Skip to main content

Exploring the Future of Hydrogels in Rapid Prototyping: A Review on Current Trends and Limitations

  • Chapter
  • First Online:
  • 2111 Accesses

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 1))

Abstract

The combined use of hydrogels and rapid prototyping techniques has been an exciting route in developing tissue engineering scaffolds for the past decade. Hydrogels tend to be an interesting starting material for soft, and lately even for hard, tissue regeneration. Their application enables the encapsulation of cells and therefore an increase of the seeding efficiency of the fabricated structures. Rapid prototyping techniques, on the other hand, have become an elegant tool for the production of scaffolds with the purpose of cell seeding and/or cell encapsulation. By means of rapid prototyping, one can design a fully interconnected 3-dimensional structure with predetermined dimensions and porosity. Despite this benefit, some of the rapid prototyping techniques are not or less suitable for the generation of hydrogel scaffolds. In this review, we therefore give an overview on the different rapid prototyping techniques suitable for the processing of hydrogel materials. A primary distinction is made between (1) laser-based, (2) nozzle-based and (3) printer-based systems. Special attention is given to current trends and limitations regarding the respective techniques.

Each of these techniques is further discussed in terms of the different hydrogel materials used so far. One major drawback when working with hydrogels is the lack of mechanical strength. Therefore, maintaining and improving the mechanical integrity of the processed scaffolds has become a key issue regarding 3-dimensional hydrogel structures. This limitation can be overcome either during or after post-processing the scaffolds, depending on the applied technology and materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wolfe RA, Roys EC, Merion RM (2010) Trends in organ donation and transplantation in the United States, 1999–2008. Am J Transplant 10(4):961–972

    Article  CAS  Google Scholar 

  2. Desmet T, Schacht E, Dubruel P (2008) Rapid prototyping as an elegant production tool for polymeric tissue engineering scaffolds: a review. In: Barnes SJ, Harris LP (eds) Tissue engineering: roles, materials and applications. Nova, New York

    Google Scholar 

  3. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  Google Scholar 

  4. Bonassar LJ, Vacanti CA (1998) Tissue engineering: the first decade and beyond. J Cell Biochem 30–31:297–303

    Article  Google Scholar 

  5. Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014

    Article  CAS  Google Scholar 

  6. Chen QZ, Harding SE, Ali NN, Lyon AR, Boccaccini AR (2008) Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R Rep 59(1–6):1–37

    Article  CAS  Google Scholar 

  7. Gerlier L, Lamotte M, Wille M, Dubois D (2009) Cost-utility of autologous chondrocytes implantation using chondrocelect (R) in symptomatic knee cartilage damage in Belgium. Value Health 12(7):A443–A443

    Article  Google Scholar 

  8. Hayashi R, Yamato M, Takayanagi H, Oie Y, Kubota A, Hori Y et al (2010) Validation system of tissue-engineered epithelial cell sheets for corneal regenerative medicine. Tissue Eng Part C Methods 16(4):553–560

    Article  CAS  Google Scholar 

  9. Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M et al (2010) Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 31(14):3903–3909

    Article  CAS  Google Scholar 

  10. Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y et al (2010) Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials 31(7):1646–1654

    Article  CAS  Google Scholar 

  11. Barcili B (2007) Hydrogels for tissue engineering and delivery of tissue-inducing substances. J Pharm Sci 96(9):2197–2223

    Article  CAS  Google Scholar 

  12. Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28(27):3936–3943

    Article  CAS  Google Scholar 

  13. Chen FM, Shelton RM, Jin Y, Chapple ILC (2009) Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. Med Res Rev 29(3):472–513

    Article  CAS  Google Scholar 

  14. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40

    Article  CAS  Google Scholar 

  15. Butler DL, Shearn JT, Juncosa N, Dressler MR, Hunter SA (2004) Functional tissue engineering parameters toward designing repair and replacement strategies. Clin Orthop Relat Res 427:S190–S199

    Article  Google Scholar 

  16. Peltola SM, Melchels FPW, Grijpma DW, Kellomaki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280

    Article  CAS  Google Scholar 

  17. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Article  CAS  Google Scholar 

  18. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39, discussion 39–40

    CAS  Google Scholar 

  19. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86

    Article  CAS  Google Scholar 

  20. Stephens JS, Cooper JA, Phelan FR, Dunkers JP (2007) Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions. Biotechnol Bioeng 97(4):952–961

    Article  CAS  Google Scholar 

  21. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222

    Article  CAS  Google Scholar 

  22. Benoit DSW, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7(10):816–823

    Article  CAS  Google Scholar 

  23. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161

    Article  CAS  Google Scholar 

  24. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R (1999) Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA 96(6):3104–3107

    Article  CAS  Google Scholar 

  25. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14(2):149–165

    Article  CAS  Google Scholar 

  26. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J (2003) In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9(4):679–688

    Article  CAS  Google Scholar 

  27. Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle GF et al (2005) A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials 26(33):6643–6651

    Article  CAS  Google Scholar 

  28. Schmedlen KH, Masters KS, West JL (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23(22):4325–4332

    Article  CAS  Google Scholar 

  29. Masters KS, Shah DN, Leinwand LA, Anseth KS (2005) Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 26(15):2517–2525

    Article  CAS  Google Scholar 

  30. Liu VA, Bhatia SN (2002) Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices 4(4):257–266

    Article  CAS  Google Scholar 

  31. Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S et al (2007) Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21(3):790–801

    Article  CAS  Google Scholar 

  32. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12

    Article  CAS  Google Scholar 

  33. McGuigan AP, Sefton MV (2007) Modular tissue engineering: fabrication of a gelatin-based construct. J Tissue Eng Regen Med 1(2):136–145

    Article  CAS  Google Scholar 

  34. van Susante JLC, Buma P, Schuman L, Homminga GN, van den Berg WB, Veth RPH (1999) Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 20(13):1167–1175

    Article  Google Scholar 

  35. Fussenegger M, Meinhart J, Hobling W, Kullich W, Funk S, Bernatzky G (2003) Stabilized autologous fibrin-chondrocyte constructs for cartilage repair in vivo. Ann Plast Surg 51(5):493–498

    Article  Google Scholar 

  36. Matsusaki M, Yoshida H, Akashi M (2007) The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach. Biomaterials 28(17):2729–2737

    Article  CAS  Google Scholar 

  37. Yao R, Zhang RJ, Yan YN, Wang XH (2009) In vitro angiogenesis of 3D tissue engineered adipose tissue. J Bioact Compat Polym 24(1):5–24

