Development of Bioabsorbable Interference Screws: How Biomaterials Composition and Clinical and Retrieval Studies Influence the Innovative Screw Design and Manufacturing Processes

Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 1)


The current development of bioresorbable materials provided the support for improvement of the clinical performance of the interference screws used during knee-ligament reconstruction. In general, commercially available biodegradable interference screws used in clinical practice are chemically based on degradable, but now a trend to use biodegradable composite materials using the same synthetic biodegradable polymers as matrix reinforced with biodegradable ceramics could be observed. Hydroxyapatite or tricalcium phosphate are used as ceramics in order to reduce the foreign body reaction and increase osteoconduction and mechanical properties of the biodegradable composite materials. In our study several new design features of an innovative interference screw were proposed in order to ameliorate press-fit fixation without damaging the graft based on clinical experience, retrieval analysis of some failed screw, and finite element simulation. We proposed a self-tapping screw with conical shape and three cutting flutes at the distal end and cylindrical shape at the proximal end. The clinical performance of an interference screw is assured by the combination between the clinical technique, screw design, and biodegradable composite material properties, which guarantees the integrity of the screw during insertion, the tissue regrowth, and the stability of fixation.


Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Tibial Tunnel Interference Screw Fuse Deposition Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bach BR Jr, Jones GT, Sweet FA, Hager CA (1994) Arthroscopy-assisted anterior cruciate ligament reconstruction using patellar tendon substitution. Two to four-year follow-up results. Am J Sports Med 22:758–767CrossRefGoogle Scholar
  2. 2.
    Kurosaka M, Yoshiya S, Andrish JT (1987) A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 15:225–229CrossRefGoogle Scholar
  3. 3.
    Lambert KL (1983) Vascularized patellar tendon graft with rigid internal fixation for anterior cruciate ligament insufficiency. Clin Orthop 172:85–89Google Scholar
  4. 4.
    Kurzweil PR, Frogameni AD, Jackson DW (1995) Tibial interference screw removal following anterior cruciate ligament reconstruction. Arthroscopy 11:289–291CrossRefGoogle Scholar
  5. 5.
    Sidhu DS, Wroble RR (1997) Intraarticular migration of a femoral interference fit screw. A complication of anterior cruciate ligament reconstruction. Am J Sports Med 25:268–271CrossRefGoogle Scholar
  6. 6.
    Caborn DNM, Coen M, Neef R, Hamilton D, Nyland J, Johnson DL (1998) Quadrupled semitendinosus-gracilis autograft fixation in the femoral tunnel: a comparison between a metal and a bioabsorbable interference screw. Arthroscopy 14:241–245CrossRefGoogle Scholar
  7. 7.
    Caborn DNM, Urban WP Jr, Johnson DL, Nyland J, Pienkowski D (1997) Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon-bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 13:229–232CrossRefGoogle Scholar
  8. 8.
    Johnson LL, van Dyk GE (1996) Metal and biodegradable interference screws: comparison of failure strength. Arthroscopy 12:452–456CrossRefGoogle Scholar
  9. 9.
    Kaeding C, Farr J, Kavanaugh T, Pedroza A (2005) A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy 21:147–151CrossRefGoogle Scholar
  10. 10.
    Marti C, Imhoff AB, Bahrs C, Romero J (1997) Metallic versus bioabsorbable interference screws for fixation of bone-patellar tendon-bone autograft in arthroscopic anterior cruciate ligament reconstruction. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5:217–221CrossRefGoogle Scholar
  11. 11.
    Pena F, Grøntvedt T, Brown GA, Aune AK, Engebretsen L (1996) Comparison of failure strength between metallic and absorbable interference screws. Influence of insertion torque, tunnel-bone block gap, bone mineral density, and interference. Am J Sports Med 24:329–334CrossRefGoogle Scholar
  12. 12.
    Walton M (1999) Absorbable and metal interference screws: comparison of graft security during healing. Arthroscopy 15:818–826CrossRefGoogle Scholar
  13. 13.
    Weiler A, Windhagen HJ, Raschke MJ, Laumeyer A, Hoffmann RF (1998) Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws. Am J Sports Med 26:119–126CrossRefGoogle Scholar
  14. 14.
