Skip to main content

Biophysical Analysis in Support of Development of Protein Pharmaceuticals

  • Chapter
  • First Online:
Biophysics for Therapeutic Protein Development

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 4))

Abstract

Development of proteins as pharmaceuticals is more challenging compared to traditional small molecule drugs because of the increased complexity of the chemical and physical stability of protein pharmaceuticals. This necessitates the use of both analytical and biophysical methods to investigate the stability of proteins. The choice of which biophysical methods to use is dictated by the types of studies and specific requirements that support protein drug development. This chapter discusses the various types of biophysical studies that are often performed during protein formulation development including (1) early screening assessments, (2) intense characterization, and (3) confirmatory studies. Case studies with representative examples from Genentech are presented for each of the above topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agostini F, Vendruscolo M, Tartaglia GG (2012) Sequence-based prediction of protein solubility. J Mol Biol 421(2–3):237–241

    Article  PubMed  CAS  Google Scholar 

  • Andya JD, Hsu CC, Shire SJ (2003) Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS PharmSci 5(2):E10

    Article  PubMed  Google Scholar 

  • Alavattam S et al (2012) Stability of IgG1 monoclonal antibodies in intravenous infusion bags under clinical in-use conditions. J Pharm Sci 101(1):21–30

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz SA (2006) Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J 8(3):E590–E605

    Article  PubMed  CAS  Google Scholar 

  • Bertolotti-Ciarlet A et al (2009) Impact of methionine oxidation on the binding of human IgG1 to FcRn and Fc gamma receptors. Mol Immunol 46(8–9):1878–1882

    Article  PubMed  CAS  Google Scholar 

  • Brahms S, Brahms J (1980) Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol 138(2):149–178

    Article  PubMed  CAS  Google Scholar 

  • Burkitt W, Domann P, O’Connor G (2010) Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci 19(4):826–835

    Article  PubMed  CAS  Google Scholar 

  • Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved Ftir spectra. Biopolymers 25(3):469–487

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Jiang Y, Narhi LO (2010) A light-obscuration method specific for quantifying subvisible particles in protein therapeutics. Pharmacopeial Forum 36(3):824–834

    Google Scholar 

  • Carpenter JF et al (2010) Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci 99(5):2200–2208

    Article  PubMed  CAS  Google Scholar 

  • Chatelier RC, Minton AP (1987) Sedimentation equilibrium in macromolecular solutions of arbitrary concentration. I. Self-associating proteins. Biopolymers 26(4):507–524

    Article  PubMed  CAS  Google Scholar 

  • Chen B et al (1999) Influence of calcium ions on the structure and stability of recombinant human deoxyribonuclease I in the aqueous and lyophilized states. J Pharm Sci 88(4):477–482

    Article  PubMed  CAS  Google Scholar 

  • Chennamsetty N et al (2009a) Aggregation-prone motifs in human immunoglobulin G. J Mol Biol 391(2):404–413

    Article  PubMed  CAS  Google Scholar 

  • Chennamsetty N et al (2009b) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA 106(29):11937–11942

    Article  PubMed  CAS  Google Scholar 

  • Connolly BD et al (2012) Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter. Biophys J 103:69–78

    Article  PubMed  CAS  Google Scholar 

  • Demeule B, Shire SJ, Liu J (2009a) A therapeutic antibody and its antigen form different complexes in serum than in phosphate-buffered saline: a study by analytical ultracentrifugation. Anal Biochem 388(2):279–287

    Article  PubMed  CAS  Google Scholar 

  • Demeule B et al (2009b) New methods allowing the detection of protein aggregates: a case study on trastuzumab. MAbs 1(2):142–150

    Article  PubMed  Google Scholar 

  • Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-­derivative amide I infrared spectra. Biochemistry 29(13):3303–3308

    Article  PubMed  CAS  Google Scholar 

  • Eigenbrot C et al (1991) X-ray structure of human relaxin at 1.5 A. Comparison to insulin and implications for receptor binding determinants. J Mol Biol 221(1):15–21

    PubMed  CAS  Google Scholar 

  • Fox JA et al (1996) Tissue distribution and complex formation with IgE of an anti-IgE antibody after intravenous administration in cynomolgus monkeys. J Pharmacol Exp Ther 279(2):1000–1008

    PubMed  CAS  Google Scholar 

  • Fraunhofer W, Winter G (2004) The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm 58(2):369–383

    Article  PubMed  CAS  Google Scholar 

  • Gabrielson JP, Arthur KK (2011) Measuring low levels of protein aggregation by sedimentation velocity. Methods 54(1):83–91

    Article  PubMed  CAS  Google Scholar 

  • Gibson TJ et al (2011) Application of a high-throughput screening procedure with PEG-induced precipitation to compare relative protein solubility during formulation development with IgG1 Monoclonal antibodies. J Pharm Sci 100(3):1009–1021