    Article  CAS  Google Scholar 

  38. Bian WN, Bursac N (2009) Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials 30(7):1401–1412

    Article  CAS  Google Scholar 

  39. Bryant SJ, Anseth KS (2001) The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22(6):619–626

    Article  CAS  Google Scholar 

  40. Bryant SJ, Nicodemus GD, Villanueva I (2008) Designing 3D photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering. Pharm Res 25(10):2379–2386

    Article  CAS  Google Scholar 

  41. Endres M, Hutmacher DW, Salgado AJ, Kaps C, Ringe J, Reis RL et al (2003) Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng 9(4):689–702

    Article  CAS  Google Scholar 

  42. Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJA (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925

    Article  CAS  Google Scholar 

  43. Fedorovich NE, Dewijn JR, Verbout AJ, Alblas J, Dhert WJA (2008) Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A 14(1):127–133

    Article  CAS  Google Scholar 

  44. Fragonas E, Valente M, Pozzi-Mucelli M, Toffanin R, Rizzo R, Silvestri F et al (2000) Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials 21(8):795–801

    Article  CAS  Google Scholar 

  45. Hauselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB et al (1994) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107:17–27

    Google Scholar 

  46. Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD (2005) Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis Cartilage 13(4):318–329

    Article  CAS  Google Scholar 

  47. Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y (2006) Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials 27(22):4079–4086

    Article  CAS  Google Scholar 

  48. Iwashina T, Mochida J, Miyazaki T, Watanabe T, Iwabuchi S, Ando K et al (2006) Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate. Biomaterials 27(3):354–361

    Article  CAS  Google Scholar 

  49. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99(15):9996–10001

    Article  CAS  Google Scholar 

  50. Klein TJ, Rizzi SC, Reichert JC, Georgi N, Malda J, Schuurman W et al (2009) Strategies for zonal cartilage repair using hydrogels. Macromol Biosci 9(11):1049–1058

    Article  CAS  Google Scholar 

  51. Passaretti D, Silverman RP, Huang W, Kirchhoff CH, Ashiku S, Randolph MA et al (2001) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng 7(6):805–815

    Article  CAS  Google Scholar 

  52. Peretti GM, Xu JW, Bonassar LJ, Kirchhoff CH, Yaremchuk MJ, Randolph MA (2006) Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Eng 12(5):1151–1168

    Article  CAS  Google Scholar 

  53. Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M (2006) The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 27(3):388–396

    Article  CAS  Google Scholar 

  54. Stern S, Lindenhayn K, Schultz O, Perka C (2000) Cultivation of porcine cells from the nucleus pulposus in a fibrin/hyaluronic acid matrix. Acta Orthop Scand 71(5):496–502

    Article  CAS  Google Scholar 

  55. Trivedi N, Keegan M, Steil GM, Hollister-Lock J, Hasenkamp WM, Colton CK et al (2001) Islets in alginate macrobeads reverse diabetes despite minimal acute insulin secretory responses. Transplantation 71(2):203–211

    Article  CAS  Google Scholar 

  56. Wong M, Siegrist M, Gaschen V, Park Y, Graber W, Studer D (2002) Collagen fibrillogenesis by chondrocytes in alginate. Tissue Eng 8(6):979–987

    Article  CAS  Google Scholar 

  57. Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang YD, Borenstein JT et al (2006) Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18(2):165–169

    Article  CAS  Google Scholar 

  58. Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN (2002) In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release 78(1–3):199–209

    Article  CAS  Google Scholar 

  59. Bryant SJ, Cuy JL, Hauch KD, Ratner BD (2007) Photo-patterning of porous hydrogels for tissue engineering. Biomaterials 28(19):2978–2986

    Article  CAS  Google Scholar 

  60. Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28(34):5093–5099

    Article  CAS  Google Scholar 

  61. Chang CH, Liu HC, Lin CC, Chou CH, Lin FH (2003) Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24(26):4853–4858

    Article  CAS  Google Scholar 

  62. Dang JM, Sun DDN, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW (2006) Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials 27(3):406–418

    Article  CAS  Google Scholar 

  63. Lawson MA, Barralet JE, Wang L, Shelton RM, Triffitt JT (2004) Adhesion and growth of bone marrow stromal cells on modified alginate hydrogels. Tissue Eng 10(9–10):1480–1491

    CAS  Google Scholar 

  64. Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14(1):61–86

    Article  CAS  Google Scholar 

  65. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  CAS  Google Scholar 

  66. Lutolf MR, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518

    Article  CAS  Google Scholar 

  67. Molinaro G, Leroux JC, Damas J, Adam A (2002) Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23(13):2717–2722

    Article  CAS  Google Scholar 

  68. Nuttelman CR, Henry SM, Anseth KS (2002) Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials 23(17):3617–3626

    Article  CAS  Google Scholar 

  69. Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP (2000) Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 52(2):246–255

    Article  CAS  Google Scholar 

  70. Schuster M, Turecek C, Weigel G, Saf R, Stampfl J, Varga F et al (2009) Gelatin-based photopolymers for bone replacement materials. J Polym Sci A Polym Chem 47(24):7078–7089

    Article  CAS  Google Scholar 

  71. Solchaga LA, Gao JZ, Dennis JE, Awadallah A, Lundberg M, Caplan AI et al (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8(2):333–347

    Article  CAS  Google Scholar 

  72. Thebaud NB, Pierron D, Bareille R, Le Visage C, Letourneur D, Bordenave L (2007) Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering. J Mater Sci Mater Med 18(2):339–345

    Article  CAS  Google Scholar 

  73. Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11):1635–1647

    Article  CAS  Google Scholar 

  74. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24(20):3475–3481

    Article  CAS  Google Scholar 

  75. Weinand C, Pomerantseva I, Neville CM, Gupta R, Weinberg E, Madisch I et al (2006) Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. Bone 38(4): 555–563

    Article  CAS  Google Scholar 

  76. Ahmed TAE, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14(2):199–215

    Article  CAS  Google Scholar 

  77. Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15):2467–2477

    Article  CAS  Google Scholar 

  78. Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4(5):429–437

    Article  CAS  Google Scholar 

  79. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26(30):5983–5990

    Article  CAS  Google Scholar 

  80. Farrell E, O’Brien FJ, Doyle P, Fischer J, Yannas I, Harley BA et al (2006) A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng 12(3):459–468

