Survey and Analysis of TEL Recommender Systems

  • Nikos Manouselis
  • Hendrik Drachsler
  • Katrien Verbert
  • Erik Duval
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


In this chapter, we present a framework for the analysis of existing recommender systems. Then, we present a detailed analysis of relevant TEL recommender systems along the dimensions defined by our framework.


Recommender System User Model User Profile Collaborative Filter Recommendation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. G. Adomavicius, A. Tuzhilin, Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. M. Aehnelt, M. Ebert, G. Beham, S. Lindstaedt, A. Paschen, A Socio-Technical Approach Towards Supporting Intra-Organizational Collaboration, ed. by P. Dillenbourg, M. Specht. Times of convergence: technologies across learning contexts. Proceedings of the 3\(^{rd}\) European Conference on Technology Enhanced Learning (EC-TEL 2008), Maastricht, The Netherlands, LNCS 5192 (Springer, Berlin, 2008), pp. 33–38Google Scholar
  3. M. Anderson, M. Ball, H. Boley, S. Greene, N. Howse, D. Lemire, S. McGrath, RACOFI: A Rule-Applying Collaborative Filtering System. Paper presented at the conference IEEE/WIC COLA 2003, 13 October 2003, Halifax, Canada. Accessed 11 January 2010
  4. H. Avancini, U. Straccia, User recommendation for collaborative and personalised digital archives. Int. J. Web Based Commun. 1(2), 163–175 (2005)CrossRefGoogle Scholar
  5. G. Beham, B. Kump, T. Ley, S. Lindstaedt, Recommending knowledgeable people in a work-integrated learning system. Procedia Comput. Sci. 1(2), 2783–2792 (2010)CrossRefGoogle Scholar
  6. C. Bodea, M. Dascalu, A. Lipai, in Clustering of the Web Search Results in Educational Recommender Systems, ed. by O. Santos, J. Boticario. Educational Recommender Systems and Technologies: Practices and Challenges (IGI Global, Hershey, 2012), pp. 154–181. doi: 10.4018/978-1-61350-489-5.ch007
  7. J. Broisin, M. Brut, V. Butoianu, F. Sedes, P. Vidal, A personalised recommendation framework based on CAM and document annotations. Procedia Comput. Sci. 1(2), 2839–2848 (2010)CrossRefGoogle Scholar
  8. P. Brusilovsky, Methods and techniques of adaptive hypermedia. User Model. User-Adapt. Interact. 6(2–3), 87–129 (1996)CrossRefGoogle Scholar
  9. P. Brusilovsky, L.N. Cassel, L.M.L. Delcambre, E.A. Fox, R. Furuta, D.D. Garcia, F.M. Shipman III, M. Yudelson, Social navigation for educational digital libraries. Procedia Comput. Sci. 1(2), 2889–2897 (2010)CrossRefGoogle Scholar
  10. R. Burke, Hybrid recommender systems: survey and experiments. User Model. User Adapt. Interact. 12, 331–370 (2002)MATHCrossRefGoogle Scholar
  11. A. Casali, V. Gerling, C. Deco, C. Bender, A Recommender System for Learning Objects Personalized Retrieval, ed. by O. Santos, J. Boticario. Educational Recommender Systems and Technologies: Practices and Challenges (IGI Global, Hershey, 2012), pp. 182–210. doi: 10.4018/978-1-61350-489-5.ch008
  12. A. Diaz, R. Motz, E. Rohrer, L. Tansini, An Ontology Network for Educational Recommender Systems, ed. by O. Santos, J. Boticario. Educational Recommender Systems and Technologies: Practices and Challenges (IGI Global, Hershey, 2012), pp. 67–93. doi: 10.4018/978-1-61350-489-5.ch004
