Advertisement

Molecular Scissors: From Biomaterials Implant to Tissue Remodeling

Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 1)

Abstract

All type of implantations, especially for non-resorptive materials ­(metallic, hard insoluble polymers) involve an inflammatory response, followed by wound ­healing reaction (angiogenesis, fibroblast activation) and extracellular matrix (ECM) remodeling. An implanted biomaterial interacts not only with mobile cells of physiological body fluids but also with ECM. Almost all tissues (except epithelial tissues) possess an abundant ECM, with various compositions. Many implant failures may be due to an impaired cellular response (including inflammation) but all cell behavior can be influenced by the chemical composition and the physical properties of the ECM. Our group has performed various biomaterials testing in vivo by subcutaneous rat implantation followed by analysis of peri-implant tissues in order to detect inflammatory processes and their consequences.

Keywords

Catalytic Domain Protein Data Bank Root Mean Square Deviation Catalytic Site Wound Repair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abreu T, Silva G (2009) Cell movement: new research trends. Nova Biomedical Books, New YorkGoogle Scholar
  2. 2.
    Agren MS, Jorgensen LN, Andersen M, Viljanto J, Gottrup F (1998) Matrix metalloproteinase 9 level predicts optimal collagen deposition during early wound repair in humans. Br J Surg 85(1):68–71CrossRefGoogle Scholar
  3. 3.
    Arumugam S, Jang YC, Chen-Jensen C, Gibran NS, Isik FF (1999) Temporal activity of plasminogen activators and matrix metalloproteinases during cutaneous wound repair. Surgery 125(6):587–593CrossRefGoogle Scholar
  4. 4.
    Aschi M, Bozzi A, Di Bartolomeo R, Petruzzelli R (2010) The role of disulfide bonds and N-terminus in the structural properties of hepcidins: insights from molecular dynamics simulations. Biopolymers 93(10):917–926CrossRefGoogle Scholar
  5. 5.
    Atassi F (2002) Periimplant probing: positives and negatives. Implant Dent 11(4):356–362CrossRefGoogle Scholar
  6. 6.
    Baier RE, Meenaghan MA, Hartman LC, Wirth JE, Flynn HE, Meyer AE et al (1988) Implant surface characteristics and tissue interaction. J Oral Implantol 13(4):594–606Google Scholar
  7. 7.
    Banyai L, Tordai H, Patthy L (1994) The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A). Biochem J 298(Pt 2):403–407Google Scholar
  8. 8.
    Baramova E, Foidart JM (1995) Matrix metalloproteinase family. Cell Biol Int 19(3):239–242Google Scholar
  9. 9.
    Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR et al (1978) The Protein Data Bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys 185(2):584–591CrossRefGoogle Scholar
  10. 10.
    Bertini I, Calderone V, Fragai M, Luchinat C, Mangani S, Terni B (2004) Crystal structure of the catalytic domain of human matrix metalloproteinase 10. J Mol Biol 336(3):707–716CrossRefGoogle Scholar
  11. 11.
    Betz M, Huxley P, Davies SJ, Mushtaq Y, Pieper M, Tschesche H et al (1997) 18-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Eur J Biochem 247(1):356–363CrossRefGoogle Scholar
  12. 12.
    Bittar EE, Bittar N (1995) Cellular organelles and the extracellular matrix. JAI Press, Greenwich, CTGoogle Scholar
  13. 13.
    Black LD, Allen PG, Morris SM, Stone PJ, Suki B (2008) Mechanical and failure properties of extracellular matrix sheets as a function of structural protein composition. Biophys J 94(5):1916–1929CrossRefGoogle Scholar
  14. 14.
    Blagg JA, Noe MC, Wolf-Gouveia LA, Reiter LA, Laird ER, Chang SP et al (2005) Potent pyrimidinetrione-based inhibitors of MMP-13 with enhanced selectivity over MMP-14. Bioorg Med Chem Lett 15(7):1807–1810CrossRefGoogle Scholar
  15. 15.
    Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200(4):423–428CrossRefGoogle Scholar
  16. 16.
