control dendritic protein synthesis. Science Signaling 3:ra18Google Scholar
  350. 350.
    Chang S, Kim JH, Shin J (2002) p62 forms a ternary complex with PKCζ and PAR-4 and antagonizes PAR-4-induced PKCζ inhibition. FEBS Letters 510:57–61CrossRefGoogle Scholar
  351. 351.
    Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Molecular and Cellular Biology 24: 8055–8068CrossRefGoogle Scholar
  352. 352.
    Samuels IS, Seibenhener ML, Neidigh KB, Wooten MW (2001) Nerve growth factor stimulates the interaction of ZIP/p62 with atypical protein kinase C and targets endosomal localization: evidence for regulation of nerve growth factor-induced differentiation. Journal of Cellular Biochemistry 82:452–466CrossRefGoogle Scholar
  353. 353.
    Kwan HY, Huang Y, Yao X (2000) Store-operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism. Journal of Biological Chemistry 275:6758–6763CrossRefGoogle Scholar
  354. 354.
    Schwappacher R, Weiske J, Heining E, Ezerski V, Marom B, Henis YI, Huber O, Knaus P (2009) Novel crosstalk to BMP signalling: cGMP-dependent kinase I modulates BMP receptor and SMAD activity. EMBO Journal 28:1537–1550CrossRefGoogle Scholar
  355. 355.
    Zheng H, Worrall C, Shen H, Issad T, Seregard S, Girnita A, Girnita L (2012) Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proceedings of the National Academy of Sciences of the United States of America 109:7055–7060ADSCrossRefGoogle Scholar
  356. 356.
    Burgess A, Vigneron S, Brioudes E, Labbé JC, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proceedings of the National Academy of Sciences of the United States of America 107:12564-12569ADSCrossRefGoogle Scholar
  357. 357.
    BokochGM (2008) Pak1 UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  358. 358.
    Koh CG, Tan EJ, Manser E, Lim L (2002) The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Current Biology 12:317–321CrossRefGoogle Scholar
  359. 359.
    Ching YP, Leong VY, Wong CM, Kung HF (2003) Identification of an autoinhibitory domain of p21-activated protein kinase 5. Journal of Biological Chemistry 278:33621–33624CrossRefGoogle Scholar
  360. 360.
    Nekrasova T, Jobes ML, Ting JH, Wagner GC, Minden A (2008) Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion. Developmental Biology 322:95–108CrossRefGoogle Scholar
  361. 361.
    Baird D, Feng Q, Cerione RA (2006) Biochemical characterization of the Cool (Cloned-out-of-Library)/Pix (Pak-interactive exchange factor) proteins. Methods in Enzymology 406: 58–69CrossRefGoogle Scholar
  362. 362.
    Baldwin A, Grueneberg DA, Hellner K, Sawyer J, Grace M, Li W, Harlow E, Munger K (2010) Kinase requirements in human cells. V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. Proceedings of the National Academy of Sciences of the United States of America 107:12463–12468ADSCrossRefGoogle Scholar
  363. 363.
    Chernoff J (2007) Pak5. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  364. 364.
    Riento K, Ridley AJ (2003) ROCKs: multifunctional kinases in cell behaviour. Nature Reviews – Molecular Cell Biology 4:446-456Google Scholar
  365. 365.
    Iftinca M, Hamid J, Chen L, Varela D, Tadayonnejad R, Altier C, Turner RW, Zampon GW (2007) Regulation of T-type calcium channels by Rho-associated kinase. Nature – Neuroscience 10:854–860Google Scholar
  366. 366.
    Luykenaar KD, El-Rahman RA, Walsh MP, Welsh DG (2009) Rho-kinase-mediated suppression of KDR current in cerebral arteries requires an intact actin cytoskeleton. American Journal of Physiology – Heart and Circulatory Physiology 296:H917–H926Google Scholar
  367. 367.
    Storey NM, O’Bryan JP, Armstrong DL (2002) Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Current Biology 12:27–33CrossRefGoogle Scholar
  368. 368.
    Jones SVP (2003) Role of the small GTPase Rho in modulation of the inwardly rectifying potassium channel Kir2.1. Molecular Pharmacology 64:987–993CrossRefGoogle Scholar
  369. 369.
    Luykenaar KD, Welsh DG (2007) Activators of the PKA and PKG pathways attenuate RhoA-mediated suppression of the KDR current in cerebral arteries. American Journal of Physiology – Heart and Circulatory Physiology 292:H2654–H2663Google Scholar
  370. 370.
    Yatani A, Irie K, Otani T, Abdellatif M, Wei L (2005) RhoA GTPase regulates L-type Ca2 +  currents in cardiac myocytes. American Journal of Physiology – Heart and Circulatory Physiology 288:H650–H659Google Scholar
  371. 371.
    Staruschenko A, Nichols A, Medina JL, Camacho P, Zheleznova NN, Stockand JD (2004) Rho small GTPases activate the epithelial Na +  channel. Journal of Biological Chemistry 279:49989–49994CrossRefGoogle Scholar
  372. 372.
    Nilius B, Voets T, Prenen J, Barth H, Aktories K, Kaibuchi K, Droogmans G, Eggermont J (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. Journal of Physiology 516:67–74CrossRefGoogle Scholar
  373. 373.
    van Nieuw Amerongen GP, van Hinsbergh VWM (2009) Role of ROCK I/II in vascular branching. American Journal of Physiology – Heart and Circulatory Physiology 296: H903–H905Google Scholar
  374. 374.
    Kroll J, Epting D, Kern K, Dietz CT, Feng Y, Hammes HP, Wieland T, Augustin HG (2009) Inhibition of Rho-dependent kinases ROCK I/II activates VEGF-driven retinal neovascularization and sprouting angiogenesis. Journal of Physiology – Heart and Circulatory Physiology 296:H893–H899Google Scholar
  375. 375.
    Fischer RS, Gardel M, Ma X, Adelstein RS, Waterman CM (2009) Local cortical tension by myosin II guides 3D endothelial cell branching. Current Biology 19:260–265CrossRefGoogle Scholar
  376. 376.
    Olson MF (2006) Rock1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  377. 377.
    Olson MF (2007) Rock2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  378. 378.
    The human kinome, Science’s signal transduction knowledge environment (STKE)
  379. 379.
    Hauge C, Frödin M (2006) RSK and MSK in MAP kinase signalling. Journal of Cell Science 119:3021–3023CrossRefGoogle Scholar
  380. 380.
    Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews 75:50-83CrossRefGoogle Scholar
  381. 381.
    Hayashi S, Okada T, Igarashi N, Fujita T, Jahangeer S, Nakamura S (2002) Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. Journal of Biological Chemistry 277:33319–33324CrossRefGoogle Scholar
  382. 382.
    Liu L, Yang C, Yuan J, Chen X, Xu J, Wei Y, Yang J, Lin G, Yu L (2005) RPK118, a PX domain-containing protein, interacts with peroxiredoxin-3 through pseudo-kinase domains. Molecules and Cells 19:39–45Google Scholar
  383. 383.
    Anjum R, Blenis J (2008) The RSK family of kinases: emerging roles in cellular signalling. Nature Reviews – Molecular Cell Biology 9:747–758Google Scholar
  384. 384.
    Roux PP (2007) Rsk1; Rsk4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  385. 385.
    Julien LA, Roux PP (2007) Rsk3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  386. 386.
    Dennis PB, Thomas G (2008) S6K1; S6K2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  387. 387.
    Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO (2011) Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 108:E1204–E1213ADSCrossRefGoogle Scholar
  388. 388.
    Marklund U, Lightfoot K, Cantrell D (2003) Intracellular location and cell context-dependent function of protein kinase D. Immunity 19:491–501CrossRefGoogle Scholar
  389. 389.
    Canagarajah B, Leskow FC, Ho JY, Mischak H, Saidi LF, Kazanietz MG, Hurley JH (2004) Structural mechanism for lipid activation of the Rac-specific GAP, 2-chimaerin. Cell 119:407–418CrossRefGoogle Scholar
  390. 390.
    Raval AP, Dave KR, Prado R, Katz LM, Busto R, Sick TJ, Ginsberg MD, Mochly-Rosen D, Perez-Pinzon MA (2005) Protein kinase C delta cleavage initiates an aberrant signal transduction pathway after cardiac arrest and oxygen glucose deprivation. Journal of Cerebral Blood Flow and Metabolism 25:730–741CrossRefGoogle Scholar
  391. 391.
    Kermorgant S, Zicha D, Parker PJ (2004) PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal 23:3721–3734CrossRefGoogle Scholar
  392. 392.
    Bredt DS, Ferris CD, Snyder SH (1992) Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. Journal of Biological Chemistry 267:10976–10981Google Scholar
  393. 393.
    Hsu LS, Chen GD, Lee LS, Chi CW, Cheng JF, Chen JY (2001) Human Ca2 + /calmodulin-dependent protein kinase kinase β gene encodes multiple isoforms that display distinct kinase activity. Journal of Biological Chemistry 276:31113–31123CrossRefGoogle Scholar
  394. 394.
    Condon JC, Pezzi V, Drummond BM, Yin S, Rainey WE (2002) Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Endocrinology 143: 3651–3657CrossRefGoogle Scholar
  395. 395.
    Matsushita M, Nairn AC (1999) Inhibition of the Ca2 + /calmodulin-dependent protein kinase I cascade by cAMP-dependent protein kinase. Journal of Biological Chemistry 274: 10086–10093CrossRefGoogle Scholar
  396. 396.
    Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proceedings of the National Academy of Sciences of the United States of America 106:2342–2347ADSCrossRefGoogle Scholar
  397. 397.
    Komukai K, O-Uchi J, Morimoto S, Kawai M, Hongo K, Yoshimura M, Kurihara S (2010) Role of Ca2 + /calmodulin-dependent protein kinase II in the regulation of the cardiac L-type Ca2 +  current during endothelin-1 stimulation. American Journal of Physiology – Heart and Circulatory Physiology 298:H1902–H1907Google Scholar
  398. 398.
    Anderson KA, Noeldner PK, Reece K, Wadzinski BE, Means AR (2004) Regulation and function of the calcium/calmodulin-dependent protein kinase IV/protein serine/threonine phosphatase 2A signaling complex. Journal of Biological Chemistry 279:31708–31716CrossRefGoogle Scholar
  399. 399.
    Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY (2010) Myosin light chain kinase in microvascular endothelial barrier function. Cardiovascular Research 87:272–280CrossRefGoogle Scholar
  400. 400.
    Poperechnaya A, Varlamova O, Lin PJ, Stull JT, Bresnick AR (2000) Localization and activity of myosin light chain kinase isoforms during the cell cycle. Journal of Cell Biology 151: 697–708‘Google Scholar
  401. 401.
    Birukov KG, Csortos C, Marzilli L, Dudek S, Ma SF, Bresnick AR, Verin AD, Cotter RJ, Garcia JG (2001) Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60Src. Journal of Biological Chemistry 276:8567–8573CrossRefGoogle Scholar
  402. 402.
    Zhang WC, Peng YJ, Zhang GS, He WQ, Qiao YN, Dong YY, Gao YQ, Chen C, Zhang CH, Li W, Shen HH, Ning W, Kamm KE, Stull JT, Gao X, Zhu MS (2010) Myosin light chain kinase is necessary for tonic airway smooth muscle contraction. Journal of Biological Chemistry 285:5522–5531CrossRefGoogle Scholar
  403. 403.
    van Riper DA, McDaniel NL, Rembold CM (1997) Myosin light chain kinase phosphorylation in nitrovasodilator induced swine carotid artery relaxation. Biochimica et Biophysica Acta 1355:323–330CrossRefGoogle Scholar
  404. 404.
    Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2 +  sensitization of contraction in vascular smooth muscle. Journal of Biological Chemistry 275:21722–21729CrossRefGoogle Scholar
  405. 405.
    Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S, Kemp BE (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332:1433–1435ADSCrossRefGoogle Scholar
  406. 406.
    Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-βis an alternative upstream kinase for AMP-activated protein kinase. Cell Metabolism 2:9–19CrossRefGoogle Scholar
  407. 407.
    Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444:868–874ADSCrossRefGoogle Scholar
  408. 408.
    Zheng B, Cantley LC (2007) Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America 104:819–822ADSCrossRefGoogle Scholar
  409. 409.
    Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE, Lee SH, Shong M, Kim JM, Kim J, Chung J (2007) Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447:1017–1020ADSCrossRefGoogle Scholar
  410. 410.
    Ikematsu N, Dallas ML, Ross FA, Lewis RW, Rafferty JN, David JA, Suman R, Peers C, Hardie DG, Evans AM (2011) Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proceedings of the National Academy of Sciences of the United States of America 108:18132–18137ADSCrossRefGoogle Scholar
  411. 411.
    Bright NJ, Thornton C, Carling D (2009) The regulation and function of mammalian AMPK-related kinases. Acta Physiologica 196:15–26CrossRefGoogle Scholar
  412. 412.
    Vancauwenbergh S, Bollen M (2006) Melk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  413. 413.
    Drewes G (2006) Mark1; Mark4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  414. 414.
    Zagrska A, Deak M, Campbell DG, Banerjee S, Hirano M, Aizawa S, Prescott AR, Alessi DR (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Science Signaling 3:ra25Google Scholar
  415. 415.
    Stolz A, Ertych N, Kienitz A, Vogel C, Schneider V, Fritz B, Jacob R, Dittmar G, Weichert W, Petersen I, Bastians H (2010) The CHK–BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nature – Cell Biology 12:492–499Google Scholar
  416. 416.
    Lukas TJ (2006) Dap kinase. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  417. 417.
    de Diego I, Kuper J, Bakalova N, Kursula P, Wilmanns M (2010) Molecular basis of the death-associated protein kinase-calcium/calmodulin regulator complex. Science Signaling 3:ra6Google Scholar
  418. 418.
    Sanjo H, Kawai T, Akira S (1998) DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. Journal of Biological Chemistry 273:29066–29071CrossRefGoogle Scholar
  419. 419.
    Walsh CM (2007) Drak2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  420. 420.
    Rozengurt E, Rey O, Waldron RT (2005) Protein kinase D signaling. Journal of Biological Chemistry 280:13205–13208CrossRefGoogle Scholar
  421. 421.
    Fielitz J, Kim MS, Shelton JM, Qi X, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) Proceedings of the National Academy of Sciences of the United States of America 105:3059–3063ADSCrossRefGoogle Scholar
  422. 422.
    Eiseler T, Döppler H, Yan IK, Kitatani K, Mizuno K, Storz P (2009) Protein kinase D1 regulates cofilin mediated F-actin reorganization and cell motility via slingshot. Nature – Cell Biology 11:545–556Google Scholar
  423. 423.
    Storz P (2006) Protein kinase D2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  424. 424.
    Storz P (2006) Protein kinase D3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  425. 425.
    Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, Ocorr K, Ellisman MH, Bodmer R, Bier E, Karin M (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327:1223–1228ADSCrossRefGoogle Scholar
  426. 426.
    Alexander A, Cai SL, Kim J, Nanez A, Sahin M, Maclean KH, Inoki K, Guan KL, Shen J, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proceedings of the National Academy of Sciences of the United States of America 107:4153–4158ADSCrossRefGoogle Scholar
  427. 427.
    Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM Activation by oxidative stress. Science 330:517–521ADSCrossRefGoogle Scholar
  428. 428.
    Meek K, Dang V, Lees-Miller SP (2008) DNA-PK: the means to justify the ends? Advances in Immunology 99:33–58CrossRefGoogle Scholar
  429. 429.
    Goudelock DM, Jiang K, Pereira E, Russell B, Sanchez Y (2003) Regulatory interactions between the checkpoint kinase Chk1 and the proteins of the DNA-dependent protein kinase complex. Journal of Biological Chemistry 278:29940–29947CrossRefGoogle Scholar
  430. 430.
    Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332: 1317–1322ADSCrossRefGoogle Scholar
  431. 431.
    Parnell SC, Magenheimer BS, Maser RL, Zien CA, Frischauf AM, Calvet JP (2002) Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G proteins. Journal of Biological Chemistry 277:19566–19572CrossRefGoogle Scholar
  432. 432.
    Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Gödel M, Müller K, Herbst M, Hornung M, Doerken M, Köttgen M, Nitschke R, Igarashi P, Walz G, Kuehn EW (2010) Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nature – Cell Biology 12:1115–1122Google Scholar
  433. 433.
    Ramanathan A, Schreiber SL (2009) Direct control of mitochondrial function by mTOR. Proceedings of the National Academy of Sciences of the United States of America 106:22229–22232ADSCrossRefGoogle Scholar
  434. 434.
    Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villén J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–1326ADSCrossRefGoogle Scholar
  435. 435.
    Saci A, Cantley LC, Carpenter CL (2011) Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Molecular Cell 42:50–61CrossRefGoogle Scholar
  436. 436.
    Robitaille AM, Hall MN (2008) mTOR. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  437. 437.
    Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, Wang X, Larsson O, Selvaraj A, Liu Y, Kozma SC, Thomas G, Sonenberg N (2010) mTORC1-Mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328:1172–1176ADSCrossRefGoogle Scholar
  438. 438.
    Li S, Brown MS, Goldstein JL (2010) Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America 107: 3441–3446ADSCrossRefGoogle Scholar
  439. 439.
    Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Current Biology 16:1865–1870CrossRefGoogle Scholar
  440. 440.
    Liu L, Das S, Losert W, Parent CA (2010) mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Developmental Cell 19:845–857CrossRefGoogle Scholar
  441. 441.
    Xu J, Dang Y, Ren YR, Liu JO (2010) Cholesterol trafficking is required for mTOR activation in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 107:4764–4769ADSCrossRefGoogle Scholar
  442. 442.
    Graves PR, Roach PJ (1995) Role of COOH-terminal phosphorylation in the regulation of casein kinase Iδ. Journal of Biological Chemistry 270:21689–21694CrossRefGoogle Scholar
  443. 443.
    Nichols RJ, Traktman P (2004) Characterization of three paralogous members of the Mammalian vaccinia related kinase family. Journal of Biological Chemistry 279:7934–7946CrossRefGoogle Scholar
  444. 444.
    Lazo PA, Vega FM, Sevilla A (2005) Vrk1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  445. 445.
    Blanco S, Lazo PA (2009) Vrk2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  446. 446.
    Scheeff ED, Eswaran J, Bunkoczi G, Knapp S, Manning G (2009) Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 17:128–138CrossRefGoogle Scholar
  447. 447.
    Lazo PA (2009) Vrk3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  448. 448.
    Vartiainen MK, Sarkkinen EM, Matilainen T, Salminen M, Lappalainen P (2003) Mammals have two twinfilin isoforms whose subcellular localizations and tissue distributions are differentially regulated. Journal of Biological Chemistry 278:34347–34355CrossRefGoogle Scholar
  449. 449.
    Kitano-Takahashi M, Morita H, Kondo S, Tomizawa K, Kato R, Tanio M, Shirota Y, Takahashi H, Sugio S, Kohno T (2007) Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein. Acta crystallographica. Section F, Structural Biology and Crystallization Communications 63:602–604CrossRefGoogle Scholar
  450. 450.
    Sato S, Xu J, Okuyama S, Martinez LB, Walsh SM, Jacobsen MT, Swan RJ, Schlautman JD, Ciborowski P, Ikezu T (2008) Spatial learning impairment, enhanced CDK5/p35 activity, and downregulation of NMDA receptor expression in transgenic mice expressing tau-tubulin kinase 1. Journal of Neuroscience 28:14511–14521CrossRefGoogle Scholar
  451. 451.
    Zhang S, Edelmann L, Liu J, Crandall JE, Morabito MA (2008) Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors. Journal of Neuroscience 28:415–424CrossRefGoogle Scholar
  452. 452.
    Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Worth P, Singleton AB, Hilton DA, Holton J, Revesz T, Davis MB, Giunti P, Wood NW (2007) Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nature – Genetics 39:1434–1436Google Scholar
  453. 453.
    Bouskila M, Esoof N, Gay L, Fang EH, Deak M, Begley MJ, Cantley LC, Prescott A, Storey KG, Alessi DR (2011) TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development. Biochemical Journal 437:157–167CrossRefGoogle Scholar
  454. 454.
    Olsten MEK, Litchfield DW (2006) Casein kinase II α1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  455. 455.
    Litchfield DW (2005) Casein kinase II α2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  456. 456.
    Bibby AC, Litchfield DW (2005) Casein kinase II β. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  457. 457.
    Tian B, Yang Q, Mao Z (2009) Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nature – Cell Biology 11:211–218Google Scholar
  458. 458.
    Yu DS, Zhao R, Hsu EL, Cayer J, Ye F, Guo Y, Shyr Y, Cortez D (2010) Cyclin-dependent kinase 9–cyclin K functions in the replication stress response. EMBO Reports 11:876–882CrossRefGoogle Scholar
  459. 459.
    Li X, Zhang R, Luo D, Park SJ, Wang Q, Kim Y, Min W (2005) Tumor necrosis factor α-induced desumoylation and cytoplasmic translocation of homeodomain-interacting protein kinase 1 are critical for apoptosis signal-regulating kinase 1-JNK/p38 activation. Journal of Biological Chemistry 280:15061–15070CrossRefGoogle Scholar
  460. 460.
    Moehlenbrink J, Hofmann TG (2009) Hipk2 UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  461. 461.
    Calzado MA, de la Vega L, Möller A, Bowtell DDL, Schmitz ML (2009) An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nature – Cell Biology 11:85–91Google Scholar
  462. 462.
    Lan HC, Li HJ, Lin G, Lai PY, Chung BC (2007) Cyclic AMP stimulates SF-1-dependent CYP11A1 expression through homeodomain-interacting protein kinase 3-mediated Jun N-terminal kinase and c-Jun phosphorylation. Molecular and Cellular Biology 27:2027–2036CrossRefGoogle Scholar
  463. 463.
    Arai S, Matsushita A, Du K, Yagi K, Okazaki Y, Kurokawa R (2007) Novel homeodomain-interacting protein kinase family member, HIPK4, phosphorylates human p53 at serine 9. FEBS Letters 581:5649–5657CrossRefGoogle Scholar
  464. 464.
    Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (2006) Emerging roles of pseudokinases. Trends in Cell Biology 16:443–452CrossRefGoogle Scholar
  465. 465.
    Wickström SA, Lange A, Montanez E, Fässler R (2010) The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO Journal 29:281–291CrossRefGoogle Scholar
  466. 466.
    Radeva G, Petrocelli T, Behrend E, Leung-Hagesteijn C, Filmus J, Slingerland J, Dedhar S (1997) Overexpression of the integrin-linked kinase promotes anchorage-independent cell cycle progression. Journal of Biological Chemistry 272:13937–13944CrossRefGoogle Scholar
  467. 467.
    Xu Z, Fukuda T, Li Y, Zha X, Qin J, Wu C (2005) Molecular dissection of PINCH-1 reveals a mechanism of coupling and uncoupling of cell shape modulation and survival. Journal of Biological Chemistry 280:27631–27637CrossRefGoogle Scholar
  468. 468.
    Tu Y, Li F, Goicoechea S, Wu C (1999) The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells. Molecular and Cellular Biology 19:2425–2434Google Scholar
  469. 469.
    Montanez E, Wickström SA, Altstätter J, Chu H, Fässler R (2009) α-Parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling. EMBO Journal 28:3132–3144CrossRefGoogle Scholar
  470. 470.
    Zhang Y, Chen K, Tu Y, Velyvis A, Yang Y, Qin J, Wu C (2002) Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites. Journal of Cell Science 115:4777–4786CrossRefGoogle Scholar
  471. 471.
    Flannery S, Bowie AG (2010) The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochemical Pharmacology 80:1981–1991CrossRefGoogle Scholar
  472. 472.
    Suzuki N, Suzuki S, Saito T (2005) IRAKs: key regulatory kinases of innate immunity. Current Medicinal Chemistry. Anti-Inflammatory and Anti-Allergy Agents 4:13–20CrossRefGoogle Scholar
  473. 473.
    Brissoni B, Agostini L, Kropf M, Martinon F, Swoboda V, Lippens S, Everett H, Aebi N, Janssens S, Meylan E, Felberbaum-Corti M, Hirling H, Gruenberg J, Tschopp J, Burns K (2006) Intracellular trafficking of interleukin-1 receptor I requires Tollip. Current Biology 16:2265–2270CrossRefGoogle Scholar
  474. 474.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nature Reviews – Immunology 4:499–511Google Scholar
  475. 475.
    Smith H, Liu XY, Dai L, Goh ET, Chan AT, Xi J, Seh CC, Qureshi IA, Lescar J, Ruedl C, Gourlay R, Morton S, Hough J, McIver EG, Cohen P, Cheung PC (2011) The role of TBK1 and IKKε in the expression and activation of Pellino-1. Biochemical Journal 434:537–548CrossRefGoogle Scholar
  476. 476.
    Moynagh PN (2009) The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends in Immunology 30:33–42CrossRefGoogle Scholar
  477. 477.
    Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z (1999) IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. Journal of Biological Chemistry 274:19403–19410CrossRefGoogle Scholar
  478. 478.
    Chen BC, Wu WT, Ho FM, Lin WW (2002) Inhibition of interleukin-1β-induced NF-κB activation by calcium/calmodulin-dependent protein kinase kinase occurs through Akt activation associated with interleukin-1 receptor-associated kinase phosphorylation and uncoupling of MyD88. Journal of Biological Chemistry 277:24169–24179CrossRefGoogle Scholar
  479. 479.
    Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proceedings of the National Academy of Sciences of the United States of America 99:5567–5572ADSCrossRefGoogle Scholar
  480. 480.
    Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD (2008) Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation. Molecular and Cellular Biology 28:3538–3547CrossRefGoogle Scholar
  481. 481.
    Motshwene PG, Moncrieffe MC, Grossmann JG, Kao CC, Ayaluru M, Sandercock AM, Robinson CV, Latz E, Gay NJ (2009) An oligomeric signalling platform formed by the toll-like receptor signal transducers MyD88 and IRAK4. Journal of Biological Chemistry 284:25404–25411CrossRefGoogle Scholar
  482. 482.
    Bernard O (2008) LIMK1; LIMK2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  483. 483.
    Huang TY, DerMardirossian C, Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Current Opinion in Cell Biology 18:26–31CrossRefGoogle Scholar
  484. 484.
    Festjens N, VandenBerghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death and Differentiation 14:400–410CrossRefGoogle Scholar
  485. 485.
    Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Science Signaling 3:re4Google Scholar
  486. 486.
    Plotnikova OV, Pugacheva EN, Dunbrack RL, Golemis EA (2010) Rapid calcium-dependent activation of Aurora-A kinase. Nature – Communications 1:64Google Scholar
  487. 487.
    Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America 105:10762–10767ADSCrossRefGoogle Scholar
  488. 488.
    Plotnikova OV, Pugacheva EN, Golemis EA (2011) Aurora A kinase activity influences calcium signaling in kidney cells. Journal of Cell Biology 193:1021–1032CrossRefGoogle Scholar
  489. 489.
    Rannou Y, Prigent C (2006) Aurora B. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  490. 490.
    Nigg EA (1998) Polo-like kinases: positive regulators of cell division from start to finish. Current Opinion in Cell Biology 10:776–783CrossRefGoogle Scholar
  491. 491.
    Tsvetkov L, Xu X, Li J, Stern DF (2003) Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody. Journal of Biological Chemistry 278:8468–8475CrossRefGoogle Scholar
  492. 492.
    Johmura Y, Soung NK, Park JE, Yu LR, Zhou M, Bang JK, Kim BY, Veenstra TD, Erikson RL, Lee KS (2011) Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proceedings of the National Academy of Sciences of the United States of America 108:11446–11451ADSCrossRefGoogle Scholar
  493. 493.
    Kauselmann G, Weiler M, Wulff P, Jessberger S, Konietzko U, Scafidi J, Staubli U, Bereiter-Hahn J, Strebhardt K, Kuhl D (1999) The polo-like protein kinases Fnk and Snk associate with a Ca2 + - and integrin-binding protein and are regulated dynamically with synaptic plasticity. EMBO Journal 18:5528–5539CrossRefGoogle Scholar
  494. 494.
    Matsumoto T, Wang PY, Ma W, Sung HJ, Matoba S, Hwang PM (2009) Polo-like kinases mediate cell survival in mitochondrial dysfunction. Proceedings of the National Academy of Sciences of the United States of America 106:14542–14546ADSCrossRefGoogle Scholar
  495. 495.
    Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C, Stambrook P, Jhanwar-Uniyal M, Dai W (2001) Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. Journal of Biological Chemistry 276:43305–43312CrossRefGoogle Scholar
  496. 496.
    Ouyang B, Li W, Pan H, Meadows J, Hoffmann I, Dai W (1999) The physical association and phosphorylation of Cdc25C protein phosphatase by Prk. Oncogene 18:6029–6036CrossRefGoogle Scholar
  497. 497.
    Holtrich U, Wolf G, Yuan J, Bereiter-Hahn J, Karn T, Weiler M, Kauselmann G, Rehli M, Andreesen R, Kaufmann M, Kuhl D, Strebhardt K (2000) Adhesion induced expression of the serine/threonine kinase Fnk in human macrophages. Oncogene 19:4832–4839CrossRefGoogle Scholar
  498. 498.
    Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Developmental Cell 13:190–202CrossRefGoogle Scholar
  499. 499.
    Lee BH, Chen W, Stippec S, Cobb MH (2007) Biological cross-talk between WNK1 and the transforming growth factor-β–Smad signaling pathway. Journal of Biological Chemistry 282:17985–17996CrossRefGoogle Scholar
  500. 500.
    Lee BH, Min X, Heise CJ, Xu BE, Chen S, Shu H, Luby-Phelps K, Goldsmith EJ, Cobb MH (2004) WNK1 phosphorylates synaptotagmin 2 and modulates its membrane binding. Molecular Cell 15:741–751CrossRefGoogle Scholar
  501. 501.
    Wang WH, Giebisch G (2009) Regulation of potassium handling in the renal collecting duct. Pflügers Archiv (European Journal of Physiology) 458:157–168CrossRefGoogle Scholar
  502. 502.