  13. H. Drachsler, D. Pecceu, T. Arts, E. Hutten, L. Rutledge, P. Van Rosmalen, H.G.K. Hummel, R. Koper, ReMashed-Recommendations for Mash-Up Personal Learning Environments, ed. by U. Cress, V. Dimitrova, M. Specht. Learning in the Synergy of Multiple Disciplines, Proceedings of the \(4^{th}\) European Conference on Technology Enhanced Learning (EC-TEL 2009), LNCS 5794 (Springer, Berlin, 2009), pp. 788–793Google Scholar
  14. H. Drachsler , D. Pecceu, T. Arts, E. Hutten, L. Rutledge, P. Van Rosmalen, H.G.K. Hummel, R. Koper, in ReMashed-An Usability Study of a Recommender System for Mash-Ups for Learning. 1st Workshop on Mashups for Learning at the International Conference on Interactive Computer Aided Learning, Villach, Austria, 2009Google Scholar
  15. H. Drachsler, H.G.K. Hummel, B. Van den Berg, J. Eshuis, A. Berlanga, R. Nadolski, W. Waterink, N. Boers, R. Koper, Effects of the ISIS recommender system for navigation support in self-organized learning networks. Educ. Technol. Soc. 12, 122–135 (2009)Google Scholar
  16. H. Drachsler, W. Greller, in The Pulse of Learning Analytics—Understandings and Expectations from the Stakeholders. Proceedings of the 2nd Learning Analytics Conference, Vancouver, Canada, April 2012Google Scholar
  17. J. Dron, R. Mitchell, C. Boyne, P. Siviter, in CoFIND: steps towards a self-organising learning environment. Proceedings of the World Conference on the WWW and Internet (WebNet 2000), San Antonio, Texas, USA, October 30–November 4, 2000, pp. 146–151. AACE, USAGoogle Scholar
  18. J. Dron, R. Mitchell, P. Siviter, C. Boyne, CoFIND-an experiment in n-dimensional collaborative filtering. J. Netw. Comput. Appl. 23(2), 131–142 (2000b)CrossRefGoogle Scholar
  19. S. El Helou, C. Salzmann, D. Gillet, The 3A personalised, contextual and relation-based recommender system. J. Univers. Comput. Sci. 16(16), 2179–2195 (2010)Google Scholar
  20. R. Farzan, P. Brusilovsky, Encouraging user participation in a course recommender system: an impact on user behavior. Comput. Human Behav. 27(1), 276–284 (2010)CrossRefGoogle Scholar
  21. J. Fiaidhi, RecoSearch: a model for collaboratively filtering java learning objects. Int. J. Instr. Technol. Distance Learn. 1(7), 35–50 (2004)Google Scholar
  22. M. Friedrich, M. Wolpers, R. Shen, C. Ullrich, R. Klamma, D. Renzel, A. Richert, B. von der Heiden, Early results of experiments with responsive open learning environments. J. Univers. Comput. Sci. 17(3), 451–471 (2011)Google Scholar
  23. M. Gomez-Albarran, G. Jimenez-Diaz, Recommendation and students’ authoring in repositories of learning objects: a case-based reasoning approach. Int. J. Emerg. Technol. Learn. (iJET) 4(1), 35–40 (2009)Google Scholar
  24. P. Han, B. Xie, F. Yang, R. Shen, A scalable P2P recommender system based on distributed collaborative filtering. Expert Syst. Appl. 27, 203–210 (2004)CrossRefGoogle Scholar
  25. U. Hanani, B. Shapira, P. Shoval, Information filtering: overview of issues, research and systems. User Model. User-Adapt. Interact. 11, 203–259 (2001)MATHCrossRefGoogle Scholar
  26. J.L. Herlocker, J.A. Konstan, L.G. Terveen, J.T. Riedl, Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  27. Y.-M. Huang, T.-C. Huang, K.-T. Wang, W.-Y. Hwang, A Markov-based recommendation model for exploring the transfer of learning on the web. Educ. Technol. Soc. 12(2), 144–162 (2009)Google Scholar