    Butler GS, Tam EM, Overall CM (2004) The canonical methionine 392 of matrix metalloproteinase 2 (gelatinase A) is not required for catalytic efficiency or structural integrity: probing the role of the methionine-turn in the metzincin metalloprotease superfamily. J Biol Chem 279(15):15615–15620CrossRefGoogle Scholar
  17. 17.
    Carrascal N, Rizzo RC (2009) Calculation of binding free energies for non-zinc chelating pyrimidine dicarboxamide inhibitors with MMP-13. Bioorg Med Chem Lett 19(1):47–50CrossRefGoogle Scholar
  18. 18.
    Chakrabarti B, Bairagya HR, Mallik P, Mukhopadhyay BP, Bera AK (2011) An insight to conserved water molecular dynamics of catalytic and structural Zn(+2) ions in matrix metalloproteinase 13 of human. J Biomol Struct Dyn 28(4):503–516CrossRefGoogle Scholar
  19. 19.
    Clark IM, Young DA, Rowan AD (2010) Matrix metalloproteinase protocols, 2nd edn. Humana, New York, NYCrossRefGoogle Scholar
  20. 20.
    Conant K, Gottschall PE (2005) Matrix metalloproteinases in the central nervous system. Imperial College Press, London, Hackensack, NJ, Distributed by World ScientificCrossRefGoogle Scholar
  21. 21.
    Cornwell KG, Landsman A, James KS (2009) Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg 26(4):507–523CrossRefGoogle Scholar
  22. 22.
    Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103(3):481–490CrossRefGoogle Scholar
  23. 23.
    Curran S, Dundas SR, Buxton J, Leeman MF, Ramsay R, Murray GI (2004) Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin Cancer Res 10(24):8229–8234CrossRefGoogle Scholar
  24. 24.
    Curran S, Murray GI (1999) Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189(3):300–308CrossRefGoogle Scholar
  25. 25.
    Damsky CH, Werb Z (1992) Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr Opin Cell Biol 4(5):772–781CrossRefGoogle Scholar
  26. 26.
    Diaz N, Suarez D (2007) Molecular dynamics simulations of matrix metalloproteinase 2: role of the structural metal ions. Biochemistry 46(31):8943–8952CrossRefGoogle Scholar
  27. 27.
    Diaz N, Suarez D (2008) Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate. Proteins 72(1):50–61CrossRefGoogle Scholar
  28. 28.
    Eck SM, Hoopes PJ, Petrella BL, Coon CI, Brinckerhoff CE (2009) Matrix metalloproteinase-1 promotes breast cancer angiogenesis and osteolysis in a novel in vivo model. Breast Cancer Res Treat 116(1):79–90CrossRefGoogle Scholar
  29. 29.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174CrossRefGoogle Scholar
  30. 30.
    El Haj AJ, Cartmell SH (2010) Bioreactors for bone tissue engineering. Proc Inst Mech Eng H 224(12):1523–1532CrossRefGoogle Scholar
  31. 31.
    Ennis BW, Matrisian LM (1994) Matrix degrading metalloproteinases. J Neurooncol 18(2):105–109CrossRefGoogle Scholar
  32. 32.
    Fainardi E, Castellazzi M, Tamborino C, Trentini A, Manfrinato MC, Baldi E et al (2009) Potential relevance of cerebrospinal fluid and serum levels and intrathecal synthesis of active matrix metalloproteinase-2 (MMP-2) as markers of disease remission in patients with multiple sclerosis. Mult Scler 15(5):547–554CrossRefGoogle Scholar
  33. 33.
    Freeman-Cook KD, Reiter LA, Noe MC, Antipas AS, Danley DE, Datta K et al (2007) Potent selective spiropyrrolidine pyrimidinetrione inhibitors of MMP-13. Bioorg Med Chem Lett 17(23):6529–6534CrossRefGoogle Scholar
  34. 34.
    Gailit J, Clark RA (1994) Wound repair in the context of extracellular matrix. Curr Opin Cell Biol 6(5):717–725CrossRefGoogle Scholar
  35. 35.
    Galvez BG, Genis L, Matias-Roman S, Oblander SA, Tryggvason K, Apte SS et al (2005) Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem 280(2):1292–1298CrossRefGoogle Scholar
  36. 36.
