Skip to main content

Scaffold Design for Bone Tissue Engineering: From Micrometric to Nanometric Level

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 1))

Abstract

Porous biodegradable polymeric scaffolds are essential for tissue ­engineering application since they should provide the adequate three-dimensional structure for cellular attachment and tissue development. In this context, recent paradigm moves towards new fabrication techniques able to develop micro- and nano-structured platforms which assure an optimal balance in terms of cell ­recognition, mass transport properties, and mechanical response to reproduce the morphological and functional features of natural tissues at the microscopic and nanoscopic level. Here, a large variety of technologies has been proposed to develop tailor-made platforms with micro/nanoscale architecture and chemical composition suitable for regenerating natural bony extracellular matrix (bECM).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abe Y et al (1990) Apatite coating on ceramics metals and polymers utilizing a biological process. J Mater Sci Mater Med 1(4):233–238

    Article  CAS  Google Scholar 

  2. Alvarez-Perez MA et al (2010) Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules 11(9):2238–2246

    Article  CAS  Google Scholar 

  3. Ambrosio L et al (2001) In: Chiellini et al (eds) Biomedical polymers and polymer therapeutics. Kluwer Academic/Plenum Publishers, US Springer Part 1, pp 227–233

    Google Scholar 

  4. Barrere F et al (2002) Nucleation of biomimetic Ca-P coatings on Ti6Al4V from a SBFx5 solution: influence of magnesium. Biomaterials 23(10):2211–2220

    Article  CAS  Google Scholar 

  5. Boskey AL et al (1991) Hyaluronan interactions with hydroxyapatite do not alter in vitro hydroxyapatite crystal proliferation and growth. Matrix 11:442–446

    Article  CAS  Google Scholar 

  6. Campoccia D et al (1998) Semi-synthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127

    Article  CAS  Google Scholar 

  7. Caplan AI et al (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  Google Scholar 

  8. Causa F et al (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099

    Article  CAS  Google Scholar 

  9. Chong EJ et al (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330

    Article  CAS  Google Scholar 

  10. Djouad F et al (2009) Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 5:392–399

    Article  CAS  Google Scholar 

  11. Garcia AJ et al (1999) Integrin-fibronectin interactions at cell-material interface: initial integrin binding and signaling. Biomaterials 20(23–24):2427–2433

    Article  CAS  Google Scholar 

  12. Griffith LG et al (2002) Tissue engineering: current challenges and expanding opportunities. Science 295:1009–1014

    Article  CAS  Google Scholar 

  13. Guarino V et al (2007) Bioactive scaffolds for bone and ligament tissue. Exp Rev Med Devices 4(3):405–418

    Article  CAS  Google Scholar 

  14. Guarino V et al (2007) Porosity and mechanical properties relationship in PCL based scaffolds. J Appl Biomater Biomech 5(3):149–157

    CAS  Google Scholar 

  15. Guarino V et al (2008) Design and manufacture of microporous polymeric materials with hierarchal complex structure for biomedical application. Mater Sci Tech 24(9):1111–1117

    Article  CAS  Google Scholar 

  16. Guarino V et al (2008) The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 86B:548–557

    Article  CAS  Google Scholar 

  17. Guarino V et al (2008) Polylactic acid fibre reinforced polycaprolactone scaffolds for bone tissue engineering. Biomaterials 29:3662–3670

    Article  CAS  Google Scholar 

  18. Guarino V et al (2008) The synergic effect of polylactide fiber and calcium phosphate particles reinforcement in poly ε-caprolactone based composite scaffolds. Acta Biomater 4(6):1778–1787

    Article  CAS  Google Scholar 

  19. Guarino V et al (2009) The influence of hydroxyapatite particles on “in vitro” degradation behaviour of PCL based composite scaffolds. Tissue Eng Part A 15(11):3655–3668

    Article  CAS  Google Scholar 

  20. Guarino V et al (2009) Polycaprolactone and gelatin electrospun platforms for bone regeneration. Reg Med 4(6 Suppl 2):S187–S188

    Google Scholar 

  21. Guarino V et al (2010) Morphology and degradation properties of PCL/HYAFF11-based composite scaffolds with multiscale degradation rate. Comp Sci Tech 70:1826–1837

    Article  CAS  Google Scholar 

  22. He J et al (2010) Osteogenesis and trophic factor secretion are influenced by the composition of hydroxyapatite/poly(lactide-co-glycolide) composite scaffolds. Tissue Eng Part A 16:127–137

    Article  CAS  Google Scholar 

  23. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):487–510

    Article  Google Scholar 

  24. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  CAS  Google Scholar 

  25. Hu J et al (2009) Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on nanofibrous scaffold with designed pore network. Biomaterials 30:5061–5067

    Article  CAS  Google Scholar 

  26. Huang Z et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  27. Hutmacher DW et al (2007) State of the art and future directions of scaffold-based bone ­engineering from a biomaterials perspective. J Tissue Eng Regen Med 1:245–260

    Article  CAS  Google Scholar 

  28. Jager M et al (2007) Significance of nano and microtopography for cell surface interactions in orthopaedic implants. J Biomed Biotech 2007. doi:101155/2007/69036

