Skip to main content

Elements from Nonsmooth Analysis

  • Chapter
  • First Online:
Book cover Introduction to Piecewise Differentiable Equations

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

  • 1643 Accesses

Abstract

The main subject of this book is the study of certain classes of nonsmooth equations. An unrenounceable device for the local analysis of smooth equations is the implicit function theorem. This theorem, however, exploits the approximation properties of the derivative of a smooth function and is thus not applicable in the nonsmooth case. In order to extend this theorem to nonsmooth functions, we have to generalize the classical derivative concept to make it applicable to nonsmooth functions. This is done in the first section of this chapter, where the Bouligand derivative is introduced as a generalization of the classical Fréchet derivative. The second section we will be mainly concerned with generalizations of the classical inverse and implicit function theorems to a class of nonsmooth functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandroff, P., Hopf, H.: Topologie. Chelsea Publishing Company, New York (1972)

    Google Scholar 

  2. Clarke, FH.: Optimization and Nonsmooth Analysis. Les publications CRM, Université de Montréal (1989)

    MATH  Google Scholar 

  3. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  4. Demyanov, VF. Rubinov, AM.: Quasidifferential Calculus. Optimization Software, Inc., New York (1986)

    Google Scholar 

  5. Halkin, H.: Implicit functions and optimization problems without continuous differentiability of the data. SIAM J. Contr. 12, 229–236 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kolmogorov, AN., Fomin, SV.: Introductory Real Analysis. Prentice-Hall Inc., Englewood Cliffs (1970)

    Google Scholar 

  7. Kummer, B.: The inverse of a Lipschitz function in \(\mathrm{I\!Rn}\): complete characterization by directional derivatives. IIASA-Working paper WP-89–084 (1989)

    Google Scholar 

  8. Kummer, B.: Lipschitzian inverse functions, directional derivatives, and applications in \({C}^{1,1}\)-optimization. J. Optim. Theor. Appl. 70, 559–580 (1991)

    Google Scholar 

  9. Kummer, B.: Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis. In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization, pp. 171–194. Springer, Berlin (1992)

    Google Scholar 

  10. Kuntz, L.: An implicit function theorem for directionally differentiable functions. J. Optim. Theor. Appl. 86, 263–270 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ortega, JM., Rheinboldt, WC.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York (1970)

    Google Scholar 

  12. Pallaschke, D., Recht, P., Urbański, R.: On locally Lipschitz quasidifferentiable functions in Banach-space. Optimization 17, 287–295 (1968)

    Article  Google Scholar 

  13. Robinson, SM.: An implicit function theorem for a class of nonsmooth functions. Math. Oper. Res. 16, 292–309 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Robinson, SM.: Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity. Math. Program. Study 30, 45–66 (1987)

    MATH  Google Scholar 

  15. Robinson, SM.: Mathematical foundations of nonsmooth embedding methods. Math. Program. 48, 221–229 (1990)

    Article  MATH  Google Scholar 

  16. Schwartz, JT.: Nonlinear Functional Analysis. Gordon and Breach Science Publishers, New York (1969)

    MATH  Google Scholar 

  17. Shapiro, A.: On concepts of directional differentiability. J. Optim. Theor. Appl. 66, 477–487 (1990)

    Article  MATH  Google Scholar 

  18. Spanier, EH.: Algebraic Topology. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Stefan Scholtes

About this chapter

Cite this chapter

Scholtes, S. (2012). Elements from Nonsmooth Analysis. In: Introduction to Piecewise Differentiable Equations. SpringerBriefs in Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4340-7_3

Download citation

Publish with us

Policies and ethics