    Gapski R, Barr JL, Sarment DP, Layher MG, Socransky SS, Giannobile WV (2004) Effect of systemic matrix metalloproteinase inhibition on periodontal wound repair: a proof of concept trial. J Periodontol 75(3):441–452CrossRefGoogle Scholar
  37. 37.
    Gapski R, Hasturk H, Van Dyke TE, Oringer RJ, Wang S, Braun TM et al (2009) Systemic MMP inhibition for periodontal wound repair: results of a multi-centre randomized-controlled clinical trial. J Clin Periodontol 36(2):149–156CrossRefGoogle Scholar
  38. 38.
    Geisler S, Lichtinghagen R, Boker KH, Veh RW (1997) Differential distribution of five members of the matrix metalloproteinase family and one inhibitor (TIMP-1) in human liver and skin. Cell Tissue Res 289(1):173–183CrossRefGoogle Scholar
  39. 39.
    Giaccone G, Soria J-C (2007) Targeted therapies in oncology. Informa Healthcare, New YorkGoogle Scholar
  40. 40.
    Goffin JR, Anderson IC, Supko JG, Eder JP Jr, Shapiro GI, Lynch TJ et al (2005) Phase I trial of the matrix metalloproteinase inhibitor marimastat combined with carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin Cancer Res 11(9):3417–3424CrossRefGoogle Scholar
  41. 41.
    Gramoun A, Goto T, Nordstrom T, Rotstein OD, Grinstein S, Heersche JN et al (2010) Bone matrix proteins and extracellular acidification: potential co-regulators of osteoclast morphology. J Cell Biochem 111(2):350–361CrossRefGoogle Scholar
  42. 42.
    Grassi F, Cristino S, Toneguzzi S, Piacentini A, Facchini A, Lisignoli G (2004) CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. J Cell Physiol 199(2):244–251CrossRefGoogle Scholar
  43. 43.
    Greenwald RA, Zucker S, Golub LM (1999) Inhibition of matrix metalloproteinases: ­therapeutic applications. New York Academy of Sciences, New York, NYGoogle Scholar
  44. 44.
    Gristina AG (1994) Implant failure and the immuno-incompetent fibro-inflammatory zone. Clin Orthop Relat Res (298):106–118Google Scholar
  45. 45.
    Gruber HE, Ingram JA, Hoelscher GL, Zinchenko N, Norton HJ, Hanley EN Jr (2009) Matrix metalloproteinase 28 a novel matrix metalloproteinase is constitutively expressed in human intervertebral disc tissue and is present in matrix of more degenerated discs. Arthritis Res Ther 11(6):R184CrossRefGoogle Scholar
  46. 46.
    Gu Q, Wang D, Gao Y, Zhou J, Peng R, Cui Y et al (2002) Expression of MMP1 in surgical and radiation-impaired wound healing and its effects on the healing process. J Environ Pathol Toxicol Oncol 21(1):71–78CrossRefGoogle Scholar
  47. 47.
    Hay ED (1991) Cell biology of extracellular matrix, 2nd edn. Plenum, New YorkCrossRefGoogle Scholar
  48. 48.
    He H, Puerta DT, Cohen SM, Rodgers KR (2005) Structural and spectroscopic study of reactions between chelating zinc-binding groups and mimics of the matrix metalloproteinase and disintegrin metalloprotease catalytic sites: the coordination chemistry of metalloprotease inhibition. Inorg Chem 44(21):7431–7442CrossRefGoogle Scholar
  49. 49.
    Hinds S, Bian W, Dennis RG, Bursac N (2011) The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 32(14):3575–3583CrossRefGoogle Scholar
  50. 50.
    Howard L, Zheng Y, Horrocks M, Maciewicz RA, Blobel C (2001) Catalytic activity of ADAM28. FEBS Lett 498(1):82–86CrossRefGoogle Scholar
  51. 51.
    Van den Hu J, Steen PE, Houde M, Ilenchuk TT, Opdenakker G (2004) Inhibitors of gelatinase B/matrix metalloproteinase-9 activity comparison of a peptidomimetic and polyhistidine with single-chain derivatives of a neutralizing monoclonal antibody. Biochem Pharmacol 67(5):1001–1009CrossRefGoogle Scholar
  52. 52.