    Article  CAS  Google Scholar 

  81. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

    Article  CAS  Google Scholar 

  82. Wang XH, Yan YN, Zhang RJ (2010) Recent trends and challenges in complex organ manufacturing. Tissue Eng Part B Rev 16(2):189–197

    Article  Google Scholar 

  83. Shin H, Temenoff JS, Bowden GC, Zygourakis K, Farach-Carson MC, Yaszemski MJ et al (2005) Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and beta-glycerol phosphate. Biomaterials 26(17):3645–3654

    Article  CAS  Google Scholar 

  84. Moller S, Weisser J, Bischoff S, Schnabelrauch M (2007) Dextran and hyaluronan methacrylate based hydrogels as matrices for soft tissue reconstruction. Biomol Eng 24(5):496–504

    Article  CAS  Google Scholar 

  85. Shin H, Ruhe PQ, Mikos AG, Jansen JA (2003) In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials 24(19):3201–3211

    Article  CAS  Google Scholar 

  86. Wang TW, Spector M (2009) Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater 5(7):2371–2384

    Article  CAS  Google Scholar 

  87. Seo SJ, Kim IY, Choi YJ, Akaike T, Cho CS (2006) Enhanced liver functions of hepatocytes cocultured with NIH 3 T3 in the alginate/galactosylated chitosan scaffold. Biomaterials 27(8):1487–1495

    Article  CAS  Google Scholar 

  88. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22(22):3045–3051

    Article  CAS  Google Scholar 

  89. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F (2002) Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 290(2):763–769

    Article  CAS  Google Scholar 

  90. Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK et al (2006) Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng 12(5):1213–1225

    Article  CAS  Google Scholar 

  91. LaNasa SM, Bryant SJ (2009) Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. Acta Biomater 5(8):2929–2938

    Article  CAS  Google Scholar 

  92. Van Vlierberghe S, Dubruel P, Lippens E, Masschaele B, Van Hoorebeke L, Cornelissen M et al (2008) Toward modulating the architecture of hydrogel scaffolds: curtains versus channels. J Mater Sci Mater Med 19(4):1459–1466

    Article  CAS  Google Scholar 

  93. Fan JY, Shang Y, Yuan YJ, Yang J (2010) Preparation and characterization of chitosan/galactosylated hyaluronic acid scaffolds for primary hepatocytes culture. J Mater Sci Mater Med 21(1):319–327

    Article  CAS  Google Scholar 

  94. Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R (2002) Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 37(15):3107–3116

    Article  CAS  Google Scholar 

  95. Madaghiele M, Piccinno A, Saponaro M, Maffezzoli A, Sannino A (2009) Collagen- and gelatine-based films sealing vascular prostheses: evaluation of the degree of crosslinking for optimal blood impermeability. J Mater Sci Mater Med 20(10):1979–1989

    Article  CAS  Google Scholar 

  96. Noth U, Schupp K, Heymer A, Kall S, Jakob F, Schutze N et al (2005) Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 7(5):447–455

    Article  CAS  Google Scholar 

  97. Schmeichel KL, Bissell MJ (2003) Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 116(12):2377–2388

    Article  CAS  Google Scholar 

  98. Dutta RC, Dutta AK (2009) Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv 27(4):334–339

    Article  CAS  Google Scholar 

  99. Kirkpatrick CJ, Fuchs S, Hermanns MI, Peters K, Unger RE (2007) Cell culture models of higher complexity in tissue engineering and regenerative medicine. Biomaterials 28(34):5193–5198

    Article  CAS  Google Scholar 

  100. Hutmacher DW, Cool S (2007) Concepts of scaffold-based tissue engineering-the rationale to use solid free-form fabrication techniques. J Cell Mol Med 11(4):654–669

    Article  CAS  Google Scholar 

  101. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161

    Article  CAS  Google Scholar 

  102. Roach P, Eglin D, Rohde K, Perry CC (2007) Modern biomaterials: a review-bulk properties and implications of surface modifications. J Mater Sci Mater Med 18(7):1263–1277

    Article  CAS  Google Scholar 

  103. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  CAS  Google Scholar 

  104. Azuma K, Nagaoka M, Cho CS, Akaike T (2009) An artificial extracellular matrix created by hepatocyte growth factor fused to IgG-Fc. Biomaterials 31(5):802–809

    Article  CAS  Google Scholar 

  105. Hubbell JA (1999) Bioactive biomaterials. Curr Opin Biotechnol 10(2):123–129

    Article  CAS  Google Scholar 

  106. Kikkawa Y, Takahashi N, Matsuda Y, Miwa T, Akizuki T, Kataoka A et al (2009) The influence of synthetic peptides derived from the laminin a1 chain on hepatocyte adhesion and gene expression. Biomaterials 30:6888–6895

    Article  CAS  Google Scholar 

  107. Woo JH, Kim DY, Jo SY, Kang H, Noh I (2009) Modification of the bulk properties of the porous poly(lactide-co-glycolide) scaffold by irradiation with a cyclotron ion beam with high energy for its application in tissue engineering. Biomed Mater 4(4):044101

    Article  CAS  Google Scholar 

  108. Zhu YB, Gao CY, Liu XY, Shen JC (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3(6):1312–1319

    Article  CAS  Google Scholar 

  109. Zhu YB, Gao CY, Shen JC (2002) Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials 23(24):4889–4895

    Article  CAS  Google Scholar 

  110. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5–6):143–206

    Article  Google Scholar 

  111. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P (2009) Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules 10(9):2351–2378

    Article  CAS  Google Scholar 

  112. Tsioptsias C, Tsivintzelis I, Papadopoulou L, Pallayiotou C (2009) A novel method for producing tissue engineering scaffolds from chitin, chitin-hydroxyapatite, and cellulose. Mater Sci Eng C Biomim Supramol Syst 29(1):159–164

    Article  CAS  Google Scholar 

  113. Martin L, Alonso M, Girotti A, Arias FJ, Rodriguez-Cabello JC (2009) Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastin-like polymers. Biomacromolecules 10(11):3015–3022

    Article  CAS  Google Scholar 

  114. Pathi SP, Kowalczewski C, Tadipatri R, Fischbach C (2010) A novel 3-D mineralized tumor model to study breast cancer bone metastasis. PLoS One 5(1):e8849