  28. H.G.K. Hummel, B. Van den Berg, A.J. Berlanga, H. Drachsler, J. Janssen, R.J. Nadolski, R. Koper, Combining social- and information-based approaches for personalised recommendation on sequencing learning activities. Int. J. Learn. Technol. 3(2), 152–168 (2007)CrossRefGoogle Scholar
  29. J. Janssen, C. Tattersall, W. Waterink, B. Van den Berg, R. Van Es, C. Bolman, Self-organising navigational support in lifelong learning: how predecessors can lead the way. Comput. Educ. 49(3), 781–793 (2005)CrossRefGoogle Scholar
  30. M.K. Khribi, M. Jemni, O. Nasraoui, Automatic recommendations for e-learning personalization based on web usage mining techniques and information retrieval. Educ. Technol. Soc. 12(4), 30–42 (2009)Google Scholar
  31. R. Klamma, M. Spaniol, Y. Cao, in Community Aware Content Adaptation for Mobile Technology Enhanced Learning. Innovative Approaches for Learning and Knowledge Sharing, 2006, pp. 227–241Google Scholar
  32. R. Koper, Increasing learner retention in a simulated learning network using indirect social interaction. J. Artif. Soc. Soc. Simul. 8(2) (2005).
  33. G. Koutrika, R. Ikeda, B. Bercovitz, H. Garcia-Molina, in Flexible Recommendations over Rich Data. Proceedings of the 2nd ACM International Conference on Recommender Systems (Rec-Sys’08), Lausanne, Switzerland, 2008Google Scholar
  34. G. Koutrika, B. Bercovitz, F. Kaliszan, H. Liou, H. Garcia-Molina, in CourseRank: A Closed-Community Social System Through the Magnifying Glass. Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media (ICWSM’09), San Jose, California, 2009Google Scholar
  35. V. Kumar, J. Nesbit, K. Han, in Rating Learning Object Quality with Distributed Bayesian Belief Networks: The Why and the How. Proceedings of the Fifth IEEE International Conference on Advanced Learning Technologies, ICALT’05, 2005Google Scholar
  36. C. Lagoze, H. Van de Sompel, in The open archives initiative: building a low-barrier interoperability framework. Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’01), (ACM, New York, NY, USA, 2001), pp. 54–62Google Scholar
  37. D. Lemire, Scale and translation invariant collaborative filtering systems. J. Inf. Retr. 8(1), 129–150 (2005)MathSciNetCrossRefGoogle Scholar
  38. D. Lemire, H. Boley, S. McGrath, M. Ball, Collaborative filtering and inference rules for context-aware learning object recommendation. Int. J. Interact. Technol. Smart Educ. 2(3), 179–188 (2005)Google Scholar
  39. N. Manouselis, C. Costopoulou, Analysis and Classification of Multi-Criteria Recommender Systems. World Wide Web: Internet and Web Information Systems, Special Issue on Multi-channel Adaptive Information Systems on the World Wide Web 10(4), 415–441 (2007a)Google Scholar
  40. N. Manouselis, C. Costopoulou, Experimental analysis of design choices in multi-attribute utility collaborative filtering. Int. J. Pattern Recognit. Art. Intell. (Special Issue on Personalization Techniques for Recommender Systems and Intelligent User Interfaces) 21(2), 311–333 (2007b)Google Scholar
  41. N. Manouselis, R. Vuorikari, F. Van Assche, in Simulated Analysis of MAUT Collaborative Filtering for Learning Object Recommendation. Proceedings of the Workshop on Social Information Retrieval in Technology Enhanced Learning (SIRTEL 2007), Crete, Greece, 2007Google Scholar