    Kahle KT, Rinehart J, Giebisch G, Gamba G, Hebert SC, Lifton RP (2008) A novel protein kinase signaling pathway essential for blood pressure regulation in humans. Trends in Endocrinology and Metabolism 19:91–95CrossRefGoogle Scholar
  503. 503.
    Choate KA, Kahle KT, Wilson FH, Nelson-Williams C, Lifton RP (2003) WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl − -transporting epithelia. Proceedings of the National Academy of Sciences of the United States of America 100:663–668ADSCrossRefGoogle Scholar
  504. 504.
    Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvol P, Jeunemaitre X (2003) Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Molecular and Cellular Biology 23:9208–9221CrossRefGoogle Scholar
  505. 505.
    Xu BE, Stippec S, Lenertz L, Lee BH, Zhang W, Lee YK, Cobb MH (2004) WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. Journal of Biological Chemistry 279:7826–7831CrossRefGoogle Scholar
  506. 506.
    Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH (2005) WNK1 activates SGK1 to regulate the epithelial sodium channel. Proceedings of the National Academy of Sciences of the United States of America 102:10315–10320ADSCrossRefGoogle Scholar
  507. 507.
    Xu BE, Stippec S, Lazrak A, Huang CL, Cobb MH (2005) WNK1 activates SGK1 by a phosphatidylinositol 3-kinase-dependent and non-catalytic mechanism. Journal of Biological Chemistry 280:34218–34223CrossRefGoogle Scholar
  508. 508.
    Vitari AC, Deak M, Collins BJ, Morrice N, Prescott AR, Phelan A, Humphreys S, Alessi DR (2004) WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate. Biochemical Journal 378:257–268CrossRefGoogle Scholar
  509. 509.
    Moniz S, Matos P, Jordan P (2008) WNK2 modulates MEK1 activity through the Rho GTPase pathway. Cellular Signalling 20:1762–1768CrossRefGoogle Scholar
  510. 510.
    Kahle KT, Rinehart J, de Los Heros P, Louvi A, Meade P, Vazquez N, Hebert SC, Gamba G, Gimenez I, Lifton RP (2005) WNK3 modulates transport of Cl −  in and out of cells: implications for control of cell volume and neuronal excitability. Proceedings of the National Academy of Sciences of the United States of America 102:16783–16788ADSCrossRefGoogle Scholar
  511. 511.
    San-Cristobal P, de los Heros P, Ponce-Coria J, Moreno E, Gamba G (2008) WNK kinases, renal ion transport and hypertension. American Journal of Nephrology 28:860–870Google Scholar
  512. 512.
    Hoorn EJ, van der Lubbe N, Zietse R (2009) The renal WNK kinase pathway: a new link to hypertension. Nephrology Dialysis Transplantation 24:1074–1077CrossRefGoogle Scholar
  513. 513.
    Liapis H, Nag M, Kaji DM (1998) K-Cl cotransporter expression in the human kidney. American Journal of Physiology – Cell Physiology 275:C1432–C1437Google Scholar
  514. 514.
    Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S (2004) Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proceedings of the National Academy of Sciences of the United States of America 101:4690–4694ADSCrossRefGoogle Scholar
  515. 515.
    Kahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD, Forbush B, Aronson PS, Lifton RP (2004) WNK4 regulates apical and basolateral Cl −  flux in extrarenal epithelia. Proceedings of the National Academy of Sciences of the United States of America 101:2064–2069ADSCrossRefGoogle Scholar
  516. 516.
    Chabwine JN, Talavera K, Verbert L, Eggermont J, Vanderwinden JM, De Smedt H, Van Den Bosch L, Robberecht W, Callewaert G (2009) Differential contribution of the Na + –K + –2Cl −  cotransporter NKCC1 to chloride handling in rat embryonic dorsal root ganglion neurons and motor neurons. FASEB Journal 23:1168–1176CrossRefGoogle Scholar
  517. 517.
    Fuse T, Ohmae S, Takemoto-Kimura S, Bito H (2007) DCLK1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  518. 518.
    Ohmae S, Takemoto-Kimura S, Okamura M, Adachi-Morishima A, Nonaka M, Fuse T, Kida S, Tanji M, Furuyashiki T, Arakawa Y, Narumiya S, Okuno H, Bito H (2006) Molecular identification and characterization of a family of kinases with homology to Ca2 + /calmodulin-dependent protein kinases I/IV. Journal of Biological Chemistry 281:20427–20439CrossRefGoogle Scholar
  519. 519.
    Higgins JM (2008) Haspin. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  520. 520.
    Partanen JI, Tervonen TA, Myllynen M, Lind E, Imai M, Katajisto P, Dijkgraaf GJ, Kovanen PE, Mäkelä TP, Werb Z, Klefström J (2012) Tumor suppressor function of Liver kinase B1 (Lkb1) is linked to regulation of epithelial integrity. Proceedings of the National Academy of Sciences of the United States of America 109:E388-E397ADSCrossRefGoogle Scholar
  521. 521.
    Letwin K, Mizzen L, Motro B, Ben-David Y, Bernstein A, Pawson T (1992) A mammalian dual specificity protein kinase, Nek1, is related to the NIMA cell cycle regulator and highly expressed in meiotic germ cells. EMBO Journal 11:3521–3531Google Scholar
  522. 522.
    Fry AM (2005) Nek2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  523. 523.
    Roig J (2010) Nek6; Nek7; Nek9. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  524. 524.
    Ishitani T, Hirao T, Suzuki M, Isoda M, Ishitani S, Harigaya K, Kitagawa M, Matsumoto K, Itoh M (2010) Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nature – Cell Biology 12:278–285Google Scholar
  525. 525.
    Looyenga BD, DeHaan AM, MacKeigan JP (2008) Pink1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  526. 526.
    Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW (2011) PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proceedings of the National Academy of Sciences of the United States of America 108:9572–9577ADSCrossRefGoogle Scholar
  527. 527.
    Williams BR, Sadler AJ (2006) Pkr. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  528. 528.
    Daher A, Laraki G, Singh M, Melendez-Peña CE, Bannwarth S, Peters AH, Meurs EF, Braun RE, Patel RC, Gatignol A (2009) Molecular and Cellular Biology 29:254–265CrossRefGoogle Scholar
  529. 529.
    Elde NC, Child SJ, Geballe AP, Malik HS (2009) Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature 457:485–489ADSCrossRefGoogle Scholar
  530. 530.
    Goh KC, deVeer MJ, Williams BRG (2000) The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO Journal 19:4292–4297CrossRefGoogle Scholar
  531. 531.
    Silva AM, Whitmore M, Xu Z, Jiang Z, Li X, Williams BRG (2004) Protein kinase R (PKR) interacts with and activates mitogen-activated protein kinase kinase 6 (MKK6) in response to double-stranded RNA stimulation. Journal of Biological Chemistry 279:37670–37676CrossRefGoogle Scholar
  532. 532.
    Daub H (2005) Srpk1; Srpk2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  533. 533.
    Delhase M, Kim SY, Lee H, Naiki-Ito A, Chen Y, Ahn ER, Murata K, Kim SJ, Lautsch N, Kobayashi KS, Shirai T, Karin M, Nakanishi M (2012) TANK-binding kinase 1 (TBK1) controls cell survival through PAI-2/serpinB2 and transglutaminase 2. Proceedings of the National Academy of Sciences of the United States of America 109:E177–E186ADSCrossRefGoogle Scholar
  534. 534.
    Mody A, Weiner J, Ramanathan S (2009) Modularity of MAP kinases allows deformation of their signalling pathways. Nature – Cell Biology 11:484–491Google Scholar
  535. 535.
    Gehart H, Kumpf S, Ittner A, Ricci R (2010) MAPK signalling in cellular metabolism: stress or wellness? EMBO Reports 11:834–840CrossRefGoogle Scholar
  536. 536.
    Dhanasekaran N, Reddy EP (1998) Signaling by dual specificity kinases. Oncogene 17: 1447–1455CrossRefGoogle Scholar
  537. 537.
    Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 81:807–869Google Scholar
  538. 538.
    Takahashi K, Tanase-Nicola S, Ten Wolde PR (2010) Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proceedings of the National Academy of Sciences of the United States of America 107:2473–2478ADSCrossRefGoogle Scholar
  539. 539.
    Lehoux S, Tedgui A (2003) Cellular mechanics and gene expression in blood vessels. Journal of Biomechanics 36:631–643CrossRefGoogle Scholar
  540. 540.
    Jauch R, Cho MK, Jake S, Netter C, Schreiter K, Aicher B, Zweckstetter M, Jackle Wahl MC (2006) Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment. EMBO Journal 25:4020–4032CrossRefGoogle Scholar
  541. 541.
    Liu L, Channavajhala PL, Rao VR, Moutsatsos I, Wu L, Zhang Y, Lin LL, Qiu Y (2009) Proteomic characterization of the dynamic KSR-2 interactome, a signaling scaffold complex in MAPK pathway. Biochimica et Biophysica Acta 1794:1485–1495CrossRefGoogle Scholar
  542. 542.
    Nelson ML, Kang HS, Lee GM, Blaszczak AG, Lau DKW, McIntosh LP, Graves BJ (2010) Ras signaling requires dynamic properties of Ets1 for phosphorylation-enhanced binding to coactivator CBP. Proceedings of the National Academy of Sciences of the United States of America 107:10026–10031ADSCrossRefGoogle Scholar
  543. 543.
    Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO Journal 16:1909–1920CrossRefGoogle Scholar
  544. 544.
    Sabio G, Kennedy NJ, Cavanagh-Kyros J, Jung DY, Ko HJ, Ong H, Barrett T, Kim JK, Davis RJ (2010) Role of muscle c-Jun NH2-terminal kinase 1 in obesity-induced insulin resistance. Molecular and Cellular Biology 30:106–115CrossRefGoogle Scholar
  545. 545.
    Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB (Federation of American Societies for Experimental Biology) Journal 9:726–735Google Scholar
  546. 546.
    Qi M, Elion EA (2005) MAP kinase pathways Journal of Cell Science 118:3569–3572Google Scholar
  547. 547.
    Rauch J, Kolch W (2010) A-Raf. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  548. 548.
    Feng L, Xie X, Ding Q, Luo X, He J, Fan F, Liu W, Wang Z, Chen Y (2007) Spatial regulation of Raf kinase signaling by RKTG. Proceedings of the National Academy of Sciences of the United States of America 104:14348–14353ADSCrossRefGoogle Scholar
  549. 549.
    Rajakulendran T, Sahmi M, Lefranois M, Sicheri F, Therrien M (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545ADSCrossRefGoogle Scholar
  550. 550.
    Ren JG, Li Z, Sacks DB (2007) IQGAP1 modulates activation of B-Raf. Proceedings of the National Academy of Sciences of the United States of America 104:10465–10469ADSCrossRefGoogle Scholar
  551. 551.
    Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744CrossRefGoogle Scholar
  552. 552.
    Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435ADSCrossRefGoogle Scholar
  553. 553.
    Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430ADSCrossRefGoogle Scholar
  554. 554.
    Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439:358–362ADSCrossRefGoogle Scholar
  555. 555.
    von Kriegsheim A, Pitt A, Grindlay GJ, Kolch W, Dhillon AS (2006) Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nature – Cell Biology 8:1011–1016Google Scholar
  556. 556.
    Craig EA, Stevens MV, Vaillancourt RR, Camenisch TD (2008) MAP3Ks as central regulators of cell fate during development. Developmental Dynamics 23:3102–3114CrossRefGoogle Scholar
  557. 557.
    Dorow DS, Devereux L, Dietzsch E, De Kretser T (1993) Identification of a new family of human epithelial protein kinases containing two leucine/isoleucine-zipper domains. European Journal of Biochemistry 213:701–710CrossRefGoogle Scholar
  558. 558.
    Gallo KA, Mark MR, Scadden DT, Wang Z, Gu Q, Godowski PJ (1994) Identification and characterization of SPRK, a novel src-homology 3 domain-containing proline-rich kinase with serine/threonine kinase activity. Journal of Biological Chemistry 269:15092–15100Google Scholar
  559. 559.
    Bisson N, Moss T (2009) Mlk1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  560. 560.
    Bisson N, Moss T (2009) Mlk2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  561. 561.
    Marcora E, Gowan K, Lee JE (2003) Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proceedings of the National Academy of Sciences of the United States of America 100:9578–9583ADSCrossRefGoogle Scholar
  562. 562.
    Schachter K, Liou GY, Du Y, Gallo KA (2006) Mlk3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  563. 563.
    Vito P, Pellegrini L, Guiet C, D’Adamio L (1999) Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2 + -dependent reaction. Journal of Biological Chemistry 274:1533–1540CrossRefGoogle Scholar
  564. 564.
    Figueroa C, Tarras S, Taylor J, Vojtek AB (2003) Akt2 negatively regulates assembly of the POSH-MLK-JNK signaling complex. Journal of Biological Chemistry 278:47922–47927CrossRefGoogle Scholar
  565. 565.
    Couture JP, Blouin R (2009) DLK. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  566. 566.
    Masaki M, Ikeda A, Shiraki E, Oka S, Kawasaki T (2003) Mixed lineage kinase LZK and antioxidant protein-1 activate NF-κB synergistically. European Journal of Biochemistry 270:76–83CrossRefGoogle Scholar
  567. 567.
    Ruggieri R (2006) Mltk. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  568. 568.
    Geh EN, Jin C, Xia Y (2010) Map3k1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  569. 569.
    Ritterhoff S, Farah CM, Grabitzki J, Lochnit G, Skurat AV, Schmitz ML (2010) The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. EMBO Journal 29:3750–3761CrossRefGoogle Scholar
  570. 570.
    Miyata Y, Akashi M, Nishida E (1999) Molecular cloning and characterization of a novel member of the MAP kinase superfamily. Genes to Cells 4:299–309CrossRefGoogle Scholar
  571. 571.
    Zhou X, Izumi Y, Burg MB, Ferraris JD (2011) Rac1/osmosensing scaffold for MEKK3 contributes via phospholipase C-γ1 to activation of the osmoprotective transcription factor NFAT5. Proceedings of the National Academy of Sciences of the United States of America 108:12155–12160CrossRefGoogle Scholar
  572. 572.
    Matsuzawa A, Takeda K, Ichijo H (2010) ASK1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  573. 573.
    Yoon KW, Cho JH, Lee JK, Kang YH, Chae JS, Kim YM, Kim J, Kim EK, Kim SE, Baik JH, Naik UP, Cho SG, Choi EJ (2009) CIB1 functions as a Ca2 + -sensitive modulator of stress-induced signaling by targeting ASK1. Proceedings of the National Academy of Sciences of the United States of America 106:17389–17394ADSCrossRefGoogle Scholar
  574. 574.
    Li X, Zhang R, Luo D, Park SJ, Wang Q, Kim Y, Min W (2005) Tumor necrosis factor α-induced desumoylation and cytoplasmic translocation of homeodomain-interacting protein kinase 1 are critical for apoptosis signal-regulating kinase 1-JNK/p38 activation. Journal of Biological Chemistry 280:15061–15070CrossRefGoogle Scholar
  575. 575.
    Gan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan JL (2006) Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC-mTOR signaling pathways. Journal of Cell Biology 175:121–133CrossRefGoogle Scholar
  576. 576.