    Article  CAS  Google Scholar 

  115. Zhu XH, Arifin DY, Khoo BH, Hua JS, Wang CH (2010) Study of cell seeding on porous poly(D, L-lactic-co-glycolic acid) sponge and growth in a Couette-Taylor bioreactor. Chem Eng Sci 65(6):2108–2117

    Article  CAS  Google Scholar 

  116. Salerno A, Netti PA, Di Maio E, Iannace S (2009) Engineering of foamed structures for biomedical application. J Cell Plast 45(2):103–117

    Article  CAS  Google Scholar 

  117. Gomes ME, Azevedo HS, Moreira AR, Ella V, Kellomaki M, Reis RL (2008) Starch-poly(epsilon-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. J Tissue Eng Regen Med 2(5):243–252

    Article  CAS  Google Scholar 

  118. Mooney DT, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP et al (1996) Stabilized polyglycolic acid fibre based tubes for tissue engineering. Biomaterials 17(2):115–124

    Article  CAS  Google Scholar 

  119. Liu XH, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30(25):4094–4103

    Article  CAS  Google Scholar 

  120. Nichols MD, Scott EA, Elbert DL (2009) Factors affecting size and swelling of poly(ethylene glycol) microspheres formed in aqueous sodium sulfate solutions without surfactants. Biomaterials 30(29):5283–5291

    Article  CAS  Google Scholar 

  121. Lee S, Seong SC, Lee JH, Han IK, Oh SH, Cho KJ et al (2007) Porous polymer prosthesis for meniscal regeneration. Asbm7: Adv Biomater VII 342–343:33–36

    Google Scholar 

  122. Wang YY, Liu L, Guo SR (2010) Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym Degrad Stab 95(2):207–213

    Article  CAS  Google Scholar 

  123. Mu YH, Li YB, Wang MB, Xu FL, Zhang X, Tian ZY (2006) Novel method to fabricate porous n-HA/PVA hydrogel scaffolds. Eco-Mater Process Des VII 510–511:878–881

    Google Scholar 

  124. Sinha A, Guha A (2009) Biomimetic patterning of polymer hydrogels with hydroxyapatite nanoparticles. Mater Sci Eng C Biomim Supramol Syst 29(4):1330–1333

    Article  CAS  Google Scholar 

  125. Mironov V, Kasyanov V, Shu XZ, Eisenberg C, Eisenberg L, Gonda S et al (2005) Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials 26(36):7628–7635

    Article  CAS  Google Scholar 

  126. Pitarresi G, Palumbo FS, Calabrese R, Craparo EF, Giammona G (2008) Crosslinked hyaluronan with a protein-like polymer: novel bioresorbable films for biomedical applications. J Biomed Mater Res A 84A(2):413–424

    Article  CAS  Google Scholar 

  127. Estelles JM, Vidaurre A, Duenas JMM, Cortazar IC (2008) Physical characterization of polycaprolactone scaffolds. J Mater Sci Mater Med 19(1):189–195

    Article  CAS  Google Scholar 

  128. Yang SF, Leong KF, Du ZH, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 7(6):679–689

    Article  CAS  Google Scholar 

  129. Chua CK, Leong KF, Lim CS (2004) Rapid prototyping: principles and applications, 2nd edn. World Scientific, New Jersey

    Google Scholar 

  130. Yang SF, Leong KF, Du ZH, Chua CK (2002) The design of scaffolds for use in tissue ­engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11

    Article  CAS  Google Scholar 

  131. Melchels FP, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130

    Article  CAS  Google Scholar 

  132. Arcaute K, Mann BK, Wicker RB (2006) Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34(9):1429–1441

    Article  Google Scholar 

  133. Liska R, Schuster M, Infuhr R, Tureeek C, Fritscher C, Seidl B et al (2007) Photopolymers for rapid prototyping. J Coatings Technol Res 4(4):505–510

    Article  CAS  Google Scholar 

  134. Lee SJ, Rhie JW, Cho DW (2008) Development of three-dimensional alginate encapsulated chondrocyte hybrid scaffold using microstereolithography. J Manuf Sci Eng Trans ASME 130(2):021007

    Article  Google Scholar 

  135. Lee SJ, Kang T, Rhie JW, Cho DW (2007) Development of three-dimensional hybrid scaffold using chondrocyte-encapsulated alginate hydrogel. Sens Mater 19(8):445–451

    Google Scholar 

  136. Lee SJ, Kang HW, Park JK, Rhie JW, Hahn SK, Cho DW (2008) Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices 10(2):233–241

    Article  CAS  Google Scholar 

  137. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10): 1316–1322

    CAS  Google Scholar 

  138. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Article  CAS  Google Scholar 

  139. Lu Y, Mapili G, Suhali G, Chen SC, Roy K (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77A(2):396–405

    Article  CAS  Google Scholar 

  140. Choi JW, Wicker R, Lee SH, Choi KH, Ha CS, Chung I (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209(15–16):5494–5503

    Article  CAS  Google Scholar 

  141. Han LH, Mapili G, Chen S, Roy K (2008) Projection microfabrication of three-dimensional scaffolds for tissue engineering. J Manuf Sci Eng Trans ASME 130(2):021005

    Article  Google Scholar 

  142. Itoga K, Yamato M, Kobayashi J, Kikuchi A, Okano T (2004) Cell micropatterning using photopolymerization with a liquid crystal device commercial projector. Biomaterials 25(11):2047–2053

    Article  CAS  Google Scholar 

  143. Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuators A Phys 121(1):113–120

    Article  CAS  Google Scholar 

  144. Gu P, Zhang X, Zeng Y, Ferguson B (2001) Quality analysis and optimization of solid ground curing process. J Manuf Syst 20(4):250–263

    Article  Google Scholar 

  145. Zhang X, Zhou B, Zeng Y, Gu P (2002) Model layout optimization for solid ground curing rapid prototyping processes. Robot Comput Integr Manuf 18(1):41–51

    Article  CAS  Google Scholar 

  146. Xing JF, Dong XZ, Chen WQ, Duan XM, Takeyasu N, Tanaka T et al (2007) Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl Phys Lett 90(13):131103–131106

    Article  CAS  Google Scholar 

  147. Yu T, Chiellini F, Schmaljohan D, Solaro R, Ober C (2002) Microfabrication of hydrogels for biomedical applications. In: Fedynyshyn TH (ed) Advances in resist technology and processing XIX, Parts 1 and 2. Spie-Int Soc Optical Engineering, Bellingham, pp 854–860

