Modeling and Numerical Analysis of a Cervical Spine Unit

Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 1)


The main objective of this study was to obtain a sufficiently accurate model of a functional unit of human cervical spine, both implanted and non-implanted, and to analyze the biomechanical behavior of the implanted model, using Finite Element Method (FEM). Based on CT scans and 3D reconstruction techniques a multi-solid model that accurately reproduces the geometry of a cervical vertebra was developed. Using CAD techniques, a second model of functional unit of human cervical spine, both implanted and non-implanted, was developed. The developed model guarantees that the functional unit geometry can be imported and easily handled with ANSYS software, without compromising the functionality that this geometry accomplishes. The FEM was used to determine the stresses and strains acting at the bone–screws interfaces, during a flexion movement of the head.


Cervical Spine Intervertebral Disc Facet Joint Bone Plate Bone Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ANSYS Inc. (2005) ANSYS structural analysis guide. Ansys Release 10.0. SAS IP, Inc., U.S.A. pp 26-35, 185–194Google Scholar
  2. 2.
    Bankman IN (2000) Handbook of medical imaging. Processing and analysis. Academic, New YorkGoogle Scholar
  3. 3.
    Benhabib B (2003) Manufacturing-design, production, automation and integration. Marcel Dekker Inc., New YorkCrossRefGoogle Scholar
  4. 4.
    Benzel E, Muehlbauer E, Orrico K (2001) New spin on spine: introducing decade of the spine initiative. JD AANS Bull 10(4):43Google Scholar
  5. 5.
    Benzel EC (2001) Biomechanics of spine stabilization. Thieme, New YorkGoogle Scholar
  6. 6.
  7. 7.
    Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Articulated spine models for 3-D reconstruction from partial radiographic data. IEEE Trans Biomed Eng 55(11):2565–2574CrossRefGoogle Scholar
  8. 8.
    Bossart PL, Martz HE, Hollerbach K (1996) Finite element analysis of human joints: image processing and meshing issues. Proc Int Conf Image Process ICIP-96(2):285–288Google Scholar
  9. 9.
    Bozdoc M (2003) The history of CAD. Accessed 20 Aug 2010
  10. 10.
    Bralla JG (1999) Design for manufacturability handbook, 2nd edn. McGraw-Hill Professional, New YorkGoogle Scholar
  11. 11.
  12. 12.
    Cameron BM, Manduca A, Robb RA (1995) Surface generation for virtual reality displays with a limited polygonal budget. In: Proceedings of the 1995 international conference on image processing. Washington D.C., pp 23–26Google Scholar
  13. 13.
    Chen SH, Zhong ZC, Chen CS, Chen WJ, Hung C (2009) Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys 31(2):244–253CrossRefGoogle Scholar
  14. 14.
    Chiyokura H (1988) Solid modelling with DESIGNBASE—theory and implementation. Addison-Wesley Publishing Company, BostonGoogle Scholar
  15. 15.
    Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press LLC, Boca Raton, FLGoogle Scholar
  16. 16.
    Cukovic S, Devedzic G, Ivanovic L, Zecevic Lukovic T, Subburaj K (2010) Development of 3D kinematic model of the spine for idiopathic scoliosis simulation. J Comput Aided Des Appl 7(1):153–161Google Scholar
  17. 17.
    DICOM Web site (2010)
  18. 18.
    Eberlein R, Holzapfel GA, Fröhlich M (2004) Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus. Comput Mech 34(2):147–163CrossRefGoogle Scholar
  19. 19.
    Ern A, Guermond JL (2004) Theory and practice of finite elements. Springer, NJGoogle Scholar
  20. 20.
    Ezquerro F, Simón A, Prado M, Pérez A (2004) Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation. Med Eng Phys 26(1):11–22CrossRefGoogle Scholar
  21. 21.
    Geomagic (2009) Geomagic studio 11: knowledge base—online support.
  22. 22.
    Glossary of Spinal Terms (2009) Accessed 20 Aug 2010
  23. 23.
    Gonugunta V, Krishnaney AA, Benzel EC (2005) Anterior cervical plating. Neurol India 53(4):424–432CrossRefGoogle Scholar
  24. 24.
    Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Pearson Prentice Hall, NJGoogle Scholar
  25. 25.
  26. 26.
    Harms J (2010) Spinal disease information portal.
  27. 27.
    Henry RW (2007) Silicone plastination of biological tissue: cold-temperature technique. North carolina technique and products. J Int Soc Plastination 22:15–19Google Scholar
  28. 28.
    Hoffmann CM (1997) Solid modeling. In: Goodman JE, O’Rourke J (eds) CRC handbook on discrete and computational geometry. CRC Press, Boca Raton, FL, pp 863–880, Google Scholar
  29. 29.
    ICB-Dent Web site (2005) Integration of clinical and biomechanical competencies into on-line course material for prosthetic dentistry and implant dentistry.
  30. 30.
    Iliescu A, Gavrilescu D (1976) Anatomia funcţională şi biomecanică. Editura Sport-Turism BucurestiGoogle Scholar
  31. 31.
    Kadoury S, Paragios N (2009) Surface/volume-based articulated 3D spine inference through markov random fields. In: Proceedings of the 12th international conference on medical image computing and computer-assisted intervention: Part II. Springer, Berlin, Heidelberg, pp 92–99Google Scholar
  32. 32.
    Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482CrossRefGoogle Scholar
  33. 33.
    Kohnke P (2001) Ansys Inc. Theory manual, 12th edn. SAS IP, Inc. U.S.A., pp 27–49, 1040–1049Google Scholar
  34. 34.
    Kurtz SM, Edidin AA (2006) Spine technology handbook. Elsevier Academic Press, New YorkGoogle Scholar
  35. 35.
    LaCourse DE (1995) Handbook of solid modeling. McGraw-Hill, Inc., New YorkGoogle Scholar
  36. 36.
    Li H, Wang Z (2006) Intervertebral disc biomechanical analysis using the finite element modeling based on medical images. Comput Med Imaging Graph 30(6):363–370CrossRefGoogle Scholar
  37. 37.
    Lodygowski T, Witold K, Wierszycky M (2005) Three-dimensional nonlinear finite element model of the human lumbar spine segment. Acta Bioeng Biomech 7(2):17–28Google Scholar
  38. 38.
    Materialise (2009) Mimics 10.01 support files.
  39. 39.
    Owen SJ, Canann SA, Saigal S (1997) Pyramid elements for maintaining tetrahedra to hexahedra conformability, AMD-Vol.220. In: Proceedings special session on trends in unstructured mesh generation: 1997 Joint ASME/ASCE/SES Summer Meeting, Northwestern University, Evanston, IL, 29 June–2 July 1997, pp 123–129Google Scholar
  40. 40.
    Panjabi MM (1998) Cervical spine models for biomechanical research. Spine 23(24):2684–2700CrossRefGoogle Scholar
  41. 41.
    Papilian V (2006) Anatomia omului, vol. I: aparatul locomotor. Editura ALL bucurestiGoogle Scholar
  42. 42.
    Pianykh OS (2008) Digital imaging and communications in medicine (DICOM): a practical introduction and survival guide. Springer, Berlin, HeidelbergGoogle Scholar
  43. 43.
    Pitzen T, Kettler A, Drumm J, Nabhan A, Steudel WI, Claes L, Wilke HJ (2007) Cervical spine disc prosthesis: radiographic, biomechanical and morphological post mortal findings 12 weeks after implantation. A retrieval example. Eur Spine J 16(7):1015–1020CrossRefGoogle Scholar
  44. 44.
    Requicha A (1996) Geometric modeling: a first course.∼requicha/book.html
  45. 45.
    Rhinoceros (2007) NURBS modeling for Windows. Modeling tools for designers.
  46. 46.
    Sora MC (2007) Exposy plastination of biological tissue: E12 Ultra-thin technique. J Int Soc Plastination 22:40–45Google Scholar
  47. 47.
    Standring S (2005) Gray’s anatomy: the anatomical basis of clinical practice, 39th edn. Elsevier, Churchill-LivingstoneGoogle Scholar
  48. 48.
    Starly B, Darling A, Gomez C, Nam J, Sun W, Shokoufandeh A, Regli W (2004) Image based bio-cad modeling and its applications to biomedical and tissue engineering. In: Proceedings of the ninth ACM symposium on solid modeling and applications, Eurographics association, Switzerland, pp 273–278Google Scholar
  49. 49.
    Starly B, Fang Z, Sun W, Shokoufandeh A, Regli W (2005) Three-dimensional reconstruction for medical-CAD modeling. J Comput Aided Des Appl 2(1–4):431–438Google Scholar
  50. 50.
    Stoia DI (2008) Modelarea, dezvoltarea si testarea implanturilor pentru coloana vertebrala. Editura politehnica timisoaraGoogle Scholar
  51. 51.
    Stoia DI, Toth-Tascau M (2010) Static equilibrium of the cervical spine. Annals of the Oradea University, Fascicle of Management and Technological Engineering, vol IX(XIX), pp 1163–1168Google Scholar
  52. 52.
    Stryker Web site (2010) Reflex hybrid anterior cervical plate system.
  53. 53.
    Sui HJ, Henry RW (2007) Polyester plastination of biological tissue: Hoffen P45 technique. J Int Soc Plastination 22:78–81Google Scholar
  54. 54.
    Sun W, Lal P (2002) Recent development on computer aided tissue engineering—a review. Comput Methods Programs Biomed 67(2):85–103CrossRefGoogle Scholar
  55. 55.
    Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem J 39(1):29–47CrossRefGoogle Scholar
  56. 56.
    Sun W, Starly B, Nam J, Darling A (2005) Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput Aided Des 37(11):1097–1114CrossRefGoogle Scholar
  57. 57.
    Synthes Web site (2010) Products.
  58. 58.
    Taylor LD (1992) Computer aided design. Addison Wesley, England. Accessed 18 Feb 2010Google Scholar
  59. 59.
    Tejszerka D, Gzic M (1999) Biomechanical model of the human cervical spine. Acta Bioeng Biomech 1(2):39–48Google Scholar
  60. 60.
    Teo EC, Ng HW (2004) The biomechanical response of lower cervical spine under axial, flexion and extension loading using FE method. Int J Comput Appl Tech 21(1/2):8–15CrossRefGoogle Scholar
  61. 61.
    Thacker BH, Nicolella DP, Kumaresan S, Yoganandan N, Pintar FA (2001) Probabilistic finite element analysis of the human lower cervical spine. J Math Modeling Sci Comput 13(1–2):12–21Google Scholar
  62. 62.
    Volker KH, Sonntag MD (2008) Discovery of the spine specialist: instrumentation of the ­cervical spine. Barrow Neurological Institute, Phoenix, ArizonaGoogle Scholar
  63. 63.
    White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. J. B. Lippincott, PhiladelphiaGoogle Scholar
  64. 64.
    Wills L, Cross JH (1996) Recent Trends and Open Issues in Reverse Engineering. Automated Software Engineering, 3, Kluwer Academic Publishers, Boston, pp 165–172Google Scholar
  65. 65.
    Wu JSS, Lin HC, Chen JH (2009) Geometrical nonlinear analysis of the spinal motion ­segments by poroelastic finite element method. In: Proceedings of computer science and information engineering, 2009 WRI World Congress, vol 5, Los Angles, 31 Mar–2 Apr 2009, pp 357–361Google Scholar
  66. 66.
    Yoganandan N, Kumaresan SC, Voo L, Pintar FA, Larson SJ (1996) Finite element modeling of the C4–C6 cervical spine unit. Med Eng Phys 18(7):569–574CrossRefGoogle Scholar
  67. 67.
    Yognandan N, Kumaresan S, Voo L, Pintar F (1996) Finite element applications in human cervical spine modeling. Spine 21(15):1824–1834CrossRefGoogle Scholar
  68. 68.
    Zhang QH, Teo EC (2008) Finite element application in implant research for treatment of lumbar degenerative disc disease. Med Eng Phys 30(10):1246–1256CrossRefGoogle Scholar
  69. 69.
    Zimmer Web site Spine (2009) SC-AcuFix® anterior cervical plates.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Politehnica University of TimisoaraTimisoaraRomania

Personalised recommendations