    Takizawa T, Tatematsu C, Nakanishi Y (2002) Double-stranded RNA-activated protein kinase interacts with apoptosis signal-regulating kinase 1. Implications for apoptosis signaling pathways. European Journal of Biochemistry 269:6126–6132Google Scholar
  577. 577.
    Xie D, Gore C, Zhou J, Pong RC, Zhang H, Yu L, Vessella RL, Min W, Hsieh JT (2009) DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proceedings of the National Academy of Sciences of the United States of America 106:19878–19883Google Scholar
  578. 578.
    Cockrell LM, Fu H (2011) Map3k6. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  579. 579.
    Eto N, Miyagishi M, Inagi R, Fujita T, Nangaku M (2009) Mitogen-activated protein 3 kinase 6 mediates angiogenic and tumorigenic effects via vascular endothelial growth factor expression. American Journal of Pathology 174:1553–1563CrossRefGoogle Scholar
  580. 580.
    Ninomiya-Tsuji J, Matsumoto K (2006) Tak1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  581. 581.
    Omori E, Inagaki M, Mishina Y, Matsumoto K, Ninomiya-Tsuji J (2012) Epithelial transforming growth factor β-activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America 109:3365–3370ADSCrossRefGoogle Scholar
  582. 582.
    Li S, Wang L, Dorf ME (2009) PKC phosphorylation of TRAF2 mediates IKKα/β recruitment and K63-linked polyubiquitination. Molecular Cell 33:30–42CrossRefGoogle Scholar
  583. 583.
    Fürthauer M, Lin W, Ang SL, Thisse B, Thisse C (2002) Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nature – Cell Biology 4:170–174Google Scholar
  584. 584.
    Yang X, Kovalenko D, Nadeau RJ, Harkins LK, Mitchell J, Zubanova O, Chen PY, Friesel R (2004) Sef interacts with TAK1 and mediates JNK activation and apoptosis. Journal of Biological Chemistry 279:38099–38102CrossRefGoogle Scholar
  585. 585.
    Gantke T, Sriskantharajah S, Ley SC (2011) Regulation and function of TPL-2, an IκB kinase-regulated MAP kinase kinase kinase. Cell Research 21:131–145CrossRefGoogle Scholar
  586. 586.
    Régnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M (1997) Identification and characterization of an IkappaB kinase. Cell 90:373–383CrossRefGoogle Scholar
  587. 587.
    Yasuda S, Sugiura H, Yamagata K (2009) Mek3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  588. 588.
    Asaoka Y, Nishina H (2010) Diverse physiological functions of MKK4 and MKK7 during early embryogenesis. Journal of Biochemistry 148:393–401Google Scholar
  589. 589.
    Abe JI, Yang J (2010) MEK5 UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  590. 590.
    Forcales S, Puri PL (2010) MKK6. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  591. 591.
    Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nature Reviews – Molecular Cell Biology 11:414–426Google Scholar
  592. 592.
    McKay MM, Ritt DA, Morrison DK (2009) Signaling dynamics of the KSR1 scaffold complex. Proceedings of the National Academy of Sciences of the United States of America 106:11022–11027ADSCrossRefGoogle Scholar
  593. 593.
    Nojima H, Adachi M, Matsui T, Okawa K, Tsukita S, Tsukita S (2008) IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade. Nature – Cell Biology 10:971–978Google Scholar
  594. 594.
    Vaidyanathan H, Opoku-Ansah J, Pastorino S, Renganathan H, Matter M, Ramo JW (2008) ERK MAP kinase is targeted to RSK2 by the phosphoprotein PEA-15. Proceedings of the National Academy of Sciences of the United States of America 104:19837–19842ADSCrossRefGoogle Scholar
  595. 595.
    Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, Okada M (2009) The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK–ERK pathway to late endosomes. EMBO Journal 28:477–489CrossRefGoogle Scholar
  596. 596.
    Magee J, Cygler M (2011) Interactions between kinase scaffold MP1/p14 and its endosomal anchoring protein p18. Biochemistry 50:3696–3705CrossRefGoogle Scholar
  597. 597.
    Catalanotti F, Reyes G, Jesenberger V, Galabova-Kovacs G, de Matos Simoes R, Carugo O, Baccarini M (2009) A Mek1–Mek2 heterodimer determines the strength and duration of the Erk signal. Nature – Structural and Molecular Biology 16:294–303Google Scholar
  598. 598.
    Rushworth LK, Hindley AD, O’Neill E, Kolch W (2006) Regulation and role of Raf-1/B-Raf heterodimerization. Molecular and Cellular Biology 26:2262–2272CrossRefGoogle Scholar
  599. 599.
    Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, Osborne J, McGlynn K, Stippec S, Earnest S, Chen W, Cobb MH (2008) The roles of MAPKs in disease. Cell Research 18:436–442CrossRefGoogle Scholar
  600. 600.
    Traub O, Monia BP, Dean NM, Berk BC (1997) PKC-epsilon is required for mechano-sensitive activation of ERK1/2 in endothelial cells. Journal of Biological Chemistry 272:31251–31257CrossRefGoogle Scholar
  601. 601.
    Cai H, Smola U, Wixler V, Eisenmann TI, Diaz MMT, Moscat J, Rapp U, Cooper GM (1997) Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Molecular and Cell Biology 17:732–741Google Scholar
  602. 602.
    Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Reports 7:782–786CrossRefGoogle Scholar
  603. 603.
    Emrick MA, Lee T, Starkey PJ, Mumby MC, Resing KA, Ahn NG (2006) The gatekeeper residue controls autoactivation of ERK2 via a pathway of intramolecular connectivity. Proceedings of the National Academy of Sciences of the United States of America 103:18101–18106ADSCrossRefGoogle Scholar
  604. 604.
    Chanalaris A, Lawrence KM, Stephanou A, Knight RD, Hsu SY, Hsueh AJ, Latchman DS (2003) Protective effects of the urocortin homologues stresscopin (SCP) and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury in rat neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology 35:1295–1305CrossRefGoogle Scholar
  605. 605.
    Lee SJ, Pfluger PT, Kim JY, Nogueiras R, Duran A, Pagès G, Pouysségur J, Tschöp MH, Diaz-Meco MT, Moscat J (2010) A functional role for the p62–ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Reports 11:226–232CrossRefGoogle Scholar
  606. 606.
    Meloche S (2006) Erk4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  607. 607.
    Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Reports 7:782–786CrossRefGoogle Scholar
  608. 608.
    Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, Liu YC, Karin M (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIPL turnover. Cell 124:601–613CrossRefGoogle Scholar
  609. 609.
    Liu J, Zhao Y, Eilers M, Lin A (2009) Miz1 is a signal- and pathway-specific modulator or regulator (SMOR) that suppresses TNF-α-induced JNK1 activation. Proceedings of the National Academy of Sciences of the United States of America 106:18279–18284ADSCrossRefGoogle Scholar
  610. 610.
    Haeusgen W, Herdegen T, Waetzig V (2010) Jnk2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  611. 611.
    Li C, Zhang GY (2011) Jnk3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  612. 612.
    Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40ADSCrossRefGoogle Scholar
  613. 613.
    Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E, Fornace AJ, Ashwell JD (2005) Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nature – Immunology 6:390–395Google Scholar
  614. 614.
    Rousseau S (2011) p38 α MAP kinase. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  615. 615.
    Mahlknecht U, Will J, Varin A, Hoelzer D, Herbein G (2004) Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. Journal of Immunology 173:3979–3990Google Scholar
  616. 616.
    Hou SW, Lepp A, Chen G (2010) p38γ MAP kinase. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  617. 617.
    Chen Z, Chen J, Weng T, Jin N, Liu L (2006) Identification of rat lung–prominent genes by a parallel DNA microarray hybridization. BMC Genomics 7:47CrossRefGoogle Scholar
  618. 618.
    Liao P, Wang SQ, Wang S, Zheng M, Zheng M, Zhang SJ, Cheng H, Wang Y, Xiao RP (2002) p38 Mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circulation Research 90:190–196CrossRefGoogle Scholar
  619. 619.
    Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, Saffitz J, Chien K, Xiao RP, Kass DA, Wang Y (2002) The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America 98:12283–12288ADSCrossRefGoogle Scholar
  620. 620.
    Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR (2004) p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton. American Journal of Physiology – Renal Physiology 286:F693–F701Google Scholar
  621. 621.
    Gaestel M (2006) MAPKAP kinases “MKs” two’s company, three’s a crowd. Nature Reviews – Molecular Cell Biology 7:120–130Google Scholar
  622. 622.
    Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS (2002) MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Molecular and Cellular Biology 22:2871–2881CrossRefGoogle Scholar
  623. 623.
    Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO Journal 9:2431–2438Google Scholar
  624. 624.
    Cole A, Frame S, Cohen P (2004) Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochemical Journal 377:249–255CrossRefGoogle Scholar
  625. 625.
    Vilimek D, Duronio V (2006) Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB. Biochemistry and Cell Biology 84:20–29CrossRefGoogle Scholar
  626. 626.
    Kaladchibachi SA, Doble B, Anthopoulos N, Woodgett JR, Manoukian AS (2007) Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. Journal of Circadian Rhythms 5:3CrossRefGoogle Scholar
  627. 627.
    Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X, Proud CG (2001) The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bε at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochemical Journal 355:609–615Google Scholar
  628. 628.
    Himpel S, Panzer P, Eirmbter K, Czajkowska H, Sayed M, Packman LC, Blundell T, Kentrup H, Grötzinger J, Joost HG, Becker W (2001) Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochemical Journal 359:497–505CrossRefGoogle Scholar
  629. 629.
    Becker W (2008) Dyrk1a. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  630. 630.
    Becker W, Friedman EA (2008) Dyrk1b. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  631. 631.
    Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K (2007) DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Molecular Cell 25:725–738CrossRefGoogle Scholar
  632. 632.
    Bogacheva O, Bogachev O, Menon M, Dev A, Houde E, Valoret EI, Prosser HM, Creasy CL, Pickering SJ, Grau E, Rance K, Livi GP, Karur V, Erickson-Miller CL, Wojchowski DM (2008) DYRK3 dual-specificity kinase attenuates erythropoiesis during anemia. Journal of Biological Chemistry 283:36665–36675CrossRefGoogle Scholar
  633. 633.
    Sacher F, Möller C, Bone W, Gottwald U, Fritsch M (2007) The expression of the testis-specific Dyrk4 kinase is highly restricted to step 8 spermatids but is not required for male fertility in mice. Molecular and Cellular Endocrinology 267:80–88CrossRefGoogle Scholar
  634. 634.
    Rabinow LJ, Uguen P (2005) Clk1; Clk2; Clk3; Clk4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  635. 635.
    Hanes J, von der Kammer H, Klaudiny J, Scheit KH (1994) Characterization by cDNA cloning of two new human protein kinases. Evidence by sequence comparison of a new family of mammalian protein kinases. Journal of Molecular Biology 244:665–672Google Scholar
  636. 636.
    Rudolph J, Kristjansdottir KS (2004) Myt1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  637. 637.
    Granovsky AE, Rosner MR (2008) Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor. Cell Research 18:452–457CrossRefGoogle Scholar
  638. 638.
    Klysik J, Theroux SJ, Sedivy JM, Moffit JS, Boekelheide K (2008) Signaling crossroads: the function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cell Signalling 20:1–9CrossRefGoogle Scholar
  639. 639.
    Goumon Y, Angelone T, Schoentgen F, Chasserot-Golaz S, Almas B, Fukami MM, Langley K, Welters ID, Tota B, Aunis D, Metz-Boutigue MH (2004) The hippocampal cholinergic neurostimulating peptide, the N-terminal fragment of the secreted phosphatidylethanolamine-binding protein, possesses a new biological activity on cardiac physiology. Journal of Biological Chemistry 279:13054–13064CrossRefGoogle Scholar
  640. 640.
    Zhu ST, Mc Henry KT, Lane WS, Fenteany G (2005) A chemical inhibitor reveals the role of Raf kinase inhibitor protein in cell migration. Chemistry Biology 12:981–991CrossRefGoogle Scholar
  641. 641.
    Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemée A (2007) Emerging roles of nuclear protein phosphatases. Nature Reviews – Molecular Cell Biology 8:234–244Google Scholar
  642. 642.
    Conner SH, Kular G, Peggie M, Shepherd S, Schüttelkopf AW, Cohen P, Van Aalten DM (2006) TAK1-binding protein 1 is a pseudophosphatase. Biochemical Journal 399:427–434CrossRefGoogle Scholar
  643. 643.
    Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297:1018–1023ADSCrossRefGoogle Scholar
  644. 644.
    Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nature Reviews – Molecular Cell Biology 12:469–482Google Scholar
  645. 645.
    Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiological Reviews 84:1–39CrossRefGoogle Scholar
  646. 646.
    Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R, Peti W (2010) Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nature – Structural and Molecular Biology 17:459–464Google Scholar
  647. 647.
    Johnson DF, Moorhead G, Caudwell FB, Cohen P, Chen YH, Chen MX, Cohen PT (1996) Identification of protein-phosphatase-1-binding domains on the glycogen and myofibrillar targetting subunits. European Journal of Biochemistry 239:317–325CrossRefGoogle Scholar
  648. 648.
    Shimada M, Haruta M, Niida H, Sawamoto K, Nakanishi M (2010) Protein phosphatase 1γ is responsible for dephosphorylation of histone H3 at Thr 11 after DNA damage. EMBO Reports 11:883–889CrossRefGoogle Scholar
  649. 649.
    Wang BJ, Tang W, Zhang P, Wei Q (2012) Regulation of the catalytic domain of protein phosphatase 1 by the terminal region of protein phosphatase 2B. Journal of Biochemistry 151:283–290CrossRefGoogle Scholar
  650. 650.
    de Souza RP, Rosa DV, Souza BR, Romano-Silva MA (2006) Darpp32. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  651. 651.
    Vancauwenbergh S, Beullens M, Bollen M (2007) Nipp1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  652. 652.
    Shichi D, Arimura T, Ishikawa T, Kimura A (2010) Heart-specific small subunit of myosin light chain phosphatase activates rho-associated kinase and regulates phosphorylation of myosin phosphatase target subunit 1. Journal of Biological Chemistry 285:33680–33690CrossRefGoogle Scholar
  653. 653.
    Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical Journal 353:417–439CrossRefGoogle Scholar
  654. 654.
    Chen J, Martin BL, Brautigan DL (1992) Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257:1261–1264ADSCrossRefGoogle Scholar
  655. 655.
    Xing Y, Li Z, Chen Y, Stock JB, Jeffrey PD, Shi Y (2008) Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell 133:154–163CrossRefGoogle Scholar
  656. 656.
    Hastie CJ, Carnegie GK, Morrice N, Cohen PT (2000) A novel 50 kDa protein forms complexes with protein phosphatase 4 and is located at centrosomal microtubule organizing centres. Biochemical Journal 347:845–855CrossRefGoogle Scholar
  657. 657.
    Liu E, Knutzen CA, Krauss S, Schweiger S, Chiang GG (2011) Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proceedings of the National Academy of Sciences of the United States of America 108:8680–8685ADSCrossRefGoogle Scholar
  658. 658.
    Strack S, Cribbs JT, Gomez L (2004) Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. Journal of Biological Chemistry 279:47732–47739CrossRefGoogle Scholar
  659. 659.