    Google Scholar 

  148. Mapili G, Lu Y, Chen SC, Roy K (2005) Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res B Appl Biomater 75B(2): 414–424

    Article  CAS  Google Scholar 

  149. Arcaute K, Mann B, Wicker R (2010) Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater 6(3):1047–1054

    Article  CAS  Google Scholar 

  150. Arcaute K, Ochoa L, Mann BK, Wicker RB (2005). Stereolithography of PEG hydrogel multi-lumen nerve regeneration conduits. ASME IMECE2005-81436 American Society of Mechanical Engineers International Mechanical Engineering Congress and Exposition, Orlando, Florida, 5–11 November 2005

    Google Scholar 

  151. Arcaute K, Ochoa L, Medina F, Elkins C, Mann B, Wicker R (2005) Three-dimensional PEG hydrogel construct fabrication using stereolithography. In: Fratzl P, Landis WJ, Wang R, Silver FH (eds) Structure and mechanical behavior of biological materials. Materials Research Society Sympiosium Proceedings, Warrendale, PA, pp 191–197

    Google Scholar 

  152. Yasar O et al (2009) A Lindenmayer system-based approach for the design of nutrient delivery networks in tissue constructs. Biofabrication 1(4):045004

    Article  Google Scholar 

  153. Koh WG, Revzin A, Pishko MV (2002) Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18(7):2459–2462

    Article  CAS  Google Scholar 

  154. Khademhosseini A, Eng G, Yeh J, Fukuda J, Blumling J, Langer R et al (2006) Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A 79A(3):522–532

    Article  CAS  Google Scholar 

  155. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3(4):249–253

    Article  CAS  Google Scholar 

  156. Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092

    Article  CAS  Google Scholar 

  157. Lee SJ, Rhie JW, Cho DW (2008) Development of three-dimensional alginate encapsulated chondrocyte hybrid scaffold using microstereolithography. J Manuf Sci Eng Trans ASME 130(2):021007

    Article  Google Scholar 

  158. Barry RA, Shepherd RF, Hanson JN, Nuzzo RG, Wiltzius P, Lewis JA (2009) Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv Mater 21(23):2407–2410

    Article  CAS  Google Scholar 

  159. Yuan D, Lasagni As, Shao P, Das S (2008) Rapid prototyping of microstructured hydrogels via laser direct-write and laser interference photopolymerisation. Virtual Phys Prototyping 3(4):221–229

    Article  Google Scholar 

  160. Schade R, Weiss T, Berg A, Schnabelrauch M, Liefeith K (2010) Two-photon techniques in tissue engineering. Int J Artif Organs 33(4):219–227

    CAS  Google Scholar 

  161. Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M et al (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2(1):7

    Article  CAS  Google Scholar 

  162. Van den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1(1):31–38

    Article  CAS  Google Scholar 

  163. Ovsianikov A, Deiwick A, Van Vlierberghe S, Dubruel P, Moeller L, Draeger G et al (2011) Laser fabrication of 3D CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12(4):851–858

    Article  CAS  Google Scholar 

  164. Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping J 11(1):9–17

    Article  Google Scholar 

  165. Liu L, Xiong Z, Yan YN, Zhang RJ, Wang XH, Jin L (2009) Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater 88B(1):254–263

    Article  CAS  Google Scholar 

  166. Vozzi G, Ahluwalia A (2007) Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach. J Mater Chem 17(13):1248–1254

    Article  CAS  Google Scholar 

  167. Mariani M, Rosatini F, Vozzi G, Previti A, Ahluwalia A (2006) Characterization of tissue-engineered scaffolds microfabricated with PAM. Tissue Eng 12(3):547–557

    Article  CAS  Google Scholar 

  168. Vozzi G, Previti A, De Rossi D, Ahluwalia A (2002) Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8(6):1089–1098

    Article  CAS  Google Scholar 

  169. Vozzi G, Previti A, Ciaravella G, Ahluwalia A (2004) Microfabricated fractal branching networks. J Biomed Mater Res A 71A(2):326–333

    Article  CAS  Google Scholar 

  170. Tirella A, Vozzi G, Ahluwalia A (2008) Biomimicry of PAM microfabricated hydrogel scaffold. Nip24/Digital Fabrication 2008: 24th international conference on digital printing technologies, technical program and proceedings 2008, pp 496–500

    Google Scholar 

  171. Tirella A, Orsini A, Vozzi G, Ahluwalia A (2009) A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication 1(4):045002

    Article  CAS  Google Scholar 

  172. Xiong Z, Yan YN, Wang SG, Zhang RJ, Zhang C (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46(11):771–776

    Article  CAS  Google Scholar 

  173. Xu W, Wang XH, Yan YN, Zhang RJ (2008) Rapid protoyping of polyurethane for the ­creation of vascular systems. J Bioact compat polym 23:103–115

    Article  CAS  Google Scholar 

  174. Liu L, Xiong Z, Zhang RJ, Jin L, Yan YN (2009) A novel osteochondral scaffold fabricated via multi-nozzle low-temperature deposition manufacturing. J Bioact Compat Polym 24:18–30

    Article  CAS  Google Scholar 

  175. Khalil S, Nam J, Sun W (2004) Biopolymer deposition for freeform fabrication of tissue engineered scaffolds. Proceedings of the IEEE 30th annual northeast bioengineering conference 2004, pp 136–137

    Google Scholar 

  176. Zhuo X, Yongnian Y, Shenguo W, Renji Z, Chao Z (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46(11):771–776

    Article  Google Scholar 

  177. Landers R, Mulhaupt R (2000) Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng 282(9):17–21

    Article  CAS  Google Scholar 

  178. Kim GH, Son JG (2009) 3D polycarprolactone (PCL) scaffold with hierarchical structure fabricated by a piezoelectric transducer (PZT)-assisted bioplotter. Appl Phys A Mater 94(4):781–785

    Article  CAS  Google Scholar 

  179. Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, Mo XM et al (2002) Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng C Biomim Supramol Syst 20(1–2):35–42

    Article  Google Scholar 

  180. Cesarano J (1999) A review of robocasting technology. Solid Freeform Additive Fabrication 542:133–139

    CAS  Google Scholar 

  181. Franco J, Hunger P, Launey ME, Tomsia AP, Saiz E (2010) Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater 6(1):218–228

    Article  CAS  Google Scholar 

  182. Munch E, Franco J, Deville S, Hunger P, Saiz E, Tomsia AP (2008) Porous ceramic scaffolds with complex architectures. JOM 60(6):54–58