    Hubbell J (2006) Matrix-bound growth factors in tissue repair. Swiss Med Wkly 136(25–26): 387–391Google Scholar
  53. 53.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–38CrossRefGoogle Scholar
  54. 54.
    Hyer S, Wei S, Brew K, Acharya KR (2007) Crystal structure of the catalytic domain of matrix metalloproteinase-1 in complex with the inhibitory domain of tissue inhibitor of metalloproteinase-1. J Biol Chem 282(1):364–371Google Scholar
  55. 55.
    Janusz MJ, Hookfin EB, Brown KK, Hsieh LC, Heitmeyer SA, Taiwo YO et al (2006) Comparison of the pharmacology of hydroxamate- and carboxylate-based matrix metalloproteinase inhibitors (MMPIs) for the treatment of osteoarthritis. Inflamm Res 55(2):60–65CrossRefGoogle Scholar
  56. 56.
    Jayakumar P, Di Silvio L (2010) Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 224(12):1415–1440CrossRefGoogle Scholar
  57. 57.
    Jones KS (2008) Effects of biomaterial-induced inflammation on fibrosis and rejection. Semin Immunol 20(2):130–136CrossRefGoogle Scholar
  58. 58.
    Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585CrossRefGoogle Scholar
  59. 59.
    Karim RB, Brito BL, Dutrieux RP, Lassance FP, Hage JJ (2006) MMP-2 assessment as an indicator of wound healing: a feasibility study. Adv Skin Wound Care 19(6):324–327CrossRefGoogle Scholar
  60. 60.
    Kass L, Erler JT, Dembo M, Weaver VM (2007) Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39(11):1987–1994CrossRefGoogle Scholar
  61. 61.
    Kataoka H (2009) EGFR ligands and their signaling scissors ADAMs as new molecular targets for anticancer treatments. J Dermatol Sci 56(3):148–153CrossRefGoogle Scholar
  62. 62.
    Khan OF, Jean-Francois J, Sefton MV (2010) MMP levels in the response to degradable implants in the presence of a hydroxamate-based matrix metalloproteinase sequestering ­biomaterial in vivo. J Biomed Mater Res A 93(4):1368–1379Google Scholar
  63. 63.
    Kimata M, Otani Y, Kubota T, Igarashi N, Yokoyama T, Wada N et al (2002) Matrix metalloproteinase inhibitor marimastat decreases peritoneal spread of gastric carcinoma in nude mice. Jpn J Cancer Res 93(7):834–841CrossRefGoogle Scholar
  64. 64.
    Kinoshita T, Sato H, Okada A, Ohuchi E, Imai K, Okada Y et al (1998) TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem 273(26):16098–16103CrossRefGoogle Scholar
  65. 65.
    Kirkpatrick CJ, Krump-Konvalinkova V, Unger RE, Bittinger F, Otto M, Peters K (2002) Tissue response and biomaterial integration: the efficacy of in vitro methods. Biomol Eng 19(2–6):211–217CrossRefGoogle Scholar
  66. 66.
    Koltsova EK, Ley K (2010) The mysterious ways of the chemokine CXCL5. Immunity 33(1):7–9CrossRefGoogle Scholar
  67. 67.
    Kornberg L, Juliano RL (1992) Signal transduction from the extracellular matrix: the integrin-tyrosine kinase connection. Trends Pharmacol Sci 13(3):93–95CrossRefGoogle Scholar
  68. 68.
    Krane SM (1995) Is collagenase (matrix metalloproteinase-1) necessary for bone and other connective tissue remodeling? Clin Orthop Relat Res (313):47–53Google Scholar
  69. 69.
    Kruger A, Soeltl R, Sopov I, Kopitz C, Arlt M, Magdolen V et al (2001) Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 61(4):1272–1275Google Scholar
  70. 70.
    Kurizaki T, Toi M, Tominaga T (1998) Relationship between matrix metalloproteinase expression and tumor angiogenesis in human breast carcinoma. Oncol Rep 5(3):673–677Google Scholar
  71. 71.