    Tar K, Csortos C, Czikora I, Olah G, Ma SF, Wadgaonkar R, Gergely P, Garcia JG, Verin AD (2006) Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. Journal of Cellular Biochemistry 98:931–953CrossRefGoogle Scholar
  660. 660.
    Liu Q, Caldwell-Busby J, Molkentin JD (2009) Interaction between TAK1–TAB1–TAB2 and RCAN1–calcineurin defines a signalling nodal control point. Nature – Cell Biology 11: 154–161Google Scholar
  661. 661.
    Duan L, Cobb MH (2010) Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback. Proceedings of the National Academy of Sciences of the United States of America 107:22314–22319ADSCrossRefGoogle Scholar
  662. 662.
    Brewis ND, Street AJ, Prescott AR, Cohen PT (1993) PPX, a novel protein serine/threonine phosphatase localized to centrosomes. EMBO Journal 12:987–996Google Scholar
  663. 663.
    Lee DH, Pan Y, Kanner S, Sung P, Borowiec JA, Chowdhury D (2010) A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nature – Structural and Molecular Biology 17:365–372Google Scholar
  664. 664.
    Yoon YS, Lee MW, Ryu D, Kim JH, Ma H, Seo WY, Kim YN, Kim SS, Lee CH, Hunter T, Choi CS, Montminy MR, Koo SH (2010) Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America 107:17704–17709CrossRefGoogle Scholar
  665. 665.
    Chinkers M (2001) Protein phosphatase 5 in signal transduction. Trends in Endocrinology and Metabolism 12:28–32CrossRefGoogle Scholar
  666. 666.
    Becker W, Kentrup H, Klumpp S, Schultz JE, Joost HG (1994) Molecular cloning of a protein serine/threonine phosphatase containing a putative regulatory tetratricopeptide repeat domain. Journal of Biological Chemistry 269:22586–22592Google Scholar
  667. 667.
    Bastians H, Ponstingl H (1996) The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. Journal of Cell Science 109:2865–2874Google Scholar
  668. 668.
    Huang X, Honkanen RE (1998) Molecular cloning, expression, and characterization of a novel human serine/threonine protein phosphatase, PP7, that is homologous to Drosophila retinal degeneration C gene product (rdgC). Journal of Biological Chemistry 273:1462–1468CrossRefGoogle Scholar
  669. 669.
    Wang Y, Dow EC, Liang YY, Ramakrishnan R, Liu H, Sung TL, Lin X, Rice AP (2008) Phosphatase PPM1A regulates phosphorylation of Thr-186 in the Cdk9 T-loop. Journal of Biological Chemistry 283:33578–33584CrossRefGoogle Scholar
  670. 670.
    Lu G, Wang Y (2008) Functional diversity of mammalian type 2C protein phosphatase isoforms: new tales from an old family. Clinical and Experimental Pharmacology and Physiology 35:107–112CrossRefGoogle Scholar
  671. 671.
    Henmi T, Amano K, Nagaura Y, Matsumoto K, Echigo S, Tamura S, Kobayashi T (2009) A mechanism for the suppression of interleukin-1-induced nuclear factor κB activation by protein phosphatase 2Cη-2. Biochemical Journal 423:71–78CrossRefGoogle Scholar
  672. 672.
    Voss M, Paterson J, Kelsall IR, Martn-Granados C, Hastie CJ, Peggie MW, Cohen PT (2011) Ppm1E is an in cellulo AMP-activated protein kinase phosphatase. Cellular Signalling 23:114–124CrossRefGoogle Scholar
  673. 673.
    Ishida A, Tada Y, Nimura T, Sueyoshi N, Katoh T, Takeuchi M, Fujisawa H, Taniguchi T, Kameshita I (2005) Identification of major Ca2 + /calmodulin-dependent protein kinase phosphatase-binding proteins in brain: biochemical analysis of the interaction. Archives of Biochemistry and Biophysics 435:134–146CrossRefGoogle Scholar
  674. 674.
    Lee-Hoeflich ST, Pham TQ, Dowbenko D, Munroe X, Lee J, Li L, Zhou W, Haverty PM, Pujara K, Stinson J, Chan SM, Eastham-Anderson J, Pandita A, Seshagiri S, Hoeflich KP, Turashvili G, Gelmon KA, Aparicio SA, DP Davis, Sliwkowski MX, Stern HM (2011) PPM1H is a p27 phosphatase implicated in trastuzumab resistance. Cancer Discovery 1: 326–337CrossRefGoogle Scholar
  675. 675.
    Sugiura T, Noguchi Y (2009) Substrate-dependent metal preference of PPM1H, a cancer-associated protein phosphatase 2C: comparison with other family members. Biometals 22:469–477CrossRefGoogle Scholar
  676. 676.
    Lu G, Sun H, Korge P, Koehler CM, Weiss JN, Wang Y (2009) Functional Characterization of a Mitochondrial Ser/Thr Protein Phosphatase in Cell Death Regulation ( Chap. 14, p.255-273). In Allison WS, Murphy AN (Eds) Methods in Enzymology, Vol. 457 “Mitochondrial Function, Part B: Mitochondrial Protein Kinases, Protein Phosphatases and Mitochondrial Diseases”, Elsevier, Amsterdam
  677. 677.
    Shimizu K, Okada M, Nagai K, Fukada Y (2003) Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. Journal of Biological Chemistry 278:14920–14925CrossRefGoogle Scholar
  678. 678.
    Kato J, Kato M (2010) Crystallization and preliminary crystallographic studies of the catalytic subunits of human pyruvate dehydrogenase phosphatase isoforms 1 and 2. Acta Crystallographica, Section F, Structural Biology and Crystallization Communications 66:342–345CrossRefGoogle Scholar
  679. 679.
    Caruso M, Maitan MA, Bifulco G, Miele C, Vigliotta G, Oriente F, Formisano P, Beguinot F (2001) Activation and mitochondrial translocation of protein kinase Cdelta are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells. Journal of Biological Chemistry 276:45088–45097CrossRefGoogle Scholar
  680. 680.
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews – Molecular Cell Biology 7:833–846Google Scholar
  681. 681.
    Reue K, Brindley DN (2008) Thematic Review Series: glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. Journal of Lipid Research 49:2493–2503Google Scholar
  682. 682.
    Östman A, Frijhoff J, Sandin A, Böhmer FD (2011) Regulation of protein tyrosine phosphatases by reversible oxidation. Journal of Biochemistry 150:345–356CrossRefGoogle Scholar
  683. 683.
    Gandhi TK, Chandran S, Peri S, Saravana R, Amanchy R, Prasad TS, Pandey A (2005) A bioinformatics analysis of protein tyrosine phosphatases in humans. DNA Research 12: 79–89CrossRefGoogle Scholar
  684. 684.
    Chernoff J (2008) Ptp1b. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  685. 685.
    Lund IK, Hansen JA, Andersen HS, Møller NP, Billestrup N (2005) Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. Journal of Molecular Endocrinology 34:339–351CrossRefGoogle Scholar
  686. 686.
    Aoki N, Matsuda T (2000) A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. Journal of Biological Chemistry 275:39718–39726CrossRefGoogle Scholar
  687. 687.
    Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H (2008) Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Molecular and Cellular Proteomics 7:1763–1777CrossRefGoogle Scholar
  688. 688.
    Ravichandran LV, Chen H, Li Y, Quon MJ (2001) Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Molecular Endocrinology 15:1768–1780CrossRefGoogle Scholar
  689. 689.
    Tiganis T, Bennett AM, Ravichandran KS, Tonks NK (1998) Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Molecular and Cellular Biology 18:1622–1634Google Scholar
  690. 690.
    Tiganis T, Kemp BE, Tonks NK (1999) The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. Journal of Biological Chemistry 274:27768–27775CrossRefGoogle Scholar
  691. 691.
    Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, Matsuda T (2002) The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochemical and Biophysical Research Communications 297:811–817CrossRefGoogle Scholar
  692. 692.
    Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK, Tiganis T (2003) Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Molecular and Cellular Biology 23:2096–2108CrossRefGoogle Scholar
  693. 693.
    Arpin M, Algrain M, Louvard D (1994) Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Current Opinion in Cell Biology 6:136–141CrossRefGoogle Scholar
  694. 694.
    Zhang SH, Kobayashi R, Graves PR, Piwnica-Worms H, Tonks NK (1997) Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3β protein. Journal of Biological Chemistry 272:27281–27287CrossRefGoogle Scholar
  695. 695.
    Zheng Y, Schlondorff J, Blobel CP (2002) Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. Journal of Biological Chemistry 277:42463–42470CrossRefGoogle Scholar
  696. 696.
    Jespersen T, Gavillet B, van Bemmelen MX, Cordonier S, Thomas MA, Staub O, Abriel H (2006) Cardiac sodium channel NaV1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochemical and Biophysical Research Communications 348: 1455–1462CrossRefGoogle Scholar
  697. 697.
    Sozio MS, Mathis MA, Young JA, Wälchli S, Pitcher LA, Wrage PC, Bartk B, Campbell A, Watts JD, Aebersold R, Hooft van Huijsduijnen R, van Oers NS (2004) PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor ζ subunit. Journal of Biological Chemistry 279:7760–7769CrossRefGoogle Scholar
  698. 698.
    Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T (2000) The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor δ2 and ε subunits. Journal of Biological Chemistry 275:16167–16173CrossRefGoogle Scholar
  699. 699.
    Lombroso PJ, Murdoch G, Lerner M (1991) Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum. Proceedings of the National Academy of Sciences of the United States of America 88:7242–7246ADSCrossRefGoogle Scholar
  700. 700.
    Fitzpatrick CJ, Goebel-Goody SM, Liberzon I, Lombroso PJ (2010) STEP. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  701. 701.
    Nguyen TH, Liu J, Lombroso PJ (2002) Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 420. Journal of Biological Chemistry 277:24274–24279CrossRefGoogle Scholar
  702. 702.
    Pulido R, Zñiga A, Ullrich A (1998) PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO Journal 17:7337–7350CrossRefGoogle Scholar
  703. 703.
    Keilhack H, Müller M, Böhmer SA, Frank C, Weidner KM, Birchmeier W, Ligensa T, Berndt A, Kosmehl H, Günther B, Müller T, Birchmeier C, Böhmer FD (2001) Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. Journal of Cell Biology 152:325–334CrossRefGoogle Scholar
  704. 704.
    Tenev T, Keilhack H, Tomic S, Stoyanov B, Stein-Gerlach M, Lammers R, Krivtsov AV, Ullrich A, Böhmer FD (1997) Both SH2 domains are involved in interaction of SHP-1 with the epidermal growth factor receptor but cannot confer receptor-directed activity to SHP-1/SHP-2 chimera. Journal of Biological Chemistry 272:5966–5973CrossRefGoogle Scholar
  705. 705.
    Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA (1998) SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Molecular and Cellular Biology 18:2089–2099Google Scholar
  706. 706.
    Klingmüller U, Lorenz U, Cantley LC, Neel BG, Lodish HF (1995) Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80:729–738CrossRefGoogle Scholar
  707. 707.
    Yoshida K, Kufe D (2001) Negative regulation of the SHPTP1 protein tyrosine phosphatase by protein kinase Cδ in response to DNA damage. Molecular Pharmacology 60:1431–1438Google Scholar
  708. 708.
    Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, Phillips JH (1997) LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. Immunity 7:283–290CrossRefGoogle Scholar
  709. 709.
    Wang PY, Liu P, Weng J, Sontag E, Anderson RG (2003) A cholesterol-regulated PP2A/HePTP complex with dual specificity ERK1/2 phosphatase activity. EMBO Journal 22:2658–2667CrossRefGoogle Scholar
  710. 710.
    Pettiford SM, Herbst R (2003) The protein tyrosine phosphatase HePTP regulates nuclear translocation of ERK2 and can modulate megakaryocytic differentiation of K562 cells. Leukemia 17:366–378CrossRefGoogle Scholar
  711. 711.
    Kruger JM, Fukushima T, Cherepanov V, Borregaard N, Loeve C, Shek C, Sharma K, Tanswell AK, Chow CW, Downey GP (2002) Protein-tyrosine phosphatase MEG2 is expressed by human neutrophils. Localization to the phagosome and activation by polyphosphoinositides. Journal of Biological Chemistry 277:2620–2628Google Scholar
  712. 712.
    Cho CY, Koo SH, Wang Y, Callaway S, Hedrick S, Mak PA, Orth AP, Peters EC, Saez E, Montminy M, Schultz PG, Chanda SK (2006) Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metabolism 3:367–378CrossRefGoogle Scholar
  713. 713.
    Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J (1998) Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. Journal of Biological Chemistry 273:15906–15912CrossRefGoogle Scholar
  714. 714.
    Lehmann U, Schmitz J, Weissenbach M, Sobota RM, Hortner M, Friederichs K, Behrmann I, Tsiaris W, Sasaki A, Schneider-Mergener J, Yoshimura A, Neel BG, Heinrich PC, Schaper F (2003) SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. Journal of Biological Chemistry 78:661–671Google Scholar
  715. 715.
    Yin T, Shen R, Feng GS, Yang YC (1997) Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. Journal of Biological Chemistry 272:1032–1037CrossRefGoogle Scholar
  716. 716.
    Yu CL, Jin YJ, Burakoff SJ (2000) Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation. Journal of Biological Chemistry 275:599–604CrossRefGoogle Scholar
  717. 717.
    Boudot C, Kadri Z, Petitfrère E, Lambert E, Chrétien S, Mayeux P, Haye B, Billat C (2002) Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-γ2 activation in erythropoietin-stimulated cells. Cell Signalling 14:869–878CrossRefGoogle Scholar
  718. 718.
    Nakamura T, Gulick J, Colbert MC, Robbins J (2009) Protein tyrosine phosphatase activity in the neural crest is essential for normal heart and skull development. Proceedings of the National Academy of Sciences of the United States of America 106:11270–11275ADSCrossRefGoogle Scholar
  719. 719.
    Shen Y, Schneider G, Cloutier JF, Veillette A, Schaller MD (1998) Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. Journal of Biological Chemistry 273:6474–6481CrossRefGoogle Scholar
  720. 720.
    Veillette A, Rhee I, Souza CM, Davidson D (2009) PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders. Immunological Reviews 228:312–324CrossRefGoogle Scholar
  721. 721.
    Gross C, Heumann R, Erdmann KS (2001) The protein kinase C-related kinase PRK2 interacts with the protein tyrosine phosphatase PTP-BL via a novel PDZ domain binding motif. FEBS Letters 496:101–104CrossRefGoogle Scholar
  722. 722.
    Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y (2003) The protein tyrosine phosphatase Pez is a major phosphatase of adherens junctions and dephosphorylates beta-catenin. Molecular Biology of the Cell 14:2520–2529CrossRefGoogle Scholar
  723. 723.
    Spencer S, Dowbenko D, Cheng J, Li W, Brush J, Utzig S, Simanis V, Lasky LA (2009) PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase. Journal of Cell Biology 138:845–860CrossRefGoogle Scholar
  724. 724.