    Article  CAS  Google Scholar 

  183. Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA (2002) Directed colloidal assembly of 3D periodic structures. Adv Mater 14(18):1279–1283

    Article  CAS  Google Scholar 

  184. Gratson GM, Xu MJ, Lewis JA (2004) Microperiodic structures—direct writing of three-dimensional webs. Nature 428(6981):386–386

    Article  CAS  Google Scholar 

  185. Duoss EB, Twardowski M, Lewis JA (2007) Sol-gel inks for direct-write assembly of functional oxides. Adv Mater 19(21):3485–3489

    Article  CAS  Google Scholar 

  186. van Osch THJ, Perelaer J, de Laat AWM, Schubert US (2008) Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater 20(2):343–345

    Article  CAS  Google Scholar 

  187. Guo JJ, Lewis JA (1999) Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions. J Am Ceram Soc 82(9):2345–2358

    Article  CAS  Google Scholar 

  188. Iwami K, Noda T, Ishida K, Morishima K, Nakamura M, Umeda N (2010) Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication 2(1):014108

    Article  CAS  Google Scholar 

  189. Li SJ, Xiong Z, Wang XH, Yan YN, Liu HX, Zhang RJ (2009) Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Polym 24(3):249–265

    Article  CAS  Google Scholar 

  190. Li SJ, Yan YN, Xiong Z, Weng CY, Zhang RJ, Wang XH (2009) Gradient hydrogel construct based on an improved cell assembling system. J Bioact Compat Polym 24:84–99

    Article  CAS  Google Scholar 

  191. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM et al (2004) Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng 10(9–10):1566–1576

    CAS  Google Scholar 

  192. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K et al (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595

    Article  CAS  Google Scholar 

  193. Cheng J, Lin F, Liu HX, Yan YN, Wang XH, Zhang R et al (2008) Rheological properties of cell-hydrogel composites extruding through small-diameter tips. J Manuf Sci Eng Trans ASME 130(2):021014

    Article  Google Scholar 

  194. Xu M, Wang X, Yan Y, Yao R, Ge Y (2010) An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials 31(14):3868–3877

    Article  CAS  Google Scholar 

  195. Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16(8):2675–2685

    Article  CAS  Google Scholar 

  196. Chang R, Sun W (2008) Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A 14(1):41–48

    Article  CAS  Google Scholar 

  197. Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19(5):1908–1913

    Article  CAS  Google Scholar 

  198. Vozzi G, Flaim C, Ahluwalia A, Bhatia S (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24(14):2533–2540

    Article  CAS  Google Scholar 

  199. Zhang T, Yan YN, Wang XH, Xiong Z, Lin F, Wu RD et al (2007) Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury. J Bioact Compat Polym 22(1):19–29

    Article  CAS  Google Scholar 

  200. Xu MG, Wang XH, Yan YN, Yao R, Ge YK (2010) An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials 31(14):3868–3877

    Article  CAS  Google Scholar 

  201. Rucker M, Laschke MW, Junker D, Carvalho C, Schramm A, Mulhaupt R et al (2006) Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 27(29):5027–5038

    Article  CAS  Google Scholar 

  202. Wang XH, Yan YN, Pan YQ, Xiong Z, Liu HX, Cheng B et al (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12(1):83–90

    Article  CAS  Google Scholar 

  203. Skardal A, Zhang JX, McCoard L, Xu XY, Oottamasathien S, Prestwich GD (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16(8):2675–2685

    Article  CAS  Google Scholar 

  204. Xu W, Wang XH, Yan YN, Zheng W, Xiong Z, Lin F et al (2007) Rapid prototyping three-dimensional cell/gelatin/fibrinogen constructs for medical regeneration. J Bioact Compat Polym 22(4):363–377

    Article  CAS  Google Scholar 

  205. Yan YN, Wang XH, Xiong Z, Liu HX, Liu F, Lin F et al (2005) Direct construction of a three-dimensional structure with cells and hydrogel. J Bioact Compat Polym 20(3):259–269

    Article  CAS  Google Scholar 

  206. Yan YN, Wang XH, Pan YQ, Liu HX, Cheng J, Xiong Z et al (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26(29): 5864–5871

    Article  CAS  Google Scholar 

  207. Landers R, Hubner U, Schmelzeisen R, Mulhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447

    Article  CAS  Google Scholar 

  208. Maher PS, Keatch RP, Donnelly K, Mackay RE, Paxton JZ (2009) Construction of 3D biological matrices using rapid prototyping technology. Rapid Prototyping J 15(3):204–210

    Article  Google Scholar 

  209. Fedorovich NE, Swennen I, Girones J, Moroni L, van Blitterswijk CA, Schacht E et al (2009) Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules 10(7):1689–1696

    Article  CAS  Google Scholar 

  210. Yousefi AM, Gauvin C, Sun L, DiRaddo RW, Fernandes J (2007) Design and fabrication of 3D-plotted polymeric scaffolds in functional tissue engineering. Polym Eng Sci 47(5): 608–618

    Article  CAS  Google Scholar 

  211. Xu W, Wang X, Yan Y, Zhang R (2008) Rapid protyping of polyurethane for the creation of vascular systems. J Bioact Compat Polym 23:103–114

    Article  CAS  Google Scholar 

  212. Xie BJ, Parkhill RL, Warren WL, Smay JE (2006) Direct writing of three-dimensional polymer scaffolds using colloidal gels. Adv Funct Mater 16(13):1685–1693

    Article  CAS  Google Scholar 

  213. Kullenberg J, Rosatini F, Vozzi G, Bianchi F, Ahluwalia A, Domenici C (2008) Optimization of PAM scaffolds for neural tissue engineering: preliminary study on an SH-SY5Y cell line. Tissue Eng Part A 14(6):1017–1023

    Article  CAS  Google Scholar 

  214. Mattioli-Belmonte M, Vozzi G, Kyriakidou K, Pulieri E, Lucarini G, Vinci B et al (2008) Rapid-prototyped and salt-leached PLGA scaffolds condition cell morpho-functional behavior. J Biomed Mater Res A 85A(2):466–476

    Article  CAS  Google Scholar 

  215. Bianchi F, Vassalle C, Simonetti M, Vozzi G, Domenici C, Ahluwalia A (2006) Endothelial cell function on 2D and 3D micro-fabricated polymer scaffolds: applications in cardiovascular tissue engineering. J Biomater Sci Polym Ed 17(1–2):37–51