    Article  PubMed  CAS  Google Scholar 

  • Giddings JC (2000) The field-flow fractionation family: underlying principles. In: Schimpf ME, Caldwell KD, Giddings JC (eds) Field-flow fractionation handbook. Wiley, New York

    Google Scholar 

  • Gonzalez JM, Rivas G, Minton AP (2003) Effect of large refractive index gradients on the performance of absorption optics in the Beckman XL-A/I analytical ultracentrifuge: an experimental study. Anal Biochem 313(1):133–136

    Article  PubMed  CAS  Google Scholar 

  • He F et al (2010a) Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence. J Pharm Sci 99(6):2598–2608

    PubMed  CAS  Google Scholar 

  • He F et al (2010b) High-throughput dynamic light scattering method for measuring viscosity of concentrated protein solutions. Anal Biochem 399(1):141–143

    Article  PubMed  CAS  Google Scholar 

  • He F et al (2011) Screening of monoclonal antibody formulations based on high-throughput thermostability and viscosity measurements: design of experiment and statistical analysis. J Pharm Sci 100(4):1330–1340

    Article  CAS  Google Scholar 

  • Hollander I, Kunz A, Hamann PR (2008) Selection of reaction additives used in the preparation of monomeric antibody-calicheamicin conjugates. Bioconjug Chem 19(1):358–361

    Article  PubMed  CAS  Google Scholar 

  • Houde D et al (2009) Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal Chem 81(14):2644–2651

    Article  PubMed  CAS  Google Scholar 

  • Hvidt A, Linderstrom-Lang K (1954) Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions. Biochim Biophys Acta 14(4):574–575

    Article  PubMed  CAS  Google Scholar 

  • Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30(2):95–120

    Article  PubMed  CAS  Google Scholar 

  • Ji JA et al (2009) Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization. J Pharm Sci 98(12):4485–4500

    Article  PubMed  CAS  Google Scholar 

  • Johnson WC Jr (1990) Protein secondary structure and circular dichroism: a practical guide. Proteins 7(3):205–214

    Article  PubMed  CAS  Google Scholar 

  • Kamerzell TJ et al (2011) Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 63(13):1118–1159

    Article  PubMed  CAS  Google Scholar 

  • Kumru OS et al (2012) Compatibility, physical stability, and characterization of an IgG4 monoclonal antibody after dilution into different intravenous administration bags. J Pharm Sci 101(2):3636–3650

    Article  PubMed  CAS  Google Scholar 

  • Lauer TM et al (2012) Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 101(1):102–115

    Article  PubMed  CAS  Google Scholar 

  • Lehermayr C et al (2011) Assessment of net charge and protein-protein interactions of different monoclonal antibodies. J Pharm Sci 100(7):2551–2562

    Article  PubMed  CAS  Google Scholar 

  • Li CH et al (2011) Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis. J Pharm Sci 100(11):4642–4654

    Article  PubMed  CAS  Google Scholar 

  • Liu J et al (1995) Characterization of complex formation by humanized anti-IgE monoclonal antibody and monoclonal human IgE. Biochemistry 34(33):10474–10482

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Ruppel J, Shire SJ (1997) Interaction of human IgE with soluble forms of IgE high affinity receptors. Pharm Res 14(10):1388–1393

    Article  PubMed  CAS  Google Scholar 

  • Liu J et al (2005) Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci 94(9):1928–1940

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Andya JD, Shire SJ (2006) A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J 8(3):E580–E589

    Article  PubMed  CAS  Google Scholar 

  • Liu D et al (2008) Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry 47(18):5088–5100

    Article  PubMed  CAS  Google Scholar 

  • Liu J et al (2012) Assessing and improving asymmetric flow field-flow fractionation of therapeutic proteins. In: Williams KR, Caldwell KD (eds) Field flow fractionation in biopolymer analysis. Springer, New York

    Google Scholar 

  • Lu Y et al (2008) The effect of a point mutation on the stability of IgG4 as monitored by analytical ultracentrifugation. J Pharm Sci 97(2):960–969

    Article  PubMed  CAS  Google Scholar 

  • Manta B et al (2011) Tools to evaluate the conformation of protein products. Biotechnol J 6(6):731–741

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (1989) Analytical centrifugation with preparative ultracentrifuges. Anal Biochem 176(2):209–216

    Article  PubMed  CAS  Google Scholar 

  • Minton AP, Lewis MS (1981) Self-association in highly concentrated solutions of myoglobin: a novel analysis of sedimentation equilibrium of highly nonideal solutions. Biophys Chem 14(4):317–324

    Article  PubMed  CAS  Google Scholar 

  • Patel AR, Kerwin BA, Kanapuram SR (2009) Viscoelastic characterization of high concentration antibody formulations using quartz crystal microbalance with dissipation monitoring. J Pharm Sci 98(9):3108–3116