    Lagente V, Boichot E (2008) Matrix metalloproteinases in tissue remodelling and inflammation. Birkhäuser, Basel; BostonCrossRefGoogle Scholar
  72. 72.
    Lew DH, Yoon JH, Hong JW, Tark KC (2010) Efficacy of antiadhesion barrier solution on periimplant capsule formation in a white rat model. Ann Plast Surg 65(2):254–258CrossRefGoogle Scholar
  73. 73.
    Li J, Zhang YP, Kirsner RS (2003) Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 60(1):107–114CrossRefGoogle Scholar
  74. 74.
    Madlener M, Parks WC, Werner S (1998) Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 242(1):201–210CrossRefGoogle Scholar
  75. 75.
    Maller O, Martinson H, Schedin P (2010) Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 15(3):301–318CrossRefGoogle Scholar
  76. 76.
    Manuel JA, Gawronska-Kozak B (2006) Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice. Matrix Biol 25(8):505–514CrossRefGoogle Scholar
  77. 77.
    Matrisian LM, Wright J, Newell K, Witty JP (1994) Matrix-degrading metalloproteinases in tumor progression. Princess Takamatsu Symp 24:152–161Google Scholar
  78. 78.
    Metzmacher I, Ruth P, Abel M, Friess W (2007) In vitro binding of matrix metalloproteinase-2 (MMP-2) MMP-9 and bacterial collagenase on collagenous wound dressings. Wound Repair Regen 15(4):549–555CrossRefGoogle Scholar
  79. 79.
    Morrison CJ, Overall CM (2006) TIMP independence of matrix metalloproteinase (MMP)-2 activation by membrane type 2 (MT2)-MMP is determined by contributions of both the MT2-MMP catalytic and hemopexin C domains. J Biol Chem 281(36):26528–26539CrossRefGoogle Scholar
  80. 80.
    Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY (2008) Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabet Med 25(4):419–426CrossRefGoogle Scholar
  81. 81.
    Murshed M, McKee MD (2010) Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr Opin Nephrol Hypertens 19(4):359–365CrossRefGoogle Scholar
  82. 82.
    Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494CrossRefGoogle Scholar
  83. 83.
    Nakamura Y, Sato K, Wakimoto N, Kimura F, Okuyama A, Motoyoshi K (2001) A new matrix metalloproteinase inhibitor SI-27 induces apoptosis in several human myeloid leukemia cell lines and enhances sensitivity to TNF alpha-induced apoptosis. Leukemia 15(8): 1217–1224CrossRefGoogle Scholar
  84. 84.
    Neamtu M, Filioreanu AM, Petreus T, Badescu L, Ionescu CR, Cotrutz CE (2010) Involvement of MMP-8 in tissue response to colagenated fibrillar net in rats. Ann Roman Soc Cell Biol 15(1):236–241Google Scholar
  85. 85.
    Nilsen-Hamilton M, Werb Z, Keshet E (2003) Tissue remodeling. New York Academy of Sciences, New York, NYGoogle Scholar
  86. 86.
    Nomura H, Fujimoto N, Seiki M, Mai M, Okada Y (1996) Enhanced production of matrix metalloproteinases and activation of matrix metalloproteinase 2 (gelatinase A) in human ­gastric carcinomas. Int J Cancer 69(1):9–16CrossRefGoogle Scholar
  87. 87.
    Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6(3):227–239CrossRefGoogle Scholar
  88. 88.
    Parks WC, Mecham RP (1998) Matrix metalloproteinases. Academic, San DiegoGoogle Scholar
  89. 89.
    Peled ZM, Phelps ED, Updike DL, Chang J, Krummel TM, Howard EW et al (2002) Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast Reconstr Surg 110(3):801–811CrossRefGoogle Scholar
  90. 90.
    Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21(7):1104–1117CrossRefGoogle Scholar
  91. 91.
    Petreus T, Cotrutz CE, Neamtu M, Buruiana EC, Sirbu PD, Neamtu A (2010) Molecular docking on recomposed versus crystallographic structures of Zn-dependent enzymes and their natural inhibitors. Proc World Acad Sci Eng Technol 68:1992–1995Google Scholar
  92. 92.