    Article  CAS  Google Scholar 

  216. Tartarisco G, Gallone G, Carpi F, Vozzi G (2009) Polyurethane unimorph bender ­microfabricated with pressure assisted microsyringe (PAM) for biomedical applications. Mater Sci Eng C Mater Biol Appl 29(6):1835–1841

    Article  CAS  Google Scholar 

  217. Sachs E, Cima M, Cornie J (1990) Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP Ann Manuf Technol 39(1):201–204

    Article  Google Scholar 

  218. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11–12):1658–1666

    Article  CAS  Google Scholar 

  219. Cima M, Sachs E, Fan TL, Bredt JF, Michaels SP, Khanuja S, et al (1995) Three-dimensional printing techniques. United States Patent No. 5387380

    Google Scholar 

  220. Pfister A, Landers R, Laib A, Hubner U, Schmelzeisen R, Mulhaupt R (2004) Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Part A Polym Chem 42(3):624–638

    Article  CAS  Google Scholar 

  221. Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C Biomim Supramol Syst 20(1–2):49–56

    Article  Google Scholar 

  222. Utela BR, Storti D, Anderson RL, Ganter M (2008) A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process 10:96–104

    Article  Google Scholar 

  223. Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S et al (2007) Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C Biomim Supramol Syst 27(3):372–376

    Article  CAS  Google Scholar 

  224. Sun J, Ng JH, Fuh YH, Wong YS, Loh HT, Xu Q (2009) Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead. Microsyst Technol 15(9): 1437–1448

    Article  CAS  Google Scholar 

  225. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ (1996) Solid free-form fabrication of drug delivery devices. J Control Release 40(1–2):77–87

    Article  CAS  Google Scholar 

  226. Sanjana NE, Fuller SB (2004) A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods 136(2):151–163

    Article  Google Scholar 

  227. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    CAS  Google Scholar 

  228. Koegler WS, Griffith LG (2004) Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomaterials 25(14):2819–2830

    Article  CAS  Google Scholar 

  229. Cui XF, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31):6221–6227

    Article  CAS  Google Scholar 

  230. Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT (2003) Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24(8):1487–1497

    Article  CAS  Google Scholar 

  231. Yeong WY, Chua CK, Leong KF, Chandrasekaran M, Lee MW (2007) Comparison of drying methods in the fabrication of collagen scaffold via indirect rapid prototyping. J Biomed Mater Res B Appl Biomater 82B(1):260–266

    Article  CAS  Google Scholar 

  232. Sastry SV, Nyshadham JR, Fix JA (2000) Recent technological advances in oral drug delivery—a review. Pharm Sci Technolo Today 3(4):138–145

    Article  CAS  Google Scholar 

  233. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378

    Article  CAS  Google Scholar 

  234. Suwanprateeb J (2006) Improvement in mechanical properties of three-dimensional printing parts made from natural polymers reinforced by acrylate resin for biomedical applications: a double infiltration approach. Polym Int 55(1):57–62

    Article  CAS  Google Scholar 

  235. Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 272A(2):497–502

    Article  Google Scholar 

  236. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130

    Article  CAS  Google Scholar 

  237. Ovsianikov A, Deiwick A, Van Vlierberghe S, Dubruel P, Moeller L, Draeger G et al (2011) Laser fabrication of 3D CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomaterials 12(4):851–858

    CAS  Google Scholar 

  238. Smay JE, Cesarano J, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18(14):5429–5437

    Article  CAS  Google Scholar 

  239. Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE et al (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A 83A(3):747–758

    Article  CAS  Google Scholar 

  240. Geng L, Feng W, Hutmacher DW, Wong YS, Loh HT, Fuh JYH (2005) Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyping J 11(2):90–97

    Article  Google Scholar 

  241. Yan YN, Xiong Z, Hu YY, Wang SG, Zhang RJ, Zhang C (2003) Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition. Mater Lett 57(18):2623–2628

    Article  CAS  Google Scholar 

  242. Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2(4):265–271

    Article  CAS  Google Scholar 

  243. Sastry SV, Nyshadham JR, Fix JA (2000) Recent technological advances in oral drug delivery—a review. Pharm Sci Technolo Today 3(4):138–145

    Article  CAS  Google Scholar 

  244. Hollister SJ (2006) Porous scaffold design for tissue engineering. Nat Mater 5(7):590–590

    Article  CAS  Google Scholar 

  245. Rumi M, Ehrlich JE, Heikal AA, Perry JW, Barlow S, Hu ZY et al (2000) Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives. J Am Chem Soc 122(39):9500–9510

    Article  CAS  Google Scholar 

  246. Kuebler SM, Braun KL, Zhou WH, Cammack JK, Yu TY, Ober CK et al (2003) Design and application of high-sensitivity two-photon initiators for three-dimensional microfabrication. J Photochem Photobiol A Chem 158(2–3):163–170

    Article  CAS  Google Scholar 

  247. Cellesi F, Tirelli N, Hubbell JA (2004) Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Biomaterials 25(21):5115–5124

    Article  CAS  Google Scholar 

  248. Niu GG, Zhang HB, Song L, Cui XP, Cao H, Zheng YD et al (2008) Thiol/acrylate-modified PEO-PPO-PEO triblocks used as reactive and thermosensitive copolymers. Biomacromolecules 9(10):2621–2628

    Article  CAS  Google Scholar 

  249. Niu GG, Du FY, Song L, Zhang HB, Yang J, Cao H et al (2009) Synthesis and characterization of reactive poloxamer 407 s for biomedical applications. J Control Release 138(1):49–56

    Article  CAS  Google Scholar 

  250. Shu XZ, Liu YC, Palumbo FS, Lu Y, Prestwich GD (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25(7–8):1339–1348

    CAS  Google Scholar 

  251. Du YJ, Brash JL (2003) Synthesis and characterization of thiol-terminated poly(ethylene oxide) for chemisorption to gold surface. J Appl Polym Sci 90(2):594–607

    Article  CAS  Google Scholar 

  252. Brink KS, Yang PJ, Temenoff JS (2009) Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo poly(ethylene glycol) fumarate and poly(ethylene glycol)dithiol. Acta Biomater 5(2):570–579