  42. N. Manouselis, R. Vuorikari, F. Van Assche, Collaborative recommendation of e-learning resources: an experimental investigation. J. Comput. Assist. Learn. (Special Issue on Adaptive technologies and methods in e/m-Learning and Internet-based education, Blackwell Publishing Ltd.) 26(4), 227–242 (2010)Google Scholar
  43. L.B. Marinho, A. Nanopoulos, L. Schmidt-Thieme, R. Jäschke, A. Hotho, G. Stumme, P. Symeonidis, in Social Tagging Recommender Systems, ed. by P. Kantor, F. Ricci, L. Rokach, B. Shapira. 1\(^{st}\) Recommender Systems Handbook: A Complete Guide for Research Scientists and Practitioners (Springer, Berlin, 2010)Google Scholar
  44. O. Marino, G. Paquette, A competency-driven advisor system for multi-actor learning environments. Procedia Comput. Sci. 1(2), 2871–2876 (2010). doi: 10.1016/j.procs.2010.08.013 CrossRefGoogle Scholar
  45. P. Michlik, M. Bielikova, Exercises recommending for limited time learning. Procedia Comput. Sci. 1(2), 2821–2828 (2010) doi: 10.1016/j.procs.2010.08.007
  46. B.N. Miller, J.A. Konstan, J. Riedl, PocketLens: toward a personal recommender system. ACM Trans. Inf. Syst. 22(3), 437–476 (2004)CrossRefGoogle Scholar
  47. F. Moedritscher, Towards a recommender strategy for personal learning environments. Procedia Comput. Sci. 1(2), 2775–2782 (2010). doi: 10.1016/j.procs.2010.08.002
  48. M. Montaner, B. Lopez, J.L. de la Rosa, A taxonomy of recommender agents on the internet. Artif. Intell. Rev. 19, 285–330 (2003)CrossRefGoogle Scholar
  49. R.J. Nadolski, B. Van den Berg, A. Berlanga, H. Drachsler, H. Hummel, R. Koper, P. Sloep, Simulating light-weight personalised recommender systems in learning networks: a case for pedagogy-oriented and rating-based hybrid recommendation strategies. J. Artif. Soc. Social Simul. (JASSS) 12(14) (2009).
  50. I. Okoye, K. Maull, J. Foster, T. Sumner, in Educational Recommendation in an Informal Intentional Learning System, ed. by O. Santos, J. Boticario, Educational Recommender Systems and Technologies: Practices and Challenges (IGI Global, Hershey, 2012), pp. 1–23. doi: 10.4018/978-1-61350-489-5.ch001
  51. S. Rafaeli, M. Barak, Y. Dan-Gur, E. Toch, QSIA-a Web-based environment for learning, assessing and knowledge sharing in communities. Comput. Educ. 43(3), 273–289 (2004)CrossRefGoogle Scholar
  52. S. Rafaeli, Y. Dan-Gur, M. Barak, Social recommender systems: recommendations in support of e-learning. Int. J. Distance Educ. Technol. 3(2), 29–45 (2005)CrossRefGoogle Scholar
  53. M.M. Recker, A. Walker, Supporting “Word-of-Mouth” social networks through collaborative information filtering. J. Interact. Learn. Res. 14(1), 79–99 (2003)Google Scholar
  54. M.M. Recker, D.A. Wiley, A non-authoritative educational metadata ontology for filtering and recommending learning objects. Interact. Learn. Environ. 9(3), 255–271 (2001)CrossRefGoogle Scholar
  55. M.M. Recker, A. Walker, D. Wiley, in An interface for collaborative filtering of educational resources. International Conference on Artificial Intelligence, Las Vegas, Nevada, USA, 2000, pp. 26–29Google Scholar
  56. M.M. Recker, A. Walker, K. Lawless, What do you recommend? Implementation and analyses of collaborative information filtering of web resources for education. Instr. Sci. 31(4/5), 299–316 (2003)CrossRefGoogle Scholar
  57. O.C. Santos, in A recommender system to provide adaptive and inclusive standard-based support along the eLearning life cycle. Proceedings of the 2008 ACM conference on Recommender systems, (ACM, 2008), pp. 319–322Google Scholar