    Ohsugi M, Kuramochi S, Matsuda S, Yamamoto T (1997) Molecular cloning and characterization of a novel cytoplasmic protein-tyrosine phosphatase that is specifically expressed in spermatocytes. Journal of Biological Chemistry 272:33092–33099CrossRefGoogle Scholar
  725. 725.
    Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento EV, Gottesman M, Garbi C, Feliciello A (2008) Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. Journal of Biological Chemistry 283: 10919–10929CrossRefGoogle Scholar
  726. 726.
    Castiglioni S, Maier JA, Mariotti M (2007) The tyrosine phosphatase HD-PTP: A novel player in endothelial migration. Biochemical and Biophysical Research Communications 364: 534–539CrossRefGoogle Scholar
  727. 727.
    Mariotti M, Castiglioni S, Garcia-Manteiga JM, Beguinot L, Maier JA (2009) HD-PTP inhibits endothelial migration through its interaction with Src. International Journal of Biochemistry and Cell Biology 41:687–693CrossRefGoogle Scholar
  728. 728.
    Takahashi Y, Morales FC, Kreimann EL, Georgescu MM (2006) PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO Journal 25:910–920CrossRefGoogle Scholar
  729. 729.
    Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128:157–170CrossRefGoogle Scholar
  730. 730.
    Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG (2002) Direct identification of PTEN phosphorylation sites. FEBS Letters 528:145–153CrossRefGoogle Scholar
  731. 731.
    Chen H, Duncan IC, Bozorgchami H, Lo SH (2002) Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proceedings of the National Academy of Sciences of the United States of America 99:733–738ADSGoogle Scholar
  732. 732.
    Eto M, Kirkbride J, Elliott E, Lo SH, Brautigan DL (2007) Association of the tensin N-terminal protein-tyrosine phosphatase domain with the α isoform of protein phosphatase-1 in focal adhesions. Journal of Biological Chemistry 282:17806–17815CrossRefGoogle Scholar
  733. 733.
    Hafizi S, Ibraimi F, Dahlbäck B (2005) C1-TEN is a negative regulator of the Akt/PKB signal transduction pathway and inhibits cell survival, proliferation, and migration. FASEB Journal 19:971–973Google Scholar
  734. 734.
    Tapparel C, Reymond A, Girardet C, Guillou L, Lyle R, Lamon C, Hutter P, Antonarakis SE (2003) The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323:189–199CrossRefGoogle Scholar
  735. 735.
    Liu Y, Shepherd EG, Nelin LD (2007) MAPK phosphatases regulating the immune response. Nature Reviews – Immunology 7:202–212Google Scholar
  736. 736.
    Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochemical Journal 418:475–489Google Scholar
  737. 737.
    Bayón Y, Alonso A (2010) Atypical DUSPs: 19 phosphatases in search of a role ( Chap. 9). In Lazo PA (Ed.) Emerging Signaling Pathways in Tumor Biology. Transworld Research Network, Kerala, IndiaGoogle Scholar
  738. 738.
    Dickinson RJ, Keyse SM (2006) Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science 119:4607–4615CrossRefGoogle Scholar
  739. 739.
    Keyse SM (2008) Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Reviews 27:253–261CrossRefGoogle Scholar
  740. 740.
    Jeffrey KL, Camps M, Rommel C, Mackay CR (2007) Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nature Reviews – Drug Discovery 6:391–403Google Scholar
  741. 741.
    Lang R, Hammer M, Mages J (2006) DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. Journal of Immunology 177: 7497–7504Google Scholar
  742. 742.
    Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, Flavell RA (2006) Dynamic regulation of pro-and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proceedings of the National Academy of Sciences of the United States of America 103:2274–2279ADSCrossRefGoogle Scholar
  743. 743.
    Chun CZ, Kaur S, Samant GV, Wang L, Pramanik K, Garnaas MK, Li K, Field L, Mukhopadhyay D, Ramchandran R (2009) Snrk-1 is involved in multiple steps of angioblast development and acts via notch signaling pathway in artery-vein specification in vertebrates. Blood 113:983–984Google Scholar
  744. 744.
    Pramanik K, Chun CZ, Garnaas MK, Samant GV, Li K, Horswill MA, North PE, Ramchandran R (2009) Dusp-5 and Snrk-1 coordinately function during vascular development and disease. Blood 113:1184–1191CrossRefGoogle Scholar
  745. 745.
    Molina G, Vogt A, Bakan A, Dai W, Queiroz de Oliveira P, Znosko W, Smithgall TE, Bahar I, Lazo JS, Day BW, Tsang M (2009) Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nature – Chemical Biology 5:680–687Google Scholar
  746. 746.
    Levy-Nissenbaum O, Sagi-Assif O, Witz IP (2004) Characterization of the dual-specificity phosphatase PYST2 and its transcripts. Genes, Chromosomes and Cancer 39:37–47CrossRefGoogle Scholar
  747. 747.
    Pulido R, Muda M (2010) MKP-X. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  748. 748.
    Martell KJ, Seasholtz AF, Kwak SP, Clemens KK, Dixon JE (1995) hVH-5: a protein tyrosine phosphatase abundant in brain that inactivates mitogen-activated protein kinase. Journal of Neurochemistry 65:1823–1833CrossRefGoogle Scholar
  749. 749.
    Bernabeu R, Di Scala G, Zwiller J (2000) Odor regulates the expression of the mitogen-activated protein kinase phosphatase gene hVH-5 in bilateral entorhinal cortex-lesioned rats. Brain Research – Molecular Brain Research 5:113–120Google Scholar
  750. 750.
    Pulido R, Muda M (2010) MKP-4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  751. 751.
    Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, Davis RJ, Greenberg PD, Flavell RA, Dong C (2004) Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430:793–797ADSCrossRefGoogle Scholar
  752. 752.
    Wolters NM, MacKeigan JP (2007) Mk-styx. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  753. 753.
    Kligys K, Claiborne JN, DeBiase PJ, Hopkinson SB, Wu Y, Mizuno K, Jones JC (2007) The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. Journal of Biological Chemistry 282:32520–32528CrossRefGoogle Scholar
  754. 754.
    Clague MJ, Lorenzo O (2005) The myotubularin family of lipid phosphatases. Traffic 6: 1063–1069CrossRefGoogle Scholar
  755. 755.
    Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Molecular Biology of the Cell 19:3334–3346CrossRefGoogle Scholar
  756. 756.
    Wishart MJ (2007) Styx. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  757. 757.
    Xiao J, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE (2011) Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proceedings of the National Academy of Sciences of the United States of America 108:11860–11865CrossRefGoogle Scholar
  758. 758.
    Gross AW, Dawson JP, Muda M (2011) Yvh1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  759. 759.
    Ramponi G, Stefani M (1997) Structure and function of the low Mr phosphotyrosine protein phosphatases. Biochimica et Biophysica Acta 1341:137–156CrossRefGoogle Scholar
  760. 760.
    Chiarugi P, Cirri P, Raugei G, Manao G, Taddei L, Ramponi G (1996) Low M(r) phosphotyrosine protein phosphatase interacts with the PDGF receptor directly via its catalytic site. Biochemical and Biophysical Research Communications 219:21–25CrossRefGoogle Scholar
  761. 761.
    Shimizu H, Toyama O, Shiota M, Kim-Mitsuyama S, Miyazaki H (2005) Protein tyrosine phosphatase LMW-PTP exhibits distinct roles between vascular endothelial and smooth muscle cells. Journal of Receptors and Signal Transduction 25:19–33CrossRefGoogle Scholar
  762. 762.
    Nilsson I, Hoffmann I (2000) Cell cycle regulation by the Cdc25 phosphatase family. Progress in Cell Cycle Research 4:107–114CrossRefGoogle Scholar
  763. 763.
    Aressy B, Ducommun B (2008) Cell cycle control by the CDC25 phosphatases. Anti-Cancer Agents in Medicinal Chemistry 8:818–824CrossRefGoogle Scholar
  764. 764.
    Potapova TA, Daum JR, Byrd KS, Gorbsky GJ (2009) Fine tuning the cell cycle: activation of the Cdk1 inhibitory phosphorylation pathway during mitotic exit. Molecular Biology of the Cell 20:1737–1748CrossRefGoogle Scholar
  765. 765.
    Kiyokawa H, Ray D (2008) In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets. Anti-Cancer Agents in Medicinal Chemistry 8:832–836CrossRefGoogle Scholar
  766. 766.
    Fernandez-Vidal A, Mazars A, Manenti S (2008) CDC25A: a rebel within the CDC25 phosphatases family? Anti-Cancer Agents in Medicinal Chemistry 8:825–831CrossRefGoogle Scholar
  767. 767.
    Timofeev O, Cizmecioglu O, Hu E, Orlik T, Hoffmann I (2009) Human Cdc25A phosphatase has a non-redundant function in G2 phase by activating Cyclin A-dependent kinases. FEBS Letters 583:841–847CrossRefGoogle Scholar
  768. 768.
    Zhang X, Neganova I, Przyborski S, Yang C, Cooke M, Atkinson SP, Anyfantis G, Fenyk S, Keith WN, Hoare SF, Hughes O, Strachan T, Stojkovic M, Hinds PW, Armstrong L, Lako M (2009) A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. Journal of Cell Biology 184:67–82CrossRefGoogle Scholar
  769. 769.
    Lobjois V, Jullien D, Bouché JP, Ducommun B (2009) The polo-like kinase 1 regulates CDC25B-dependent mitosis entry. Biochimica et Biophysica Acta 793:462–468CrossRefGoogle Scholar
  770. 770.
    Telles E, Hosing AS, Kundu ST, Venkatraman P, Dalal SN (2009) A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Experimental Cell Research 315:1448–1457CrossRefGoogle Scholar
  771. 771.
    Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X (2002) Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129: 3033–3044Google Scholar
  772. 772.
    Almo SC, Bonanno JB, Saunder JM, Emtage S, Dilorenzo TP, Malashkevich V, Wasserman SR, Swaminathan S, Eswaramoorthy S, Agarwal R, Kumaran D, Madegowda M, Ragumani S, Patskovsky Y, Alvarado J, Ramagopal UA, Faber-Barata J, Chance MR, Sali A, Fiser A, Zhang ZY, Lawrence DS, Burley SK (2007) Structural genomics of protein phosphatases. Journal of Structural and Functional Genomics 8:121–140CrossRefGoogle Scholar
  773. 773.
    Tuma PL, Collins CA (1995) Dynamin forms polymeric complexes in the presence of lipid vesicles. Characterization of chemically cross-linked dynamin molecules. Journal of Biological Chemistry 270:26707–26714Google Scholar
  774. 774.
    Sirajuddin M, Farkasovsky M, Zent E, Wittinghofer A (2009) GTP-induced conformational changes in septins and implications for function. Proceedings of the National Academy of Sciences of the United States of America 106:16592–16597CrossRefGoogle Scholar
  775. 775.
    Gasper R, Meyer S, Gotthardt K, Sirajuddin M, Wittinghofer A (2009) It takes two to tango: regulation of G proteins by dimerization. Nature Reviews – Molecular Cell Biology 10: 423–429Google Scholar
  776. 776.
    Noguchi S, Toyoshima K, Yamamoto S, Miyazaki T, Otaka M, Watanabe S, Imai K, Senoo H, Kobayashi R, Jikei M, Kawata Y, Kubota H, Itoh H (2011) Cytosolic chaperonin CCT possesses GTPase activity. American Journal of Molecular Biology 1:123–130CrossRefGoogle Scholar
  777. 777.
  778. 778.
    Hildebrandt JD (1997) Role of subunit diversity in signaling by heterotrimeric G proteins. Biochemical Pharmacology 54:325–339CrossRefGoogle Scholar
  779. 779.
    Hendriks-Balk MC, Peters SLM, Michel MC, Alewijnse AE (2008) Regulation of G protein-coupled receptor signalling: Focus on the cardiovascular system and regulator of G protein signalling proteins. European Journal of Pharmacology 585:278–291CrossRefGoogle Scholar
  780. 780.
    Digby GJ, Lober RM, Sethi PR, Lambert NA (2006) Some G protein heterotrimers physically dissociate in living cells. Proceedings of the National Academy of Sciences of the United States of America 103:17789–17794ADSCrossRefGoogle Scholar
  781. 781.
    Berlot C (2004) G protein α s. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  782. 782.
    Jiang P, Enomoto A, Jijiwa M, Kato T, Hasegawa T, Ishida M, Sato T, Asai N, Murakumo Y, Takahashi M (2008) An actin-binding protein Girdin regulates the motility of breast cancer cells. Cancer Research 68:1310–1318CrossRefGoogle Scholar
  783. 783.
    Garcia-Marcos M, Kietrsunthorn PS, Pavlova Y, Adia MA, Ghosh P, Farquhar MG (2012) Functional characterization of the guanine nucleotide exchange factor (GEF) motif of GIV protein reveals a threshold effect in signaling. Proceedings of the National Academy of Sciences of the United States of America 109:1961–1966ADSCrossRefGoogle Scholar
  784. 784.
    Ghosh P, Beas AO, Bornheimer SJ, Garcia-Marcos M, Forry EP, Johannson C, Ear J, Jung BH, Cabrera B, Carethers JM, Farquhar MG (2010) A Gαi-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate. Molecular Biology of the Cell 21:2338–2354CrossRefGoogle Scholar
  785. 785.
    Bajpayee NS, Jiang M (2010) G protein α i1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  786. 786.
    Kasahara K, Ui M (2011) G protein α o UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  787. 787.
    Tang G, Wang Y, Park S, Bajpayee NS, Vi D, Nagaoka Y, Birnbaumer L, Jiang M (2012) Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic β cells. Proceedings of the National Academy of Sciences of the United States of America 109:2636–2641ADSCrossRefGoogle Scholar
  788. 788.
    Kimple M, Manning D (2009) G protein α z. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  789. 789.
    Wettschureck N (2009) G protein α q. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  790. 790.
    Mizuno N, Itoh H (2009) Functions and regulatory mechanisms of Gq-signaling pathways. Neurosignals 17:42–54CrossRefGoogle Scholar
  791. 791.
    Kurrasch DM, Huang J, Wilkie TM (2004) G protein-α11. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  792. 792.
    Anger T, Zhang W, Mende U (2004) Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo. Journal of Biological Chemistry 279:3906–3915CrossRefGoogle Scholar
  793. 793.
    Booden MA, Siderovski DP, Der CJ (2002) Leukemia-associated Rho guanine nucleotide exchange factor promotes Gαq-coupled activation of RhoA. Molecular and Cellular Biology 22:4053–4061CrossRefGoogle Scholar
  794. 794.
    Oligny-Longpré G, Corbani M, Zhou J, Hogue M, Guillon G, Bouvier M (2012) Engagement of β-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation. Proceedings of the National Academy of Sciences of the United States of America 109:E1028–E1037ADSCrossRefGoogle Scholar
  795. 795.
    Zimmerman B, Beautrait A, Aguila B, Charles R, Escher E, Claing A, Bouvier M, Laporte SA (2012) Differential β-arrestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. Science Signaling 5:ra33Google Scholar
  796. 796.
    Zhang W, Anger T, Su J, Hao J, Xu X, Zhu M, Gach A, Cui L, Liao R, Mende U (2006) Selective loss of fine tuning of Gq/11 signaling by RGS2 protein exacerbates cardiomyocyte hypertrophy. Journal of Biological Chemistry 281:5811–5820CrossRefGoogle Scholar
  797. 797.