    Article  CAS  Google Scholar 

  253. Aimetti AA, Machen AJ, Anseth KS (2009) Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30(30): 6048–6054

    Article  CAS  Google Scholar 

  254. Govender S, Swart R (2008) Surfactant formulations for multi-functional surface modification. Colloids Surf A Physicochem Eng Asp 331(1–2):97–102

    Article  CAS  Google Scholar 

  255. Lee TY, Bowman CN (2006) The effect of functionalized nanoparticles on thiol-ene polymerization kinetics. Polymer 47(17):6057–6065

    Article  CAS  Google Scholar 

  256. Rydholm AE, Bowman CN, Anseth KS (2005) Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials 26(22):4495–4506

    Article  CAS  Google Scholar 

  257. Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA (2003) Cell-responsive synthetic hydrogels. Adv Mater 15(11):888–892

    Article  CAS  Google Scholar 

  258. Liang HC, Chang WH, Liang HF, Lee MH, Sung HW (2004) Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J Appl Polym Sci 91(6):4017–4026

    Article  CAS  Google Scholar 

  259. Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light ­photoinitiating systems on cultured NIH/3 T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11(5):439–457

    Article  CAS  Google Scholar 

  260. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26(11):1211–1218

    Article  CAS  Google Scholar 

  261. Kizilel S, Sawardecker E, Teymour F, Perez-Luna VH (2006) Sequential formation of covalently bonded hydrogel multilayers through surface initiated photopolymerization. Biomaterials 27(8):1209–1215

    Article  CAS  Google Scholar 

  262. Desai PN, Yuan Q, Yang H (2010) Synthesis and characterization of photocurable polyamidoamine dendrimer hydrogels as a versatile platform for tissue engineering and drug delivery. Biomacromolecules 11(3):666–673

    Article  CAS  Google Scholar 

  263. Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJA (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30(3):344–353

    Article  CAS  Google Scholar 

  264. Duan SF, Zhu W, Yu L, Ding JD (2005) Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel. Chin Sci Bull 50(11):1093–1096

    Article  CAS  Google Scholar 

  265. Sarac AS (1999) Redox polymerization. Prog Polym Sci 24(8):1149–1204

    Article  CAS  Google Scholar 

  266. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001

    Article  CAS  Google Scholar 

  267. Langer R (2007) Editorial: tissue engineering: perspectives, challenges, and future directions. Tissue Eng 13(1):1–2

    Article  Google Scholar 

  268. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  CAS  Google Scholar 

  269. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99(8):4769–4774

    Article  CAS  Google Scholar 

  270. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564): 2418–2421

    Article  CAS  Google Scholar 

  271. L’heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12(1):47–56

    Google Scholar 

  272. L’heureux N, Dusserre N, Konig G, Horgan M, Kyles A, Gregory CR et al (2004) First use of a completely biological human tissue engineered blood vessel in a primate model. Circulation 110(17):508–508

    Google Scholar 

  273. Hannachi IE, Yamato M, Okano T (2009) Cell sheet technology and cell patterning for biofabrication. Biofabrication 1(2):022002

    Article  CAS  Google Scholar 

  274. Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27(27):4765–4774

    Article  CAS  Google Scholar 

  275. Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T (2006) Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng 12(3):499–507

    Article  CAS  Google Scholar 

  276. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E et al (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351(12):1187–1196

    Article  CAS  Google Scholar 

  277. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6(2):139–147

    Article  CAS  Google Scholar 

  278. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M et al (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6(7):2494–2500

    Article  CAS  Google Scholar 

  279. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256

    Article  CAS  Google Scholar 

  280. Wang W, Huang Y, Grujicic M, Chrisey DB (2008) Study of impact-induced mechanical effects in cell direct writing using smooth particle hydrodynamic method. J Manuf Sci Eng Trans ASME 130(2):021012

    Article  Google Scholar 

  281. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  CAS  Google Scholar 

  282. Wilson WC, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 272A(2):491–496

    Article  Google Scholar 

  283. Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7(8):1123–1127

    Article  CAS  Google Scholar 

  284. Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    Article  CAS  Google Scholar 

  285. Yamazoe H, Tanabe T (2009) Cell micropatterning on an albumin-based substrate using an inkjet printing technique. J Biomed Mater Res A 91A(4):1202–1209

    Article  CAS  Google Scholar 

  286. Calvert P (2007) Printing cells. Science 318(5848):208–209

    Article  CAS  Google Scholar 

  287. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917

    Article  CAS  Google Scholar 

  288. Skardal A, Zhang JX, Prestwich GD (2010) Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31(24):6173–6181

    Article  CAS  Google Scholar 

  289. Lee YB, Polio S, Lee W, Dai GH, Menon L, Carroll RS et al (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223(2): 645–652

    Article  CAS  Google Scholar 

  290. Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F et al (2010) Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods 16(1):157–166

    Article  CAS  Google Scholar 

  291. Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL et al (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A 14(3):413–421

    Article  CAS  Google Scholar 

  292. Smith CM, Christian JJ, Warren WL, Williams SK (2007) Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng 13(2):373–383

    Article  CAS  Google Scholar 

  293. Mironov V, Prestwich G, Forgacs G (2007) Bioprinting living structures. J Mater Chem 17(20):2054–2060

    Article  CAS  Google Scholar 

  294. Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 272(2):497–502

    Article  Google Scholar 

  295. Wilson WC Jr, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 272(2):491–496

    Article  Google Scholar 

  296. Kim G, Son J, Park S, Kim W (2008) Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol Rapid Commun 29(19):1577–1581

    Article  CAS  Google Scholar 

  297. Sun W, Starly B, Nam J, Darling A (2005) Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput Aided Des 37(11):1097–1114

    Article  Google Scholar 

  298. Lian Q, Li DC, Tang YP, Zhang YR (2006) Computer modeling approach for a novel internal architecture of artificial bone. Comput Aided Des 38(5):507–514

    Article  Google Scholar 

  299. Hollister SJ, Lin CY (2007) Computational design of tissue engineering scaffolds. Comput Methods Appl Mech Eng 196(31–32):2991–2998

    Article  Google Scholar 

  300. Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos Trans R Soc Lond A 367(1895):1993–2009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dubruel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S., Dubruel, P. (2013). Exploring the Future of Hydrogels in Rapid Prototyping: A Review on Current Trends and Limitations. In: Antoniac, I. (eds) Biologically Responsive Biomaterials for Tissue Engineering. Springer Series in Biomaterials Science and Engineering, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4328-5_9

Download citation

Publish with us

Policies and ethics