    Petreus T, Cotrutz CE, Neamtu M, Buruiana EC, Sirbu PD, Neamtu A (2010) Understanding the dynamics–activity relationship in metalloproteases: ideas for new inhibition strategies. In: AT-EQUAL 2010: 2010 ECSIS Symposium on advanced technologies for enhanced quality of life: LAB-RS and ARTIPED 2010, pp 83–86Google Scholar
  93. 93.
    Ra HJ, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26(8):587–596CrossRefGoogle Scholar
  94. 94.
    Rasmussen HS, McCann PP (1997) Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther 75(1):69–75CrossRefGoogle Scholar
  95. 95.
    Rayment EA, Upton Z, Shooter GK (2008) Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. Br J Dermatol 158(5):951–961CrossRefGoogle Scholar
  96. 96.
    Reijerkerk A, Kooij G, van der Pol SM, Khazen S, Dijkstra CD, de Vries HE (2006) Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells. FASEB J 20(14):2550–2552CrossRefGoogle Scholar
  97. 97.
    Reiter LA, Freeman-Cook KD, Jones CS, Martinelli GJ, Antipas AS, Berliner MA et al (2006) Potent selective pyrimidinetrione-based inhibitors of MMP-13. Bioorg Med Chem Lett 16(22):5822–5826CrossRefGoogle Scholar
  98. 98.
    Renault MA, Losordo DW (2007) The matrix revolutions: matrix metalloproteinase vasculogenesis and ischemic tissue repair. Circ Res 100(6):749–750CrossRefGoogle Scholar
  99. 99.
    Rodriguez R, Loske AM, Fernandez F, Estevez M, Vargas S, Fernandez G et al (2010) In vivo evaluation of implant-host tissue interaction using morphology-controlled hydroxyapatite-based biomaterials. J Biomater Sci Polym Ed 22(13):1799–1810CrossRefGoogle Scholar
  100. 100.
    Rosenblum G, Meroueh S, Toth M, Fisher JF, Fridman R, Mobashery S et al (2007) Molecular structures and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: challenging the cysteine switch dogma. J Am Chem Soc 129(44):13566–13574CrossRefGoogle Scholar
  101. 101.
    Ruifrok AC, Katz RL, Johnston DA (2003) Comparison of quantification of histochemical staining by hue-saturation-intensity (HSI) transformation and color-deconvolution. Appl Immunohistochem Mol Morphol 11(1):85–91CrossRefGoogle Scholar
  102. 102.
    Rush TS 3rd, Powers R (2004) The application of x-ray NMR and molecular modeling in the design of MMP inhibitors. Curr Top Med Chem 4(12):1311–1327CrossRefGoogle Scholar
  103. 103.
    Salmela MT, Pender SL, Karjalainen-Lindsberg ML, Puolakkainen P, Macdonald TT, Saarialho-Kere U (2004) Collagenase-1 (MMP-1) matrilysin-1 (MMP-7) and stromelysin-2 (MMP-10) are expressed by migrating enterocytes during intestinal wound healing. Scand J Gastroenterol 39(11):1095–1104CrossRefGoogle Scholar
  104. 104.
    Salonurmi T, Parikka M, Kontusaari S, Pirila E, Munaut C, Salo T et al (2004) Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice. Cell Tissue Res 315(1):27–37CrossRefGoogle Scholar
  105. 105.
    Santos MA, Marques S, Gil M, Tegoni M, Scozzafava A, Supuran CT (2003) Protease inhibitors: synthesis of bacterial collagenase and matrix metalloproteinase inhibitors incorporating succinyl hydroxamate and iminodiacetic acid hydroxamate moieties. J Enzyme Inhib Med Chem 18(3):233–242CrossRefGoogle Scholar
  106. 106.
    Scatena R (2000) Prinomastat a hydroxamate-based matrix metalloproteinase inhibitor. A novel pharmacological approach for tissue remodelling-related diseases. Expert Opin Investig Drugs 9(9):2159–2165CrossRefGoogle Scholar
  107. 107.
    Shekaran A, Garcia AJ (2011) Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96(1):261–272Google Scholar
  108. 108.
    Steward WP, Thomas AL (2000) Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Investig Drugs 9(12):2913–2922CrossRefGoogle Scholar
  109. 109.