  58. J.B. Schafer, J.A. Konstan, J. Riedl, E-commerce recommendation applications. Data Min. Knowl. Discov. 5, 115–153 (2001)MATHCrossRefGoogle Scholar
  59. K. Schoefegger, P. Seitlinger, T. Ley, Towards a user model for personalised recommendations in work-integrated learning: a report on an experimental study with a collaborative tagging system. Procedia Comput. Sci. 1(2), 2829–2838 (2010)CrossRefGoogle Scholar
  60. B.E. Shelton, J. Duffin, Y. Wang, J. Ball, Linking open course wares and open education resources: creating an effective search and recommendation system. Procedia Comput. Sci. 1(2), 2865–2870 (2010)CrossRefGoogle Scholar
  61. L. Shen, R. Shen, in Learning Content Recommendation Service Based-On Simple Sequencing Specification, ed. by W. Liu et al. (eds). Lecture notes in computer science (Springer, Berlin, 2004), pp. 363–370Google Scholar
  62. M.A. Sicilia, E. Garca-Barriocanal, S. Snchez-Alonso, C. Cechinel, Exploring user-based recommender results in large learning object repositories: the case of MERLOT. Procedia Comput. Sci. 1(2), 2859–2864 (2010) doi: 10.1016/j.procs.2010.08.011
  63. R. Sie, H. Drachsler, M. Bitter, P. Sloep, To whom and why should I connect? Co-author recommendation based on powerful and similar peers. Int. J. Technol. Enhanc. Learn. (to appear)Google Scholar
  64. G.A. Sielis, C. Mettouris, A. Tzanavari, G.A. Papadopoulos, in Context-aware recommendations using topic maps technology for the enhancement of the creativity process, ed. by O. Santos, J. Boticario. Educational Recommender Systems and Technologies: Practices and Challenges (IGI Global, Hershey, 2012), pp. 43–66. doi: 10.4018/978-1-61350-489-5.ch003
  65. J. Stamper, EDM and the 4th paradigm of scientific discovery. Accessed 1 August 2011
  66. T. Tang, G. McCalla, in Smart Recommendation for an Evolving E-Learning System. Proceedings of the Workshop on Technologies for Electronic Documents for Supporting Learning, International Conference on Artificial Intelligence in Education (AIED 2003), 2003, pp. 699–710Google Scholar
  67. T. Tang, G. McCalla, in Utilizing Artificial Learner on the Cold-Start Pedagogical-Value based Paper Recommendation. Proceedings of AH 2004: International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, 2004Google Scholar
  68. T. Tang, G. McCalla, in Beyond Learners’ Interest: Personalized Paper Recommendation Based on Their Pedagogical Features for an e-Learning System. Proceedings of the 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI 2004), 2004, pp. 301–310Google Scholar
  69. T.Y. Tang, G. McCalla, in On the pedagogically guided paper recommendation for an evolving web-based learning system. Proceedings of the 17th International FLAIRS Conference, 2004, pp. 86–91Google Scholar
  70. T.Y. Tang, G. McCalla, Smart recommendation for an evolving e-learning system: architecture and experiment. Int. J. E-Learn. 4(1), 105–129 (2005)Google Scholar
  71. N. Thai-Nghe, L. Drumond, T. Horvth, A. Krohn-Grimberghe, A. Nanopoulos, L. Schmidt-Thieme, in Factorization Techniques for Predicting Student Performance, ed. by O. Santos, J. Boticario. Educational Recommender Systems and Technologies: Practices and Challenges (IGI Global, Hershey, 2012), pp. 129–153. doi: 10.4018/978-1-61350-489-5.ch006