    Yan Y, Chi PP, Bourne HR (1997) RGS4 inhibits Gq-mediated activation of mitogen-activated protein kinase and phosphoinositide synthesis. Journal of Biological Chemistry 272:11924–11927CrossRefGoogle Scholar
  798. 798.
    Zeng H, Zhao D, Yang S, Datta K, Mukhopadhyay D (2003) Heterotrimeric Gαq/Gα11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. Journal of Biological Chemistry 278:20738–20745CrossRefGoogle Scholar
  799. 799.
    Huang J, Wilkie TM (2006) G protein α 15. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  800. 800.
    Hajicek N, Kozasa T (2008) G protein-α 13. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  801. 801.
    Kurose H (2003) Gα12 and Gα13 as key regulatory mediator in signal transduction. Life Sciences 74:155–161CrossRefGoogle Scholar
  802. 802.
    Siehler S (2009) Regulation of RhoGEF proteins by G12 ∕ 13-coupled receptors. British Journal of Pharmacology 158:41–49CrossRefGoogle Scholar
  803. 803.
    Lee WH, Lee CH, Moon A, Dhanasekaran DN, Kim SK (2010) G protein α 12. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  804. 804.
    Kleuss C (2007) G protein-γ 8. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  805. 805.
    Pumiglia KM, LeVine H, Haske T, Habib T, Jove R, Decker SJ (1995) A direct interaction between G-proteinβγsubunits and the Raf-1 protein kinase. Journal of Biological Chemistry 270:14251–14254CrossRefGoogle Scholar
  806. 806.
    Wedegaertner PB, Wilson PT, Bourne HR (1995) Lipid modifications of trimeric G proteins. Journal of Biological Chemistry 270:503–506CrossRefGoogle Scholar
  807. 807.
    Yan K, Kalyanaraman V, Gautam N (1996) Differential ability to form the G protein βγ complex among members of the β and γ subunit families. Journal of Biological Chemistry 271:7141–7146CrossRefGoogle Scholar
  808. 808.
    Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO Journal 27:3092–3103Google Scholar
  809. 809.
    Hippe HJ, Luedde M, Lutz S, Koehler H, Eschenhagen T, Frey N, Katus HA, Wieland T, Niroomand F (2007) Regulation of cardiac cAMP synthesis and contractility by nucleoside diphosphate kinase B/G protein βγ dimer complexes. Circulation Research 100:1191–1199CrossRefGoogle Scholar
  810. 810.
    Hippe HJ, Wolf NM, Abu-Taha I, Mehringer R, Just S, Lutz S, Niroomand F, Postel EH, Katus HA, Rottbauer W, Wieland T (2009) The interaction of nucleoside diphosphate kinase B with Gβγ dimers controls heterotrimeric G protein function. Proceedings of the National Academy of Sciences of the United States of America 106:16269–16274ADSCrossRefGoogle Scholar
  811. 811.
    Siderovski DP, Willard FS (2005) The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. International Journal of Biological Sciences 1:51–66CrossRefGoogle Scholar
  812. 812.
    Popov SG, Krishna UM, Falck JR, Wilkie TM (2000) Ca2+/Calmodulin reverses phosphatidylinositol-3,4,5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity. Journal of Biological Chemistry 275: 18962–18968CrossRefGoogle Scholar
  813. 813.
    Cho H, Kehrl JH (2009) Rgs1; Rgs3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  814. 814.
    Ocal O, Wilkie TM (2010) Rgs8. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  815. 815.
    Shi CS, Lee SB, Sinnarajah S, Dessauer CW, Rhee SG, Kehrl JH (2001) Regulator of G-protein signaling 3 (RGS3) inhibits Gbeta1gamma2-induced inositol phosphate production, mitogen-activated protein kinase activation, and Akt activation. Journal of Biological Chemistry 276:24293–24300CrossRefGoogle Scholar
  816. 816.
    Mittmann C, Schuler C, Chung CH, Hoppner G, Nose M, Kehrl JH, Wieland T (2001) Evidence for a short form of RGS3 preferentially expressed in the human heart. Naunyn Schmiedebergs Archives of Pharmacology 63:456–463Google Scholar
  817. 817.
    Doupnik CA, Xu T, Shinaman JM (2001) Profile of RGS expression in single rat atrial myocytes. Biochimica et Biophysica Acta 1522:97–107CrossRefGoogle Scholar
  818. 818.
    Sabri A, Pak E, Alcott SA, Wilson BA, Steinberg SF (2000) Coupling function of endogenous α1- and β-adrenergic receptors in mouse cardiomyocytes. Circulation Research 86:1047–1053CrossRefGoogle Scholar
  819. 819.
    Yasutake M, Haworth RS, King A, Avkiran M (1996) Thrombin activates the sarcolemmal Na+-H+ exchanger. Evidence for a receptor-mediated mechanism involving protein kinase C. Circulation Research 79:705–715Google Scholar
  820. 820.
    Tall GG, Krumins AM, Gilman AG (2003) Mammalian Ric-8A (synembryn) is a heterotrimeric Gα protein guanine nucleotide exchange factor. Journal of Biological Chemistry 278:8356–8362CrossRefGoogle Scholar
  821. 821.
    Wang SC, Lai HL, Chiu YT, Ou R, Huang CL, Chern Y (2007) Regulation of type V adenylate cyclase by Ric8a, a guanine nucleotide exchange factor. Biochemical Journal 406:383–388CrossRefGoogle Scholar
  822. 822.
    Nishimura A, Okamoto M, Sugawara Y, Mizuno N, Yamauchi J, Itoh H (2006) Ric-8A potentiates Gq-mediated signal transduction by acting downstream of G protein-coupled receptor in intact cells. Genes to Cells 11:487–498CrossRefGoogle Scholar
  823. 823.
    Cismowski MJ (2006) Non-receptor activators of heterotrimeric G-protein signaling (AGS proteins). Seminars in Cell and Developmental Biology 17:334–344CrossRefGoogle Scholar
  824. 824.
    Takesono A, Nowak MW, Cismowski M, Duzic E, Lanier SM (2002) Activator of G-protein signaling 1 blocks GIRK channel activation by a G-protein-coupled receptor: apparent disruption of receptor signaling complexes. Journal of Biological Chemistry 277: 13827–13830CrossRefGoogle Scholar
  825. 825.
    Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH (1998) CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95, Neuron 20:115–124.CrossRefGoogle Scholar
  826. 826.
    Takahashi H, Umeda N, Tsutsumi Y, Fukumura R, Ohkaze H, Sujino M, van der Horstd G, Yasuie A, Inouyeb SIT, Fujimoria A, Ohhata T, Arakia R, Abe M (2003) Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Molecular Brain Research 110:1–6CrossRefGoogle Scholar
  827. 827.
    Sato M, Cismowski MJ, Toyota E, Smrcka Av, Lucchesi PA, Chilian WM, Lanier SM (2006) Identification of a receptor-independent activator of G-protein signaling (AGS8) in ischemic heart and its interaction with Gβγ. Proceedings of the National Academy of Sciences of the United States of America 103:797–802ADSCrossRefGoogle Scholar
  828. 828.
    Groves B, Gong Q, Xu Z, HuntsmanC, Nguyen C, Li D, Ma D (2007) A specific role of AGS3 in the surface expression of plasma membrane proteins. Proceedings of the National Academy of Sciences of the United States of America 104:18103–18108ADSCrossRefGoogle Scholar
  829. 829.
    De Vries L, Fischer T, Tronchère H, Brothers GM, Strockbine B, Siderovski DP, Farquhar MG (2000) Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha i subunits. Proceedings of the National Academy of Sciences of the United States of America 97:14364–14369ADSCrossRefGoogle Scholar
  830. 830.
    Boughton AP, Yang P, Tesmer VM, Ding B, Tesmer JJ, Chen Z (2011) Heterotrimeric G protein β1γ2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane. Proceedings of the National Academy of Sciences of the United States of America 108:E667–E673ADSCrossRefGoogle Scholar
  831. 831.
    Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Reviews – Molecular Cell Biology 9:690–701.Google Scholar
  832. 832.
    Olofsson B (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cellular Signalling 11:545–554CrossRefGoogle Scholar
  833. 833.
    Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nature Reviews – Molecular Cell Biology 9:846–859Google Scholar
  834. 834.
    van Nieuw Amerongen GP, van Hinsbergh VWM (2001) Cytoskeletal effects of Rho-like small guanine nucleotide-binding proteins in the vascular system. Arteriosclerosis, Thrombosis, and Vascular Biology 21:300–311CrossRefGoogle Scholar
  835. 835.
    Ménager C, Vassy J, Doliger C, Legrand Y, Karniguian A (1999) Subcellular localization of RhoA and ezrin at membrane ruffles of human endothelial cells: differential role of collagen and fibronectin. Experimental Cell Research 249:221–230CrossRefGoogle Scholar
  836. 836.
    Matsumoto Y, Uwatoku T, Oi K, Abe K, Hattori T, Morishige K, Eto Y, Fukumoto Y, Nakamura K, Shibata Y, Matsuda T, Takeshita A, Shimokawa H (2004) Long-term inhibition of Rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries: involvement of multiple mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology 24:181–186CrossRefGoogle Scholar
  837. 837.
    Seasholtz TM, Majumdar M, Brown JH (1999) Rho as a mediator of G protein-coupled receptor signaling. Molecular Pharmacology 55:949–956Google Scholar
  838. 838.
    Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature Reviews – Molecular Cell Biology 12:362–375Google Scholar
  839. 839.
    Kahn RA (2005) Arf1; Arf2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  840. 840.
    D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nature Reviews – Molecular Cell Biology 7:347–358Google Scholar
  841. 841.
    Turner CE, Brown MC (2001) Cell motility: ARNO and ARF6 at the cutting edge. Current Biology 11:R875–R877CrossRefGoogle Scholar
  842. 842.
    Liu Y, Kahn RA, Prestegard JH (2010) Dynamic structure of membrane-anchored Arf ⋅GTP. Nature – Structural and Molecular Biology 17:876–881Google Scholar
  843. 843.
    Leonoudakis D, Conti LR, Radeke CM, McGuire LM, Vandenberg CA (2004) A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. Journal of Biological Chemistry 279:19051–19063CrossRefGoogle Scholar
  844. 844.
    Kahn RA, Cunningham LA (2005) Arf4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  845. 845.
    Kontani K, Hori Y, Katada T (2009) Arf-like protein 13B. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  846. 846.
    Hörer J, Blum R, Feick P, Nastainczyk W, Schulz I (1999) A comparative study of rat and human Tmp21 (p23) reveals the pseudogene-like features of human Tmp21-II. DNA Sequence 10:121–126Google Scholar
  847. 847.
    Allison AB, Casanova JE (2011) Arf6. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  848. 848.
    Kahn RA, Shrivastava-Ranjan P (2006) Arf-like protein 1. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  849. 849.
    Kahn RA, Bowzard JB (2006) Arf-like protein 2. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  850. 850.
    Li CC, Lee FJS (2010) Arf-like protein 4D. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  851. 851.
    Thompson A, Kanamarlapudi V (2011) Arf-like protein 8A; Arf-like protein 8B. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  852. 852.
    Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T, Uchiyama Y, Nakayama K (2005) Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. Journal of Cell Science 118:4039–4048CrossRefGoogle Scholar
  853. 853.
    Schürmann A, Schmidt M, Asmus M, Bayer S, Fliegert F, Koling S, Massmann S, Schilf C, Subauste MC, Voss M, Jakobs KH, Joost HG (1999) The ADP-ribosylation factor (ARF)-related GTPase ARF-related protein binds to the ARF-specific guanine nucleotide exchange factor cytohesin and inhibits the ARF-dependent activation of phospholipase-D. Journal of Biological Chemistry 274:9744–9751CrossRefGoogle Scholar
  854. 854.
    Kanamarlapudi V, Wilson LM (2011) ADP-ribosylation factor domain protein 1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  855. 855.
    Huang M, Weissman JT, Beraud-Dufour S, Luan P, Wang C, Chen W, Aridor M, Wilson IA, Balch WE (2001) Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. Journal of Cell Biology 155:937–948CrossRefGoogle Scholar
  856. 856.
    Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nature Reviews – Molecular Cell Biology 10:513–525Google Scholar
  857. 857.
    Draper RK (2007) Rab6a. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  858. 858.
    Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. Journal of Cell Science 120:3905–3910CrossRefGoogle Scholar
  859. 859.
    Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. Journal of Molecular Biology 4:889–901CrossRefGoogle Scholar
  860. 860.
    Buvelot Frei S, Rahl PB, Nussbaum M, Briggs BJ, Calero M, Janeczko S, Regan AD, Chen CZ, Barral Y, Whittaker GR, Collins RN (2006) Bioinformatic and comparative localization of Rab proteins reveals functional insights into the uncharacterized GTPases Ypt10p and Ypt11p. Molecular and Cellular Biology 26:7299–7317CrossRefGoogle Scholar
  861. 861.
    Nottingham RM, Pfeffer SR (2009) Defining the boundaries: Rab GEFs and GAPs. Proceedings of the National Academy of Sciences of the United States of America 106:14185–14186ADSCrossRefGoogle Scholar
  862. 862.
    Rivera-Molina FE, Novick PJ (2009) A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proceedings of the National Academy of Sciences of the United States of America 106:14408–14413ADSCrossRefGoogle Scholar
  863. 863.
    Sivalingam DA, Amirshahi S, Thyagarajan K, Tofig BN, Stein MP (2011) Rab1a. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  864. 864.
    Thyagarajan K, Stein MP (2008) Rab35. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  865. 865.
    Junutula JR, Prekeris R (2009) Rab11a and Rab11b. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  866. 866.
    Prekeris R (2009) Rab11-FIP3. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  867. 867.
    Coppola T, Magnin-Luthi S, Perret-Menoud V, Gattesco S, Schiavo G, Regazzi R (2001) Direct interaction of the Rab3 effector RIM with Ca2 +  channels, SNAP-25, and synaptotagmin. Journal of Biological Chemistry 276:32756–32762CrossRefGoogle Scholar
  868. 868.
    Ward HH, Peterson BR, Wandinger-Ness A (2008) Rab26. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  869. 869.
    Fukuda M, Kuroda TS (2002) Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin. Journal of Biological Chemistry 277:43096–43103CrossRefGoogle Scholar
  870. 870.
    Fukuda M (2003) Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. Journal of Biological Chemistry 278:15373–15380CrossRefGoogle Scholar
  871. 871.
    Shirakawa R, Higashi T, Tabuchi A, Yoshioka A, Nishioka H, Fukuda M, Kita T, Horiuchi H (2004) Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. Journal of Biological Chemistry 279:10730–10737CrossRefGoogle Scholar
  872. 872.
    Yi Z, Yokota H, Torii S, Aoki T, Hosaka M, Zhao S, Takata K, Takeuchi T, Izumi T (2002) The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules. Molecular and Cellular Biology 22:1858–1867CrossRefGoogle Scholar
  873. 873.
    Sinka R, Gillingham AK, Kondylis V, Munro SJ (2008) Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins. Journal of Cell Biology 183:607–615CrossRefGoogle Scholar
  874. 874.
