Skip to main content

Background

  • Chapter
  • First Online:
Ordering Block Designs

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 765 Accesses

Abstract

In this chapter we provide the basic background necessary for understanding subsequent chapters. We begin with an introduction to the graph theory, designs and design theory concepts used throughout this monograph. The second half of the chapter deals with more advanced concepts, including configurations, Gray codes and universal cycles (Ucycles). We survey a broad range of results in existence and construction of combinatorial Gray codes and Ucycles for permutations, partitions and k-subsets of n-sets. Proofs are included to illustrate techniques in this area, especially when they shed light on similar techniques used in proving results on ordering the blocks of designs.This chapter is recommended to the reader who wants to read subsequent chapters and feels they need a primer on the background topics: graph theory, design theory, and combinatorial orderings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beezer, R.A.: Counting configurations in designs. J. Combin. Theory Ser. A 96(2), 341–357 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhat, G.S., Savage, C.D.: Balanced Gray codes. Electron. J. Combin. 3(1), Research Paper 25, (electronic, 11 pp.) (1996)

    Google Scholar 

  3. Bitner, J.R., Ehrlich, G., Reingold, E.M.: Efficient generation of the binary reflected Gray code and its applications. Comm. ACM 19(9), 517–521 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brockman, G., Kay, B., Snively, E.E.: On universal cycles of labeled graphs. Electron. J. Combin. 17(1), Research Paper 4, (electronic, 9 pp.) (2010)

    Google Scholar 

  5. Brualdi, R.A.: Introductory Combinatorics. Prentice-Hall, Upper Saddle River, NJ (1999)

    MATH  Google Scholar 

  6. Bryant, D., El-Zanati, S.: Graph Decompositions, chap. VI.24, pp. 477–486. In: Colbourn and Dinitz [14] (2007)

    Google Scholar 

  7. Buck, M., Wiedemann, D.: Gray codes with restricted density. Discrete Math. 48, 163–171 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casteels, K.: Universal cycles for (n − 1)-partitions of an n-set. Master’s thesis, Carleton University, Ottawa, ON (2004)

    Google Scholar 

  9. Chase, P.J.: Combination generation and Graylex ordering. Congr. Numer. 69, 215–242 (1989)

    MathSciNet  Google Scholar 

  10. Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discrete Math. 110, 43–59 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chvátal, V., Erdős, P.: A note on Hamiltonian circuits. Discrete Math. 2, 111–113 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colbourn, C.J.: Combinatorial aspects of covering arrays. Matematiche (Catania) 59(1–2), 125–172 (2004)

    Google Scholar 

  13. Colbourn, C.J.: Covering Arrays, chap. VI.10, pp. 361–365. In: Colbourn and Dinitz [14] (2007)

    Google Scholar 

  14. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs, second edn. Chapman & Hall/CRC, Boca Raton, FL (2007)

    MATH  Google Scholar 

  15. Colbourn, C.J., Rosa, A.: Triple Systems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1999)

    MATH  Google Scholar 

  16. Curtis, D., Hines, T., Hurlbert, G., Moyer, T.: Near-universal cycles for subsets exist. SIAM J. Discrete Math. 23(3), 1441–1449 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dewar, M.: Gray codes, universal cycles and configuration orderings for block designs. Ph.D. thesis, Carleton University, Ottawa, ON (2007)

    Google Scholar 

  18. Dewar, M., Proos, J., McInnes, L.: Monotone Gray codes for vectors of the form [ − m, m]k and [0, m]k. Submitted to Electron. J. Combin. (2012)

    Google Scholar 

  19. Eades, P., Hickey, M., Read, R.C.: Some Hamilton paths and a minimal change algorithm. J. Assoc. Comput. Mach. 31(1), 19–29 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eades, P., McKay, B.: An algorithm for generating subsets of fixed size with a strong minimal change property. Inform. Process. Lett. 19(3), 131–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gordon, D.M., Stinson, D.R.: Coverings, chap. VI.11, pp. 365–373. In: Colbourn and Dinitz [14] (2007)

    Google Scholar 

  23. Grannell, M.J., Griggs, T.S.: Configurations in Steiner triple systems. In: Combinatorial Designs and their Applications (Milton Keynes, 1997), vol. 403, pp. 103–126. Chapman & Hall/CRC, Boca Raton, FL (1999)

    Google Scholar 

  24. Grannell, M.J., Griggs, T.S., Mendelsohn, E.: A small basis for four-line configurations in Steiner triple systems. J. Combin. Des. 3(1), 51–59 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grannell, M.J., Griggs, T.S., Whitehead, C.A.: The resolution of the anti-Pasch conjecture. J. Combin. Des. 8(4), 300–309 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hartman, A.: Software and hardware testing using combinatorial covering suites. In: Graph Theory, Combinatorics and Algorithms, pp. 237–266. Springer, New York (2005)