    Bush-Joseph CA, Bach BR Jr (1998) Migration of femoral interference screw after anterior cruciate ligament reconstruction. Am J Knee Surg 11:32–34Google Scholar
  15. 15.
    Fabbriciani C, Mulas PD, Ziranu F, Deriu L, Zarelli D, Milano G (2005) Mechanical analysis of fixation methods for anterior cruciate ligament reconstruction with hamstring tendon graft. An experimental study in sheep knees. Knee 12:135–138CrossRefGoogle Scholar
  16. 16.
    Fu FH, Bennett C, Ma CB (2000) Current trends in anterior cruciate ligament reconstruction. Part II: Operative procedures and clinical correlations. Am J Sports Med 28:124–130Google Scholar
  17. 17.
    Weimann A, Rodieck M, Zantop T, Hassenpflug J, Petersen W (2005) Primary stability of hamstring graft fixation with biodegradable suspension versus interference screws. Arthroscopy 21:266–274CrossRefGoogle Scholar
  18. 18.
    Appelt A, Baier M (2007) Recurrent locking of knee joint caused by intraarticular migration of bioabsorbable tibial interference screw after arthroscopic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 15:378–380CrossRefGoogle Scholar
  19. 19.
    Lembeck B, Wülker N (2005) Severe cartilage damage by broken poly-l-lactic acid (PLLA) interference screw after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 13: 283–286CrossRefGoogle Scholar
  20. 20.
    Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopaedic devices. Biomaterials 21:2335–2346CrossRefGoogle Scholar
  21. 21.
    Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  22. 22.
    Park A, Cima LG (1996) In vitro cell response to differences in poly-L-lactide crystallinity. J Biomed Res 31:117–130CrossRefGoogle Scholar
  23. 23.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRefGoogle Scholar
  24. 24.
    Chujo K, Kobayashi H, Suzuki J, Tokuhara S (1967) Physical and chemical characteristics polyglycolide. Die Makromolekulare Chemie 100:267–270CrossRefGoogle Scholar
  25. 25.
    Konan S, Haddad FS (2009) A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 16:6–13CrossRefGoogle Scholar
  26. 26.
    Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432–446CrossRefGoogle Scholar
  27. 27.
    Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ε-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23CrossRefGoogle Scholar
  28. 28.
    Hench LL, Wilson J (1993) An introduction to bioceramics, 1st edn. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  29. 29.
    Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite and poly L-lactde (PLLA): Part I. Basic characteristics. Biomaterials 20:859–877CrossRefGoogle Scholar
  30. 30.
    Yasunaga T, Matsusue Y, Furukawa T, Shikinami Y, Okuno M, Nakamura T (1999) Bonding behaviour of ultrahigh strength unsintered hydroxyapatite particles/poly(L-lactide) composites to surface of tibial cortex in rabbits. J Biomed Mater Res 47:412–419CrossRefGoogle Scholar
  31. 31.
    Famery R, Richard N, Boch P (1994) Preparation of alpha-tricalcium and beta-tricalcium phosphate ceramics, with and without magnesium addition. Ceram Int 20:327–336CrossRefGoogle Scholar
  32. 32.
    Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157:259–278Google Scholar
  33. 33.
    Mathieu LM, Bourban PE, Månson JA (2006) Processing of homogeneous ceramic/polymer blends for bioresorbable composites. Compos Sci Technol 66:1606–1614CrossRefGoogle Scholar
  34. 34.
    Blum MF, Garth WP, Lemons JE (1995) The effect of graft rotation on attachment site separation distances in ACL reconstruction. Am J Sports Med 23:282–287CrossRefGoogle Scholar
  35. 35.
    Brodie JT, Torpey BM, Donald GD 3rd, Bade HA 3rd (1996) Femoral interference screw placement through the tibial tunnel: a radiographic evaluation of interference screw divergence angles after endoscopic anterior cruciate ligament reconstruction. Arthroscopy 12:435–440CrossRefGoogle Scholar
  36. 36.
    Abshire BB, McLain RF, Valdevit A, Kambic HE (2001) Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and backout. Spine J 1:408–414CrossRefGoogle Scholar
  37. 37.
    Asnis SE, Ernberg JJ, Bostrom MP, Wright TM, Harrington RM, Tencer A, Peterson M (1996) Cancellous bone screw thread design and holding power. J Orthop Trauma 10:462–469CrossRefGoogle Scholar
  38. 38.
    Battula S, Schoenfeld A, Vrabec G, Njus GO (2006) Experimental evaluation of the holding power/stiffness of the self-tapping bone screws in normal and osteoporotic bone material. Clin Biomech 2:533–537CrossRefGoogle Scholar
  39. 39.
    Brown GA, McCarthy T, Bourgeault CA, Callahan DJ (2000) Mechanical performance of standard and cannulated 4.0-mm cancellous bone screws. J Orthop Res 18:307–312CrossRefGoogle Scholar
  40. 40.
    Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118:391–398CrossRefGoogle Scholar
  41. 41.
    Chizari M, Wang B, Snow M (2007) Experimental and numerical analysis of screw fixation in anterior cruciate ligament reconstruction. Proceedings of the World Congress on Engineering, London, UKGoogle Scholar
  42. 42.
    Herrera A, Martínez F, Iglesias D, Cegońino J, Ibarz E, Gracia L (2010) Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study. BMC Musculoskelet Disord 11:139–146CrossRefGoogle Scholar
  43. 43.
    Kissel CG, Friedersdorf SC, Foltz DS, Snoeyink T (2003) Comparison of pullout strength of small-diameter cannulated and solid-core screws. J Foot Ankle Surg 42:334–338CrossRefGoogle Scholar
  44. 44.
    Mann CJ, Costi JJ, Stanley RM, Dobson PJ (2005) The effect of screw taper on interference fit during load to failure at the soft tissue/bone interface. Knee 12:370–376CrossRefGoogle Scholar
  45. 45.
    Patel PS, Shepherd DE, Hukins DW (2010) The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models. Med Eng Phys 32:822–828CrossRefGoogle Scholar
  46. 46.
    Ricci WM, Tornetta P 3rd, Petteys T, Gerlach D, Cartner J, Walker Z, Russell TA (2010) A comparison of screw insertion torque and pullout strength. J Orthop Trauma 24:374–378CrossRefGoogle Scholar
  47. 47.
    Yerby S, Scott CC, Evans NJ, Messing KL, Carter DR (2001) Effect of cutting flute design on cortical bone screw insertion torque and pullout strength. J Orthop Trauma 15:216–221CrossRefGoogle Scholar
  48. 48.
    Weiler A, Hoffman RFG, Siepe CJ, Kolbeck SF, Südkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28:356–359Google Scholar
  49. 49.
    Weiler A, Hoffmann RF, Stähelin AC, Bail HJ, Siepe CJ, Südkamp NP (1998) Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy 14:29–37CrossRefGoogle Scholar
  50. 50.
    Hansson S, Werke M (2003) The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 36:1247–1258CrossRefGoogle Scholar
  51. 51.
    Hou SM, Hsu CC, Wang JL, Chao CK, Lin J (2004) Mechanical tests and finite element models for bone holding power of tibial locking screws. Clin Biomech 19:738–745CrossRefGoogle Scholar
  52. 52.
    Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J (2006) Multiobjective optimization of tibial locking screw design using a genetic algorithm: evaluation of mechanical performance. J Orthop Res 24:908–916CrossRefGoogle Scholar
  53. 53.
    Ashman RB, Rho JY, Turner CH (1989) Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J Biomech 22:895–900CrossRefGoogle Scholar
  54. 54.
    Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human suchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23:1103–1113CrossRefGoogle Scholar
  55. 55.
    Standard handbook of biomedical engineering and design (2003) In: Kutz M (ed) Bone mechanics, Chapter 8. McGraw-Hill, New York, pp 1–23Google Scholar
  56. 56.
    Williams JL, Lewis JL (1982) Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J Biomech Eng 104:50–56CrossRefGoogle Scholar
  57. 57.
    Bessho M, Ohnishi I, Matsuyama J, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT based finite element method. J Biomech 40:1745–1753CrossRefGoogle Scholar
  58. 58.
    Jovanović JD, Jovanović ML (2010) Finite element modeling of the vertebra with geometry and material properties retrieve from CT-scan data. Facta Universitatis: Mech Eng 8:19–26Google Scholar
  59. 59.
    Perez MA, Fornell P, Garcia-Aznar JM, Doblaret M (2007) Validation of bone remodelling models applied to different bone types using Mimics. Available online at:
  60. 60.
    DeCoster TA, Heetderks DB, Downey DJ, Ferries JS, Jones W (1990) Optimizing bone screw pullout force. J Orthop Trauma 4:169–174CrossRefGoogle Scholar
  61. 61.
    Costi JJ, Kelly AJ, Hearn TC, Martin DK (2001) Comparison of torsional strengths of ­bioabsorbable screws for anterior cruciate ligament reconstruction. Am J Sports Med 29:575–580Google Scholar
  62. 62.
    Buelow JU, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10:80–85CrossRefGoogle Scholar
  63. 63.
    Koranyi E, Bowman E, Knecht CD, Jansen M (1970) Holding power of orthopaedic screws in bone. Clin Orthop 72:283–286Google Scholar
  64. 64.
    Wang Y, Mori R, Ozoe N, Nakai T, Uchio Y (2009) Proximal half angle of the screw thread is a critical design variable affecting the pull-out strength of cancellous bone screws. Clin Biomech 24(9):781–785CrossRefGoogle Scholar
  65. 65.
    Black KP, Saunders MM, Stube KC, Moulton MJ, Jacobs CR (2000) Effects of interference fit screw length on tibial tunnel fixation for anterior cruciate ligament reconstruction. Am J Sports Med 28:846–849Google Scholar
  66. 66.
    Lima SA, Cha JY, Hwang CJ (2008) Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod 78:234–240CrossRefGoogle Scholar
  67. 67.
    Selby JB, Johnson DL, Hester P, Caborn DN (2001) Effect of screw length on bioabsorbable interference screw fixation in a tibial bone tunnel. Am J Sports Med 29:614–619Google Scholar
  68. 68.
    Schatzker J, Sanderson R, Murnaghan JP (1975) The holding power of orthopaedic screws in vivo. Clin Orthop 108:115–122CrossRefGoogle Scholar
  69. 69.
    Rubel I, Fornari E, Miller B, Hayes W (2006) Are self tapping screw similar? A biomechanical study. J Bone Joint Surg Br 88-B:30Google Scholar
  70. 70.
    Bucholz RW, Jones A (1991) Fractures of the shaft of the femur. J Bone Joint Surg Am 73:1561Google Scholar
  71. 71.
    Gausepohl T, Möhring R, Pennig D, Koebke J (2001) Fine thread versus coarse thread. A comparison of the maximum holding power. Injury 32:1–7CrossRefGoogle Scholar
  72. 72.
    Lavi A (2010) Internal fixation using cannulated screws. Technical paper available online:
  73. 73.
    Hoffmann R, Weiler A, Helling HJ, Ktek C, Rehm KE (1997) Local foreign-body reactions to biodegradable implants. A classification. Unfallchirg 100:658–666CrossRefGoogle Scholar
  74. 74.
    Harrington IJ (1976) A bioengineering analysis of force actions at the knee in normal and pathological gait. Biomed Eng 11:167–172Google Scholar
  75. 75.
    Törmälä P (1992) Biodegradable self-reinforced composite materials: manufacturing structure and mechanical properties. Clin Mater 10:29–34CrossRefGoogle Scholar
  76. 76.
  77. 77.
    Zhou W (2010) Selective laser sintering of poly(L-lactide)/carbonated hydroxyapatite porous scaffolds for bone tissue engineering, Tissue Engineering, Chapter 9. University of Hong Kong, Hong Kong, pp 179–204. ISBN 978-953-307-079-7Google Scholar
  78. 78.
    Williams JM, Adewunmi A, Schek RM, Flanagann CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University Politehnica of BucharestBucharestRomania
  2. 2.Colentina Clinical Hospital BucharestBucharestRomania

Personalised recommendations