  72. N. Thai-Nghe, L. Drumond, A. Krohn-Grimberghe, L. Schmidt-Thieme, Recommender system for predicting student performance. Procedia Comput. Sci. 1(2), 2811–2819 (2010)CrossRefGoogle Scholar
  73. K.H. Tsai, T.K. Chiu, M.C. Lee, T.I. Wang, in A learning objects recommendation model based on the preference and ontological approaches. Proceedings of 6th International Conference on Advanced Learning Technologies (ICALT’06) (IEEE Computer Society Press, New York, 2006)Google Scholar
  74. J.S. Underwood, in Metis: A Content Map-Based Recommender System for Digital Learning Activities, ed. by O. Santos, J. Boticario. Educational Recommender Systems and Technologies: Practices and Challenges (IGI Global, Hershey, 2012), pp. 24–42. doi: 10.4018/978-1-61350-489-5.ch002
  75. M. Van Setten, Supporting people in finding information: hybrid recommender systems and goal-based structuring. Telematica Instituut Fundamental Research Series NO. 016 (TI/FRS/016), 2005, Enschede, The NetherlandsGoogle Scholar
  76. K. Verbert, H. Drachsler, N. Manouselis, M. Wolpers, R. Vuorikari, E. Duval, Dataset-driven research for improving recommender systems for learning. Proceedings of the 1st International Conference on Learning Analytics and Knowledge (ACM, New York, NY, USA, 2011), pp. 44–53Google Scholar
  77. K. Verbert, N. Manouselis, O. Xavier, M. Wolpers, H. Drachsler, I. Bosnic, E. Duval, Context-aware recommender systems for learning: a survey and future challenges. IEEE Trans. Learn. Technol., to appear
  78. L.S. Vygotsky, Mind in Society: The Development of Higher Psychological Processes (Harvard University Press, Cambridge, 1978)Google Scholar
  79. A. Walker, M. Recker, K. Lawless, D. Wiley, Collaborative information filtering: a review and an educational application. Int. J. Artif. Intell. Educ. 14(1), 3–28 (2004)Google Scholar
  80. Y. Wang, K. Sumiya, Semantic ranking of lecture slides based on conceptual relationship and presentational structure. Procedia Comput. Sci. 1(2), 2801–2810 (2010) doi: 10.1016/j.procs.2010.08.005 CrossRefGoogle Scholar
  81. C.-P. Wei, M.J. Shaw, R.F. Easley, in A Survey of Recommendation Systems in Electronic Commerce, ed. by R.T. Rust, P.K. Kannan. New Directions in Theory and Practice (M. E. Sharpe Publisher, E-Serv, Armonk, 2002)Google Scholar
  82. V.A.R. Zaldivar, D. Burgos, Meta-mender: a meta-rule based recommendation system for educational applications. Procedia Comput. Sci. 1(2), 2877–2882 (2010). doi: 10.1016/j.procs.2010.08.014
  83. V.A. Zaldivar, D. Burgos, A. Pardo, in Meta-Rule Based Recommender Systems for Educational Applications, ed. by O. Santos, J. Boticario, Educational Recommender Systems and Technologies: Practices and Challenges (IGI Global, Hershey, 2012), pp. 211–231. doi: 10.4018/978-1-61350-489-5.ch009
  84. M. Zhou, Y. Xu, in Challenges to Use Recommender Systems to Enhance Meta-Cognitive Functioning in Online Learners, ed. by O. Santos, J. Boticario, Educational Recommender Systems and Technologies: Practices and Challenges (IGI Global, Hershey, 2012) pp. 282–301. doi: 10.4018/978-1-61350-489-5.ch012

Copyright information

© The Authors 2013

Authors and Affiliations

  • Nikos Manouselis
    • 1
  • Hendrik Drachsler
    • 2
  • Katrien Verbert
    • 3
  • Erik Duval
    • 3
  1. 1.Agro-Know TechnologiesAthensGreece
  2. 2.Open University of the NetherlandsHeerlenThe Netherlands
  3. 3.KU LeuvenLeuvenBelgium

Personalised recommendations