    Google Scholar 

  27. Holroyd, A., Ruskey, F., Williams, A.: Shorthand universal cycles for permutations. Algorithmica, 64, 215–245 (2012)

    MathSciNet  Google Scholar 

  28. Horák, P., Rosa, A.: Decomposing Steiner triple systems into small configurations. Ars Combin. 26, 91–105 (1988)

    Google Scholar 

  29. Hurlbert, G.H.: Universal cycles: on beyond de Bruijn. Ph.D. thesis, Rutgers University, New Brunswick, NJ (1990)

    Google Scholar 

  30. Hurlbert, G.H.: On universal cycles for k-subsets of an n-set. SIAM J. Disc. Math. 7(4), 598–604 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hurlbert, G.H.: Multicover Ucycles. Discrete Math. 137, 241–249 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hurlbert, G.H., Isaak, G.: Equivalence class universal cycles for permutations. Discrete Math. 149, 123–129 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hurlbert, G.H., Johnson, T., Zahl, J.: On universal cycles for multisets. Discrete Math. 309, 5321–5327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jackson, B.W.: Universal cycles of k-subsets and k-permutations. Discrete Math. 117, 141–150 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Johnson, J.R.: Universal cycles for permutations. Discrete Math. 309, 5264–5270 (2009)

    MATH  Google Scholar 

  36. Knuth, D.E.: The Art of Computer Programming, vol. 4. Addison-Wesley, Upper Saddle River, NJ (2005)

    Google Scholar 

  37. Kompel′maher, V.L., Liskovec, V.A.: Successive generation of permutations by means of a transposition basis. Kibernetika (Kiev) (3), 17–21 (1975)

    Google Scholar 

  38. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: generation, Enumeration and Search. CRC Press, Boca Raton, FL (1999)

    MATH  Google Scholar 

  39. Martin, M.H.: A problem in arrangements. Bull. Amer. Math. Soc. 40, 859–864 (1934)

    Article  MathSciNet  Google Scholar 

  40. Ruskey, F.: Adjacent interchange generation of combinations. J. Algorithms 9(2), 162–180 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ruskey, F.: Simple combinatorial Gray codes constructed by reversing sublists. In: Proceedings of the Fourth International Symposium (ISAAC ’93) held in Hong Kong, Dec 15–17, 1993. Edited by K.W. Ng, P. Raghavan, N.V. Balasubramanian and F.Y.L. Chin. Lecture Notes in Computer Science, vol. 762, Springer-Verlag, Berlin, pp. xiv+542 (1993). ISBN: 3-540-57568-5

    Google Scholar 

  42. Ruskey, F., Sawada, J., Williams, A.: Fixed-density de Bruijn sequences. SIAM J. Disc. Math. 26(2), 605–617 (2012)

    Article  MATH  Google Scholar 

  43. Ruskey, F., Williams, A.: An explicit universal cycle for the (n − 1)-permutations of an n-set. ACM Trans. Algorithms 6(3), Art. 45, (electronic, 12 pp.) (2010)

    Google Scholar 

  44. Savage, C.D.: A survey of combinatorial Gray codes. SIAM Rev. 39(4), 605–629 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Savage, C.D., Winkler, P.: Monotone Gray codes and the middle levels problem. J. Combin. Theory. Ser. A 70(2), 230–248 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sawada, J., Stevens, B., Williams, A.: De Bruijn sequences for the binary strings with maximum density. In: Proceedings of the 5th international conference on WALCOM: Algorithms and computation, pp. 182–190. Springer-Verlag, Berlin, Heidelberg (2011)

    Google Scholar 

  47. Sawada, J., Williams, A.: A Gray code for fixed-density necklaces and Lyndon words in constant amortized time. To appear in Theoret. Comput. Sci. (2011)

    Google Scholar 

  48. Slater, P.J.: Generating all permutations by graphical transpositions. Ars Combin. 5, 219–225 (1978)

    MathSciNet  MATH  Google Scholar 

  49. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences/ (2004). Accessed June 2004

  50. Stevens, B., Buskell, P., Ecimovic, P., Ivanescu, C., Malik, A., Savu, A., Vassilev, T., Verrall, H., Yang, B., Zhao, Z.: Solution of an outstanding conjecture: the non-existence of universal cycles with \(k = n - 2\). Discrete Math. 258, 193–204 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Stinson, D.R.: Combinatorial Designs: constructions and Analysis. Springer, New York (2004)

    MATH  Google Scholar 

  52. Stinson, D.R., Wei, R., Yin, J.: Packings, chap. VI.40, pp. 550–556. In: Colbourn and Dinitz [14] (2007)

    Google Scholar 

  53. Vickers, V.E., Silverman, J.: A technique for generating specialized Gray codes. IEEE Trans. Comput. 29(4), 329–331 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wagner, D.G., West, J.: Construction of uniform Gray codes. Congr. Numer. 80, 217–223 (1991)

    MathSciNet  Google Scholar 

  55. Wallis, W.D.: Combinatorial Designs. Marcel Dekker, Inc., New York (1988)

    MATH  Google Scholar 

  56. West, D.B.: Introduction to Graph Theory, second edn. Prentice Hall, Upper Saddle River, NJ (2001)

    Google Scholar 

  57. Wilf, H.S.: Combinatorial algorithms: an update. CBMS-NSF Regional Conference Series in Applied Mathematics, 55. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1989)

    Google Scholar 

  58. Williams, A.: Shift Gray codes. Ph.D. thesis, University of Victoria, Victoria, BC (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dewar, M., Stevens, B. (2012). Background. In: Ordering Block Designs. CMS Books in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4325-4_2

Download citation

Publish with us

Policies and ethics