    Lütcke A, Olkkonen VM, Dupree P, Lütcke H, Simons K, Zerial M (1995) Isolation of a murine cDNA clone encoding Rab19, a novel tissue-specific small GTPase. Gene 155:257–260CrossRefGoogle Scholar
  875. 875.
    Thomas C, Rousset R, Noselli S (2009) JNK signalling influences intracellular trafficking during Drosophila morphogenesis through regulation of the novel target gene Rab30. Developmental Biology 331:250–260CrossRefGoogle Scholar
  876. 876.
    Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge R, Dejgaard K, Ly-Hartig TB, Pepperkok R, Simpson JC, Presley JF (2008) Rab18 and Rab43 have key roles in ER-Golgi trafficking. Journal of Cell Science 121:2768–2781CrossRefGoogle Scholar
  877. 877.
    Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H, Katada T (2003) RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. Journal of Cell Science 116:4159–4168CrossRefGoogle Scholar
  878. 878.
    Jones AT (2006) Rab21. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  879. 879.
    Lin MG, Zhong Q (2011) Interaction between small GTPase Rab7 and PI3KC3 links autophagy and endocytosis: A new Rab7 effector protein sheds light on membrane trafficking pathways. Small Gtpases 2(2):85–88CrossRefGoogle Scholar
  880. 880.
    Sun Q, Westphal W, Wong KN, Tan I, Zhong Q (2010) Rubicon controls endosome maturation as a Rab7 effector. Proceedings of the National Academy of Sciences of the United States of America 107:19338–19343ADSCrossRefGoogle Scholar
  881. 881.
    Pfeffer S (2011) Rab9. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  882. 882.
    Nazarian R, Falcón-Pérez JM, Dell’Angelica EC (2003) Biogenesis of lysosome-related organelles complex 3 (BLOC-3): a complex containing the Hermansky-Pudlak syndrome (HPS) proteins HPS1 and HPS4. Proceedings of the National Academy of Sciences of the United States of America 100:8770–8775ADSCrossRefGoogle Scholar
  883. 883.
    Kloer DP, Rojas R, Ivan V, Moriyama K, van Vlijmen T, Murthy N, Ghirlando R, van der Sluijs P, Hurley JH, Bonifacino JS (2010) Assembly of the biogenesis of lysosome-related organelles complex-3 (BLOC-3) and its interaction with Rab9. Journal of Biological Chemistry 285:7794–7804CrossRefGoogle Scholar
  884. 884.
    Sun Y, Bilan PJ, Liu Z, Klip A (2010) Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proceedings of the National Academy of Sciences of the United States of America 107:19909–19914ADSCrossRefGoogle Scholar
  885. 885.
    Wandinger-Ness A, Deretic D (2008) Rab8a. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  886. 886.
    Babbey CM, Ahktar N, Wang E, Chen CC, Grant BD, Dunn KW (2006) Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Molecular Biology of the Cell 17:3156–3175CrossRefGoogle Scholar
  887. 887.
    Evans TN, Wicking CA (2006) Rab23. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  888. 888.
    Maltese WA (2006) Rab24. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  889. 889.
    Offermanns S, Rosenthal W (Eds.) (2008) Encyclopedia of Molecular Pharmacology (2nd ed.; 1505 p.) Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  890. 890.
    Verma SK, Lal H, Golden HB, Gerilechaogetu F, Smith M, Guleria RS, Foster DM, Lu G, Dostal DE (2011) Rac1 and RhoA differentially regulate angiotensinogen gene expression in stretched cardiac fibroblasts. Cardiovascular Research 90:88–96CrossRefGoogle Scholar
  891. 891.
    Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT, Malliri A (2010) Sumoylation of the GTPase Rac1 is required for optimal cell migration. Nature – Cell Biology 12:1078–185Google Scholar
  892. 892.
    Diebold BA, Bokoch GM (2008) Rac2. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  893. 893.
    Knaus UG (2006) Rac3. UCSD-Nature Molecule Pages. UCSD-Nature Signaling Gateway (
  894. 894.
    Zhang J, Chang L, Chen C, Zhang M, Luo Y, Hamblin M, Villacorta L, Xiong JW, Chen YE, Zhang J, Zhu X (2011) Rad GTPase inhibits cardiac fibrosis through connective tissue growth factor. Cardiovascular Research 91:90–98CrossRefGoogle Scholar
  895. 895.
    Fu M, Zhang J, Tseng YH, Cui T, Zhu X, Xiao Y, Mou Y, De Leon H, Chang MM, Hamamori Y, Kahn CR, Chen YE (2005) Rad GTPase attenuates vascular lesion formation by inhibition of vascular smooth muscle cell migration. Circulation 111:1071–1077CrossRefGoogle Scholar
  896. 896.
    Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501ADSCrossRefGoogle Scholar
  897. 897.
    Sidhu RS, Clough RR, Bhullar RP (2005) Regulation of phospholipase C-δ1 through direct interactions with the small GTPase Ral and calmodulin. Journal of Biological Chemistry 280:21933–21941CrossRefGoogle Scholar
  898. 898.
    Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP (1999) The small GTPase RalA targets filamin to induce filopodia. Proceedings of the National Academy of Sciences of the United States of America 96:2122–2128ADSCrossRefGoogle Scholar
  899. 899.
    Luo JQ, Liu X, Hammond SM, Colley WC, Feig LA, Frohman MA, Morris AJ, Foster DA (1997) RalA interacts directly with the Arf-responsive, PIP2-dependent phospholipase D1. Biochemical and Biophysical Research Communications 235:854–859CrossRefGoogle Scholar
  900. 900.
    Kim JH, Lee SD, Han JM, Lee TG, Kim Y, Park JB, Lambeth JD, Suh PG, Ryu SH (1998) Activation of phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and RalA. FEBS Letters 430:231–235CrossRefGoogle Scholar
  901. 901.
    Chien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL, Balakireva MG, Romeo Y, Kopelovich L, Gale M Jr, Yeaman C, Camonis JH, Zhao Y, White MA (2006) RalB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127:157–170CrossRefGoogle Scholar
  902. 902.
    Vartak N, Bastiaens P (2010) Spatial cycles in G-protein crowd control. EMBO Journal 29:2689–2699CrossRefGoogle Scholar
  903. 903.
    Pannekoek WJ, Kooistra MRH, Zwartkruis FJT, Bos JL (2009) Cell–cell junction formation: The role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochimica et Biophysica Acta 1788:790–796CrossRefGoogle Scholar
  904. 904.
    Spilker C, Acuña Sanhueza GA, Böckers TM, Kreutz MR, Gundelfinger ED (2007) SPAR2, a novel SPAR-related protein with GAP activity for Rap1 and Rap2. Journal of Neurochemistry 104:187–201Google Scholar
  905. 905.
    Nancy V, Wolthuis RM, de Tand MF, Janoueix-Lerosey I, Bos JL, de Gunzburg J (1999) Identification and characterization of potential effector molecules of the Ras-related GTPase Rap2. Journal of Biological Chemistry 274:8737–8745CrossRefGoogle Scholar
  906. 906.
    Janoueix-Lerosey I, Pasheva E, de Tand MF, Tavitian A, de Gunzburg J (1998) Identification of a specific effector of the small GTP-binding protein Rap2. European Journal of Biochemistry 252:290–298CrossRefGoogle Scholar
  907. 907.
    Lafuente E, van Puijenbroek A, Krause M, Carman C, Freeman G, Berezovskaya A, Springer T, Gertler F, Boussiotis V (2004) RIAM, an Ena/VASP and profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Developmental Cell 7:585–595CrossRefGoogle Scholar
  908. 908.
    Tamada M, Sheetz M, Sawada Y (2004) Activation of a signaling cascade by cytoskeleton stretch. Developmental Cell 7:709–718CrossRefGoogle Scholar
  909. 909.
    Crabbe L, Karlseder J (2010) Mammalian Rap1 widens its impact. Nature – Cell Biology 12:733–735Google Scholar
  910. 910.
    Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327:1657–1661ADSCrossRefGoogle Scholar
  911. 911.
    Martinez P, Thanasoula M, Carlos AR, Gómez-López G, Tejera AM, Schoeftner S, Dominguez O, Pisano DG, Tarsounas M, Blasco MA (2010) Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nature – Cell Biology 12:768–780Google Scholar
  912. 912.
    Teo H, Ghosh S, Luesch H, Ghosh A, Wong ET, Malik N, Orth A, de Jesus P, Perry AS, Oliver JD, Tran NL, Speiser LJ, Wong M, Saez E, Schultz P, Chanda SK, Verma IM, Tergaonkar V (2010) Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression. Nature – Cell Biology 12:758–767Google Scholar
  913. 913.
    Edreira MM, Li S, Hochbaum D, Wong S, Gorfe AA, Ribeiro-Neto F, Woods VL Jr, Altschuler DL (2009) Phosphorylation-induced conformational changes in Rap1b: allosteric effects on switch domains and effector loop. Journal of Biological Chemistry 284: 27480–27486CrossRefGoogle Scholar
  914. 914.
    Machida N, Umikawa M, Takei K, Sakima N, Myagmar BE, Taira K, Uezato H, Ogawa Y, Kariya K (2004) Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. Journal of Biological Chemistry 279:15711–15714CrossRefGoogle Scholar
  915. 915.
    Greco F, Sinigaglia F, Balduini C, Torti M (2004) Activation of the small GTPase Rap2B in agonist-stimulated human platelets Journal of Thrombosis and Haemostasis 2:2223–2230Google Scholar
  916. 916.
    Guo, Yuan J, Tang W, Chen X, Gu X, Luo K, Wang Y, Wan B, Yu L (2007) Cloning and characterization of the human gene RAP2C, a novel member of Ras family, which activates transcriptional activities of SRE. Molecular Biology Reports 34:137–144CrossRefGoogle Scholar
  917. 917.
    Paganini S, Guidetti GF, Catrical S, Trionfini P, Panelli S, Balduini C, Torti M (2006) Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie 88:285–295CrossRefGoogle Scholar
  918. 918.
    Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J (2008) Membrane-dependent signal integration by the Ras activator Son of sevenless. Nature – Structural and Molecular Biology 15:452–461Google Scholar
  919. 919.
    Bos JL, de Rooij J, Reedquist KA (2001) Rap1 signalling: adhering to new models. Nature Reviews – Molecular Cell Biology 2:369–377Google Scholar
  920. 920.
    Ahearn IM, Haigis K, Bar-Sagi D, Philips MR (2011) Regulating the regulator: post-translational modification of RAS. Nature Reviews – Molecular Cell Biology 13:39–51Google Scholar
  921. 921.
    Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752.ADSCrossRefGoogle Scholar
  922. 922.
    Bos JL (1998) All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral. EMBO Journal 17:6776–6782CrossRefGoogle Scholar
  923. 923.
    Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nature Reviews – Molecular Cell Biology 9:517–531Google Scholar
  924. 924.
    Drosten M, Dhawahir A, Sum EYM, Urosevic J, Lechuga CG, Esteban LM, Castellano E, Guerra C, Santos E, Barbacid M (2010) Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO Journal 29:1091–1104CrossRefGoogle Scholar
  925. 925.
    Pochynyuk O, Stockand JD, Staruschenko A (2007) Ion channel regulation by Ras, Rho, and Rab small GTPases. Experimental Biology and Medicine 232:1258–1265CrossRefGoogle Scholar
  926. 926.
    Kennedy MB, Beale HC, Carlisle HJ, Washburn LR (2005) Integration of biochemical signalling in spines. Nature Reviews – Neuroscience. 6:423–434Google Scholar
  927. 927.
    Komatsu M, Ruoslaht E (2005) R-Ras is a global regulator of vascular regeneration that suppresses intimal hyperplasia and tumor angiogenesis. Nature – Medicine 11:1346–1350Google Scholar
  928. 928.
    Abankwa D, Gorfe AA, Inder K, Hancock JF (2010) Ras membrane orientation and nanodomain localization generate isoform diversity. Proceedings of the National Academy of Sciences of the United States of America 107:1130–1135ADSCrossRefGoogle Scholar
  929. 929.
    Berthiaume LG (2002) Insider information: how palmitoylation of Ras makes it a signaling double agent. Science STKE 2002:pe41.Google Scholar
  930. 930.
    Tian T, Harding A, Inder K, Plowman S, Parton RG, Hancock JF (2007) Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nature – Cell Biology 9: 905–914Google Scholar
  931. 931.
    White MA (2004) H-Ras. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  932. 932.
    Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA (2004) Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427:256–260ADSCrossRefGoogle Scholar
  933. 933.
    Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D (2000) Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. Journal of Biological Chemistry 275:27979–27988Google Scholar
  934. 934.
    Mitin NY, Ramocki MB, Zullo AJ, Der CJ, Konieczny SF, Taparowsky EJ (2004) Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization. Journal of Biological Chemistry 279:22353–22361CrossRefGoogle Scholar
  935. 935.
    Young NP, Jacks T (2010) Tissue-specific p19Arf regulation dictates the response to oncogenic K-ras. Proceedings of the National Academy of Sciences of the United States of America 107:10184–10189ADSCrossRefGoogle Scholar
  936. 936.
    van der Weyden L, Adams DJ (2007) The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochimica et Biophysica Acta 1776:58–85Google Scholar
  937. 937.
    Lim KH, Ancrile BB, Kashatus DF, Counter CM (2008) Tumour maintenance is mediated by eNOS. Nature 452:646–649ADSCrossRefGoogle Scholar
  938. 938.
    Cantrell DA (2003) GTPases and T cell activation. Immunological Reviews 192:122–130CrossRefGoogle Scholar
  939. 939.
    Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes and Development 17:1829–1834CrossRefGoogle Scholar
  940. 940.
    Saito K, Araki Y, Kontani K, Nishina H, Katada T (2005) Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. Journal of Biochemistry 137:423–430CrossRefGoogle Scholar
  941. 941.
    Alberts AS, Bouquin N, Johnston LH, Treisman R (1998) Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein βsubunits and the yeast response regulator protein Skn7. Journal of Biological Chemistry 273:8616–8622CrossRefGoogle Scholar
  942. 942.
    Schwartz M (2004) Rho signalling at a glance. Journal of Cell Science 117:5457–5458CrossRefGoogle Scholar
  943. 943.
    Zhao ZS, Manser E (2005) PAK and other Rho-associated kinases – effectors with surprisingly diverse mechanisms of regulation. Biochemical Journal 386:201–214CrossRefGoogle Scholar
  944. 944.
    Mukai H (2003) The structure and function of PKN, a protein kinase having a catalytic domain homologous to that of PKC. Journal of Biochemistry 133:17–27CrossRefGoogle Scholar
  945. 945.
    Miyoshi J, Takai Y (2009) RhoA. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (
  946. 946.
    El Sayegh TY, Arora PD, Ling K, Laschinger C, Janmey PA, Anderson RA, McCulloch CA (2007) Phosphatidylinositol-4,5 bisphosphate produced by PIP5KIγ regulates gelsolin, actin assembly, and adhesion strength of N-cadherin junctions. Molecular Biology of the Cell 18:3026–3038CrossRefGoogle Scholar
  947. 947.
    Laudanna C, Bolomini-Vittori M (2008) RhoC. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (