The Role of Oxidative Stress in the Response of Endothelial Cells to Metals

  • Roman Tsaryk
  • Kirsten Peters
  • Ronald E. Unger
  • Dieter Scharnweber
  • C. James Kirkpatrick
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 1)

Abstract

The involvement of endothelial cells in inflammation and blood vessel formation (angiogenesis) makes them important for the integration of metal implants. Metal degradation products can, however, influence these processes, possibly leading to ineffective wound healing, prolonged inflammation and eventually aseptic loosening of the implant. Different metal degradation processes have been shown to lead to ROS formation. Oxidative stress, therefore, can mediate the reactions of the human body to the implant. While the response of endothelial cells to oxidative stress has been well studied, the effects of ROS produced as the result of metal degradation have not been addressed as yet. Therefore, in this study the reactions of endothelial cells to the products of cathodic half-reaction of corrosion induced directly on Ti6Al4V alloy by electrochemical polarisation were investigated. Furthermore, models were developed to simulate inflammation- and corrosion-induced oxidative stress applied to endothelial cells grown on Ti6Al4V alloy and on cell culture polystyrene (PS) as a control. Endothelial cells grown on Ti6Al4V alloy were shown to be in a state of oxidative stress, which was further increased upon H2O2 treatment or electrochemical polarisation. The role of oxidative stress in aseptic loosening as well as the possibility to interfere with this process for a better therapeutical outcome are discussed in this chapter.

Keywords

Cholesterol Fatigue Manganese Glutathione Polyethylene 

References

  1. 1.
    Bauer TW, Schils J (1999) The pathology of total joint arthroplasty II. Mechanisms of implant failure. Skeletal Radiol 28:483–497CrossRefGoogle Scholar
  2. 2.
    Bikondoa O, Pang CL, Ithinin R, Muryn CA, Onishi H, Thornton G (2006) Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat Mater 5:189–192CrossRefGoogle Scholar
  3. 3.
    Blumenthal NC, Cosma V, Jaffe W, Stuchin S (1994) A new technique for quantitation of metal particulates and metal reaction products in tissues near implants. J Appl Biomater 5:191–193CrossRefGoogle Scholar
  4. 4.
    Bockris JOM, Reddy AKN, Gamboa-Aldeco M (1998) Modern electrochemistry. Plenum, New YorkGoogle Scholar
  5. 5.
    Brauchle M, Funk JO, Kind P, Werner S (1996) Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem 271:21793–21797CrossRefGoogle Scholar
  6. 6.
    Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins mechanisms and consequences. Cardiovasc Res 68:26–36CrossRefGoogle Scholar
  7. 7.
    Case CP, Langkamer VG, James C, Palmer MR, Kemp AJ, Heap PF, Solomon L (1994) Widespread dissemination of metal debris from implants. J Bone Joint Surg Br 76:701–712Google Scholar
  8. 8.
    Clark T, Johnson D (1997) Activation of titanium electrodes for voltammetric detection of oxygen and hydrogen peroxide in alkaline media. Electroanalysis 9:273–278CrossRefGoogle Scholar
  9. 9.
    Clechet P, Martelet C, Martin JR, Olier R (1979) Photoelectrochemical behaviour of TiO2 and formation of hydrogen-peroxide. Electrochim Acta 24:457–461CrossRefGoogle Scholar
  10. 10.
    D’autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824CrossRefGoogle Scholar
  11. 11.
    Davies KJ (1987) Protein damage and degradation by oxygen radicals I general aspects. J Biol Chem 262:9895–9901Google Scholar
  12. 12.
    Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47Google Scholar
  13. 13.
    Davies KJ (2000) Oxidative stress antioxidant defenses and damage removal repair and replacement systems. IUBMB Life 50:279–289CrossRefGoogle Scholar
  14. 14.
    De Bono DP, Yang WD (1995) Exposure to low concentrations of hydrogen peroxide causes delayed endothelial cell death and inhibits proliferation of surviving cells. Atherosclerosis 114:235–245CrossRefGoogle Scholar
  15. 15.
    Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673CrossRefGoogle Scholar
  16. 16.
    Dickinson DA, Moellering DR, Iles KE, Patel RP, Levonen AL, Wigley A, Darley-Usmar VM, Forman HJ (2003) Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol Chem 384:527–537CrossRefGoogle Scholar
  17. 17.
    Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute fibrotic and delayed healing. Front Biosci 9:283–289CrossRefGoogle Scholar
  18. 18.
    Disegi JA (2000) Titanium alloys for fracture fixation implants. Injury 31(Suppl 4):14–17CrossRefGoogle Scholar
  19. 19.
    Doorn PF, Campbell PA, Amstutz HC (1996) Metal versus polyethylene wear particles in total hip replacements. A review. Clin Orthop Relat Res (329 Suppl): S206–S216Google Scholar
  20. 20.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95Google Scholar
  21. 21.
    Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254CrossRefGoogle Scholar
  22. 22.
    Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:S4–S8CrossRefGoogle Scholar
  23. 23.
    Galli F, Piroddi M, Annetti C, Aisa C, Floridi E, Floridi A (2005) Oxidative stress and reactive oxygen species. Contrib Nephrol 149:240–260CrossRefGoogle Scholar
  24. 24.
    Gilbert JL, Zarka L, Chang E, Thomas CH (1998) The reduction half cell in biomaterials corrosion: oxygen diffusion profiles near and cell response to polarized titanium surfaces. J Biomed Mater Res 42:321–330CrossRefGoogle Scholar
  25. 25.
    Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80CrossRefGoogle Scholar
  26. 26.
    Gonzalez-Pacheco FR, Deudero JJ, Castellanos MC, Castilla MA, Alvarez-Arroyo MV, Yague S, Caramelo C (2006) Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol 291:H1395–H1401CrossRefGoogle Scholar
  27. 27.
    Goodman SB (1994) The effects of micromotion and particulate materials on tissue differentiation. Bone chamber studies in rabbits. Acta Orthop Scand Suppl 258:1–43Google Scholar
  28. 28.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRefGoogle Scholar
  29. 29.
    Hallab NJ, Jacobs JJ, Skipor A, Black J, Mikecz K, Galante JO (2000) Systemic metal-protein binding associated with total joint replacement arthroplasty. J Biomed Mater Res 49:353–361CrossRefGoogle Scholar
  30. 30.
    Harris ED (1992) Regulation of antioxidant enzymes. FASEB J 6:2675–2683Google Scholar
  31. 31.
    Harris WH, Schiller AL, Scholler JM, Freiberg RA, Scott R (1976) Extensive localized bone resorption in the femur following total hip replacement. J Bone Joint Surg Am 58:612–618Google Scholar
  32. 32.
    Holmgren A (1995) Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3:239–243CrossRefGoogle Scholar
  33. 33.
    Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 80:268–282Google Scholar
  34. 34.
    Jacobs JJ, Hallab NJ, Skipor AK, Urban RM (2003) Metal degradation products: a cause for concern in metal-metal bearings? Clin Orthop Relat Res (417):139–147Google Scholar
  35. 35.
    Jacobs JJ, Silverton C, Hallab NJ, Skipor AK, Patterson L, Black J, Galante JO (1999) Metal release and excretion from cementless titanium alloy total knee replacements. Clin Orthop Relat Res (358):173–180Google Scholar
  36. 36.
    Jacobs JJ, Skipor AK, Black J, Urban R, Galante JO (1991) Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. J Bone Joint Surg Am 73:1475–1486Google Scholar
  37. 37.
    Jacobs JJ, Skipor AK, Patterson LM, Hallab NJ, Paprosky WG, Black J, Galante JO (1998) Metal release in patients who have had a primary total hip arthroplasty. A prospective controlled longitudinal study. J Bone Joint Surg Am 80:1447–1458Google Scholar
  38. 38.
    Jefferies H, Coster J, Khalil A, Bot J, Mccauley RD, Hall JC (2003) Glutathione. ANZ J Surg 73:517–522CrossRefGoogle Scholar
  39. 39.
    Kalbacova M, Roessler S, Hempel U, Tsaryk R, Peters K, Scharnweber D, Kirkpatrick JC, Dieter P (2007) The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages. Biomaterials 28:3263–3272CrossRefGoogle Scholar
  40. 40.
    Kinov P, Leithner A, Radl R, Bodo K, Khoschsorur GA, Schauenstein K, Windhager R (2006) Role of free radicals in aseptic loosening of hip arthroplasty. J Orthop Res 24:55–62CrossRefGoogle Scholar
  41. 41.
    Konttinen YT, Zhao D, Beklen A, Ma G, Takagi M, Kivela-Rajamaki M, Ashammakhi N, Santavirta S (2005) The microenvironment around total hip replacement prostheses. Clin Orthop Relat Res (430):28–38Google Scholar
  42. 42.
    Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ, Lyn P, Leavy J, Witte L, Joseph-Silverstein J, Al E (1995) Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci U S A 92:4606–4610CrossRefGoogle Scholar
  43. 43.
    Larsson J, Persson C, Tengvall P, Lundqvist-Gustafsson H (2004) Anti-inflammatory effects of a titanium-peroxy gel: role of oxygen metabolites and apoptosis. J Biomed Mater Res A 68:448–457CrossRefGoogle Scholar
  44. 44.
    Lee MC, Yoshino F, Shoji H, Takahashi S, Todoki K, Shimada S, Kuse-Barouch K (2005) Characterization by electron spin resonance spectroscopy of reactive oxygen species generated by titanium dioxide and hydrogen peroxide. J Dent Res 84:178–182CrossRefGoogle Scholar
  45. 45.
    Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine ­phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273: 15366–15372CrossRefGoogle Scholar
  46. 46.
    Lee TM, Chang E, Yang CY (2000) A comparison of the surface characteristics and ion release of Ti6Al4V and heat-treated Ti6Al4V. J Biomed Mater Res 50:499–511CrossRefGoogle Scholar
  47. 47.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689CrossRefGoogle Scholar
  48. 48.
    Li J, Zhang YP, Kirsner RS (2003) Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 60:107–114CrossRefGoogle Scholar
  49. 49.
    Lin HY, Bumgardner JD (2004) In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line. J Biomed Mater Res A 68:717–724CrossRefGoogle Scholar
  50. 50.
    Long M, Rack HJ (1998) Titanium alloys in total joint replacement–a materials science perspective. Biomaterials 19:1621–1639CrossRefGoogle Scholar
  51. 51.
    Lu SC (2000) Regulation of glutathione synthesis. Curr Top Cell Regul 36:95–116CrossRefGoogle Scholar
  52. 52.
    Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280:C719–C741Google Scholar
  53. 53.
    Macdonald SJ (2004) Metal-on-metal total hip arthroplasty: the concerns. Clin Orthop Relat Res (429):86–93Google Scholar
  54. 54.
    Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci U S A 105:18525–18530CrossRefGoogle Scholar
  55. 55.
    Mandelin J, Li TF, Liljestrom M, Kroon ME, Hanemaaijer R, Santavirta S, Konttinen YT (2003) Imbalance of RANKL/RANK/OPG system in interface tissue in loosening of total hip replacement. J Bone Joint Surg Br 85:1196–1201CrossRefGoogle Scholar
  56. 56.
    Marti A (2000) Cobalt-base alloys used in bone surgery. Injury 31(Suppl 4):18–21CrossRefGoogle Scholar
  57. 57.
    Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad, and the ugly. Trends Cell Biol 15:599–607CrossRefGoogle Scholar
  58. 58.
    Meilhac O, Zhou M, Santanam N, Parthasarathy S (2000) Lipid peroxides induce expression of catalase in cultured vascular cells. J Lipid Res 41:1205–1213Google Scholar
  59. 59.
    Mentus SV (2004) Oxygen reduction on anodically formed titanium dioxide. Electrochim Acta 50:27–32CrossRefGoogle Scholar
  60. 60.
    Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037CrossRefGoogle Scholar
  61. 61.
    Milosev I, Metikos-Hukovic M, Strehblow HH (2000) Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 21:2103–2113CrossRefGoogle Scholar
  62. 62.
    Mu Y, Kobayashi T, Sumita M, Yamamoto A, Hanawa T (2000) Metal ion release from ­titanium with active oxygen species generated by rat macrophages in vitro. J Biomed Mater Res 49:238–243CrossRefGoogle Scholar
  63. 63.
    Murphy RC, Johnson KM (2008) Cholesterol reactive oxygen species and the formation of biologically active mediators. J Biol Chem 283:15521–15525CrossRefGoogle Scholar
  64. 64.
    Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581:3641–3651CrossRefGoogle Scholar
  65. 65.
    Ozmen I, Naziroglu M, Okutan R (2005) Comparative study of antioxidant enzymes in tissues surrounding implant in rabbits. Cell Biochem Funct 24:275–281CrossRefGoogle Scholar
  66. 66.
    Pan J, Liao H, Leygraf C, Thierry D, Li J (1998) Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment. J Biomed Mater Res 40:244–256CrossRefGoogle Scholar
  67. 67.
    Peters K, Schmidt H, Unger RE, Otto M, Kamp G, Kirkpatrick CJ (2002) Software-supported image quantification of angiogenesis in an in vitro culture system: application to studies of biocompatibility. Biomaterials 23:3413–3419CrossRefGoogle Scholar
  68. 68.
    Plant SD, Grant DM, Leach L (2005) Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials 26:5359–5367CrossRefGoogle Scholar
  69. 69.
    Pohler OE (2000) Unalloyed titanium for implants in bone surgery. Injury 31(Suppl 4):7–13CrossRefGoogle Scholar
  70. 70.
    Rahman I, Bel A, Mulier B, Lawson MF, Harrison DJ, Macnee W, Smith CA (1996) Transcriptional regulation of gamma-glutamylcysteine synthetase-heavy subunit by oxidants in human alveolar epithelial cells. Biochem Biophys Res Commun 229:832–837CrossRefGoogle Scholar
  71. 71.
    Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW (2003) Cellular regulation by hydrogen ­peroxide. J Am Soc Nephrol 14:S211–S215CrossRefGoogle Scholar
  72. 72.
    Ruef J, Hu ZY, Yin LY, Wu Y, Hanson SR, Kelly AB, Harker LA, Rao GN, Runge MS, Patterson C (1997) Induction of vascular endothelial growth factor in balloon-injured baboon arteries. A novel role for reactive oxygen species in atherosclerosis. Circ Res 81:24–33CrossRefGoogle Scholar
  73. 73.
    Sabokbar A, Pandey R, Quinn JM, Athanasou NA (1998) Osteoclastic differentiation by mononuclear phagocytes containing biomaterial particles. Arch Orthop Trauma Surg 117:136–140CrossRefGoogle Scholar
  74. 74.
    Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG (1986) Oxidant injury of cells DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77:1312–1320CrossRefGoogle Scholar
  75. 75.
    Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63CrossRefGoogle Scholar
  76. 76.
    Senderowicz AM (2003) Small-molecule cyclin-dependent kinase modulators. Oncogene 22:6609–6620CrossRefGoogle Scholar
  77. 77.
    Shiraiwa M, Goto T, Yoshinari M, Koyano K, Tanaka T (2002) A study of the initial attachment and subsequent behavior of rat oral epithelial cells cultured on titanium. J Periodontol 73:852–860CrossRefGoogle Scholar
  78. 78.
    Shono T, Ono M, Izumi H, Jimi SI, Matsushima K, Okamoto T, Kohno K, Kuwano M (1996) Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 16:4231–4239Google Scholar
  79. 79.
    Sinha RK, Morris F, Shah SA, Tuan RS (1994) Surface composition of orthopaedic implant metals regulates cell attachment spreading and cytoskeletal organization of primary human osteoblasts in vitro. Clin Orthop Relat Res (305):258–272Google Scholar
  80. 80.
    Song FM, Kirk DW, Graydon JW, Cormack DE (2002) CO2 corrosion of bare steel under an aqueous boundary layer with oxygen. J Electrochem Soc 149:479–486CrossRefGoogle Scholar
  81. 81.
    Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Gittes GK, Longaker MT (2000) VEGF expression in an osteoblast-like cell line is regulated by a hypoxia response mechanism. Am J Physiol Cell Physiol 278:C853–C860Google Scholar
  82. 82.
    Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C (2006) Aseptic loosening not only a question of wear: a review of different theories. Acta Orthop 77:177–197CrossRefGoogle Scholar
  83. 83.
    Taylor GC, Waddington RJ, Moseley R, Williams KR, Embery G (1996) Influence of titanium oxide and titanium peroxy gel on the breakdown of hyaluronan by reactive oxygen species. Biomaterials 17:1313–1319CrossRefGoogle Scholar
  84. 84.
    Tengvall P, Elwing H, Sjoqvist L, Lundstrom I, Bjursten LM (1989) Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium. Biomaterials 10:118–120CrossRefGoogle Scholar
  85. 85.
    Tengvall P, Lundstrom I, Sjoqvist L, Elwing H, Bjursten LM (1989) Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants. Biomaterials 10:166–175CrossRefGoogle Scholar
  86. 86.
    Trompezinski S, Pernet I, Mayoux C, Schmitt D, Viac J (2000) Transforming growth factor-beta1 and ultraviolet A1 radiation increase production of vascular endothelial growth factor but not endothelin-1 in human dermal fibroblasts. Br J Dermatol 143:539–545CrossRefGoogle Scholar
  87. 87.
    Tsaryk R, Kalbacova M, Hempel U, Scharnweber D, Unger RE, Dieter P, Kirkpatrick CJ, Peters K (2007) Response of human endothelial cells to oxidative stress on Ti6Al4V alloy. Biomaterials 28:806–813CrossRefGoogle Scholar
  88. 88.
    Tsaryk R, Peters K, Unger RE, Scharnweber D, Kirkpatrick CJ (2007) The effects of metal implants on inflammatory and healing processes. Int J Mat Res 98:622–629Google Scholar
  89. 89.
    Tucci M, Baker R, Benghuzzi H, Hughes J (2000) Levels of hydrogen peroxide in tissues adjacent to failing implantable devices may play an active role in cytokine production. Biomed Sci Instrum 36:215–220Google Scholar
  90. 90.
    Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem 264:85–97CrossRefGoogle Scholar
  91. 91.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefGoogle Scholar
  92. 92.
    Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14CrossRefGoogle Scholar
  93. 93.
    Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870Google Scholar
  94. 94.
    Williams DF (1981) Titanium and titanium alloys. In: Williams DF (ed) Biocompatibility of clinical implant materials. CRC, Boca Raton, FLGoogle Scholar
  95. 95.
    Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286CrossRefGoogle Scholar
  96. 96.
    Wooley PH, Schwarz EM (2004) Aseptic loosening. Gene Ther 11:402–407CrossRefGoogle Scholar
  97. 97.
    Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492Google Scholar
  98. 98.
    Yasuda M, Ohzeki Y, Shimizu S, Naito S, Ohtsuru A, Yamamoto T, Kuroiwa Y (1999) Stimulation of in vitro angiogenesis by hydrogen peroxide and the relation with ETS-1 in endothelial cells. Life Sci 64:249–258CrossRefGoogle Scholar
  99. 99.
    Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L, Shi X (2001) Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys 392:311–320CrossRefGoogle Scholar
  100. 100.
    Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester JV, Bourne HR, Devreotes PN, Mccaig CD, Penninger JM (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442:457–460CrossRefGoogle Scholar
  101. 101.
    Zumdahl S (2007) Chemical principles. Brooks Cole, http://www.amazon.com/Chemical-Principles-Steven-S-Zumdahl/dp/061894690X

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Roman Tsaryk
    • 1
  • Kirsten Peters
    • 2
  • Ronald E. Unger
    • 1
  • Dieter Scharnweber
    • 3
  • C. James Kirkpatrick
    • 1
  1. 1.Institute of PathologyUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
  2. 2.Department of Cell BiologyUniversity of RostockRostockGermany
  3. 3.Max Bergman Center of BiomaterialsTechnische Universität DresdenDresdenGermany

Personalised recommendations