    Stratmann B, Farr M, Tschesche H (2001) MMP-TIMP interaction depends on residue 2 in TIMP-4. FEBS Lett 507(3):285–287CrossRefGoogle Scholar
  110. 110.
    Sung HJ, Johnson CE, Lessner SM, Magid R, Drury DN, Galis ZS (2005) Matrix metalloproteinase 9 facilitates collagen remodeling and angiogenesis for vascular constructs. Tissue Eng 11(1–2):267–276CrossRefGoogle Scholar
  111. 111.
    Takahashi H, Akiba K, Noguchi T, Ohmura T, Takahashi R, Ezure Y et al (2000) Matrix metalloproteinase activity is enhanced during corneal wound repair in high glucose condition. Curr Eye Res 21(2):608–615CrossRefGoogle Scholar
  112. 112.
    Tang L, Eaton JW (1995) Inflammatory responses to biomaterials. Am J Clin Pathol 103(4):466–471Google Scholar
  113. 113.
    Tang L, Hu W (2005) Molecular determinants of biocompatibility. Expert Rev Med Devices 2(4):493–500CrossRefGoogle Scholar
  114. 114.
    Tanner KE (2010) Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H 224(12):1359–1372CrossRefGoogle Scholar
  115. 115.
    Terasaki K, Kanzaki T, Aoki T, Iwata K, Saiki I (2003) Effects of recombinant human tissue inhibitor of metalloproteinases-2 (rh-TIMP-2) on migration of epidermal keratinocytes in vitro and wound healing in vivo. J Dermatol 30(3):165–172Google Scholar
  116. 116.
    Thevenot P, Hu W, Tang L (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8(4):270–280CrossRefGoogle Scholar
  117. 117.
    Underwood CK, Min D, Lyons JG, Hambley TW (2003) The interaction of metal ions and Marimastat with matrix metalloproteinase 9. J Inorg Biochem 95(2–3):165–170CrossRefGoogle Scholar
  118. 118.
    Vaalamo M, Leivo T, Saarialho-Kere U (1999) Differential expression of tissue inhibitors of metalloproteinases (TIMP-1 -2 -3 and -4) in normal and aberrant wound healing. Hum Pathol 30(7):795–802CrossRefGoogle Scholar
  119. 119.
    Velasco G, Pendas AM, Fueyo A, Knauper V, Murphy G, Lopez-Otin C (1999) Cloning and characterization of human MMP-23 a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem 274(8):4570–4576CrossRefGoogle Scholar
  120. 120.
    Willenbrock F, Murphy G, Phillips IR, Brocklehurst K (1995) The second zinc atom in the matrix metalloproteinase catalytic domain is absent in the full-length enzymes: a possible role for the C-terminal domain. FEBS Lett 358(2):189–192CrossRefGoogle Scholar
  121. 121.
    Woessner JF Jr (1994) The family of matrix metalloproteinases. Ann N Y Acad Sci 732:11–21CrossRefGoogle Scholar
  122. 122.
    Woessner JF Jr (2001) That impish TIMP: the tissue inhibitor of metalloproteinases-3. J Clin Invest 108(6):799–800Google Scholar
  123. 123.
    Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45(1):160–169CrossRefGoogle Scholar
  124. 124.
    Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13(1–2):23–29CrossRefGoogle Scholar
  125. 125.
    Zhang W, Hou TJ, Qiao XB, Huai S, Xu XJ (2004) Binding affinity of hydroxamate inhibitors of matrix metalloproteinase-2. J Mol Model 10(2):112–120CrossRefGoogle Scholar
  126. 126.
    Zohny SF, Fayed ST (2010) Clinical utility of circulating matrix metalloproteinase-7 (MMP-7) CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer. Med Oncol 27(4):1246–1253CrossRefGoogle Scholar
  127. 127.
    Zucker S, Drews M, Conner C, Foda HD, DeClerck YA, Langley KE et al (1998) Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J Biol Chem 273(2):1216–1222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cell Biology DepartmentG.T. Popa University of Medicine and PharmacyIasiRomania
  2. 2.University Politehnica of BucharestBucharestRomania

Personalised recommendations