    Google Scholar 

  29. Karande TS et al (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity permeability architecture and nutrient mixing. Ann Biomed Eng 32:1728–1743

    Article  Google Scholar 

  30. Kim HW et al (2007) Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A 87A:25–32

    Article  Google Scholar 

  31. Kim HW (2007) Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J Biomed Mater Res 83A:169–177

    Article  CAS  Google Scholar 

  32. Kon E et al (2009) Tissue engineering for total meniscal substitution: animal study in sheep model. Tissue Eng Part A 14(6):1067

    Article  Google Scholar 

  33. Li M et al (2006) Electrospinning polyaniline contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715

    Article  CAS  Google Scholar 

  34. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  CAS  Google Scholar 

  35. Liu Q et al (1997) Nano-apatite/polymer composites: mechanical and physiochemical characteristics. Biomaterials 18(19):1263–1270

    Article  CAS  Google Scholar 

  36. Luong-Van E et al (2007) The in vivo assessment of a novel scaffold containing heparan ­sulfate for tissue engineering with human mesenchymal stem cells. J Mol Histol 38:459–468

    Article  CAS  Google Scholar 

  37. Ma K et al (2005) Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 11:1149–1158

    Article  CAS  Google Scholar 

  38. Ma K et al (2008) Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials 29:2096–2103

    Article  CAS  Google Scholar 

  39. Manferdini C et al (2010) Mineralization behavior with mesenchymal stromal cells in a bio-mimetic hyaluronic acid-based scaffold. Biomaterials 31(14):3986–3996

    Article  CAS  Google Scholar 

  40. Mao C et al (1998) Biomimetic growth of calcium phosphates with an organized hydroxylated surface as template. J Mater Sci Lett 17:1479–1481

    Article  CAS  Google Scholar 

  41. McManus MC et al (2006) Mechanical properties of electrospun fibrinogen structures. Acta Biomater 2:19–28

    Article  Google Scholar 

  42. Mobasherpour I et al (2007) Synthesis of nanocrystalline hydroxyapaptite by using precipitation method. J Alloys Compd 430:330–333

    Article  CAS  Google Scholar 

  43. Ng AMH et al (2008) Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J Biomed Mater Res 85A:301–312

    Article  CAS  Google Scholar 

  44. O’Brien FJ et al (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26:433–441

    Article  Google Scholar 

  45. Prabhakaran MP et al (2009) Mesenchymal stem cells differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 26:2603–2610

    Google Scholar 

  46. Raucci MG et al (2010) Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. Acta Biomater. doi:101016/jactbio201004018

    Google Scholar 

  47. Raucci MG et al (2010) Hybrid composite scaffolds prepared by sol-gel method for bone regeneration. Comp Sci Technol. doi:101016/jcompscitech201005030

    Google Scholar 

  48. Seib FP et al (2009) Matrix elasticity regulates the secretory profile of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs). Biochem Biophys Res Commun 389:663–667

    Article  CAS  Google Scholar 

  49. Shin YRV et al (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391–2397

    Article  Google Scholar 

  50. Small DM (1986) The physical chemistry of lipids: from alkanes to phospholipids. Plenum, New York

    Google Scholar 

  51. Stevens MM et al (2005) Exploring and engineering the cell interface. Science 310:1135–1138

    Article  CAS  Google Scholar 

  52. Tian F et al (2008) Quantitative analysis of cell adhesion on aligned micro- and nanofibers. J Biomed Mater Res 84A:291–299

    Article  CAS  Google Scholar 

  53. Toole BP et al (1972) Hyaluronate in morphogenesis: inhibition of chondrogenesis in vitro. Proc Natl Acad Sci U S A 69:1384–1386

    Article  CAS  Google Scholar 

  54. Tuzlakoglu K et al (2005) Nano and micro-fiber combined scaffold: a new architecture for bone tissue engineering. J Mater Sci Mater Med 16:1099–1104

    Article  CAS  Google Scholar 

  55. Uebersax L et al (2006) Effect of scaffold design on bone morphology in vitro. Tissue Eng 12(12):3417–3429

    Article  CAS  Google Scholar 

  56. Wang M (2003) Developing bioactive materials for tissue replacement. Biomaterials 24(13):2161–2175

    Article  Google Scholar 

  57. Webster TJ et al (1999) Osteoblasts adhesion on nanophase ceramics. Biomaterials 20:1221–1227

    Article  CAS  Google Scholar 

  58. Zhang R et al (1999) Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. Preparation and morphology. J Biomed Mater Res 44:446–455

    Article  CAS  Google Scholar 

  59. Zhang R et al (1999) Porous poly(l-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res 45(3):285–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Italian Research Network “TISSUENET” n. RBPR05RSM2 and by IP STEPS EC FP6-500465.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Guarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guarino, V., Raucci, M.G., Alvarez-Perez, M.A., Cirillo, V., Ronca, A., Ambrosio, L. (2013). Scaffold Design for Bone Tissue Engineering: From Micrometric to Nanometric Level. In: Antoniac, I. (eds) Biologically Responsive Biomaterials for Tissue Engineering. Springer Series in Biomaterials Science and Engineering, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4328-5_1

Download citation

Publish with us

Policies and ethics