    Article  PubMed  CAS  Google Scholar 

  • Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8(3):E564–E571

    Article  PubMed  CAS  Google Scholar 

  • Rambaldi DC, Reschiglian P, Zattoni A (2011) Flow field-flow fractionation: recent trends in protein analysis. Anal Bioanal Chem 399(4):1439–1447

    Article  PubMed  CAS  Google Scholar 

  • RNCOS (2012) Global-protein-therapeutics-market-forecast-to-2015. http://www.pharmaceutical-­market-research.info/research/PMAAAWUF-Global-Protein-Therapeutics-Market-­Forecast-to-2015.shtml

  • Robinson NE, Robinson AB (2004) Prediction of primary structure deamidation rates of asparaginyl and glutaminyl peptides through steric and catalytic effects. J Pept Res 63(5):437–448

    Article  PubMed  CAS  Google Scholar 

  • Ross PD, Minton AP (1977) Hard quasispherical model for the viscosity of hemoglobin solutions. Biochem Biophys Res Commun 76(4):971–976

    Article  PubMed  CAS  Google Scholar 

  • Saluja A, Kalonia DS (2004) Measurement of fluid viscosity at microliter volumes using quartz impedance analysis. AAPS PharmSciTech 5(3):e47

    Article  PubMed  Google Scholar 

  • Saluja A, Kalonia DS (2005) Application of ultrasonic shear rheometer to characterize rheological properties of high protein concentration solutions at microliter volume. J Pharm Sci 94(6):1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Saluja A et al (2007) Ultrasonic storage modulus as a novel parameter for analyzing protein-­protein interactions in high protein concentration solutions: correlation with static and dynamic light scattering measurements. Biophys J 92(1):234–244

    Article  PubMed  CAS  Google Scholar 

  • Saluja A et al (2010) Diffusion and sedimentation interaction parameters for measuring the second virial coefficient and their utility as predictors of protein aggregation. Biophys J 99(8):2657–2665

    Article  PubMed  CAS  Google Scholar 

  • Samra HS, He F (2012) Advancements in high throughput biophysical technologies: applications for characterization and screening during early formulation development of monoclonal antibodies. Mol Pharm 9(4):696–707

    Article  PubMed  CAS  Google Scholar 

  • Scherer TM et al (2010) Intermolecular interactions of IgG1 monoclonal antibodies at high concentrations characterized by light scattering. J Phys Chem B 114:12948

    Article  PubMed  CAS  Google Scholar 

  • Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78(3):1606–1619

    Article  PubMed  CAS  Google Scholar 

  • Shire SJ, Holladay LA, Rinderknecht E (1991) Self-association of human and porcine relaxin as assessed by analytical ultracentrifugation and circular dichroism. Biochemistry 30(31):7703–7711

    Article  PubMed  CAS  Google Scholar 

  • Shire SJ, Shahrokh Z, Liu J (2004) Challenges in the development of high protein concentration formulations. J Pharm Sci 93(6):1390–1402

    Article  PubMed  CAS  Google Scholar 

  • Stafford WF 3rd (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem 203(2):295–301

    Article  PubMed  CAS  Google Scholar 

  • Stephan JP, Kozak KR, Wong WLT (2011) Challenges in developing bioanalytical assays for characterization of antibody-drug conjugates. Bioanalysis 3(6):677–700

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia GG et al (2005) Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 14(10):2723–2734

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia GG et al (2008) Prediction of aggregation-prone regions in structured proteins. J Mol Biol 380(2):425–436

    Article  PubMed  CAS  Google Scholar 

  • Wakankar AA et al (2010) Physicochemical stability of the antibody-drug conjugate Trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug Chem 21(9):1588–1595

    Article  PubMed  CAS  Google Scholar 

  • Wang W (1999) Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 185(2):129–188

    Article  PubMed  CAS  Google Scholar 

  • Wang WR et al (2011) Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol 48(6–7):860–866

    Article  PubMed  CAS  Google Scholar 

  • Wu SJ et al (2010) Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel 23(8):643–651

    Article  PubMed  CAS  Google Scholar 

  • Yadav S, Shire SJ, Kalonia DS (2010) Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. J Pharm Sci 99(12):4812–4829

    Article  PubMed  CAS  Google Scholar 

  • Yadav S et al (2011) Establishing a link between amino acid sequences and self-associating and viscoelastic behavior of two closely related monoclonal antibodies. Pharm Res 28(7):1750–1764

    Article  PubMed  CAS  Google Scholar 

  • Yadav S, Shire SJ, Kalonia DS (2012) Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J Pharm Sci 101(3):998–1011

    Article  PubMed  CAS  Google Scholar 

  • Zhang A et al (2012) Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharm Res 29(1):236–250

    Article  PubMed  Google Scholar 

  • Zhao H et al (2010) Formulation development of antibodies using robotic system and high-­throughput laboratory (HTL). J Pharm Sci 99(5):2279–2294

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Shire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alavattam, S., Demeule, B., Liu, J., Yadav, S., Cromwell, M., Shire, S.J. (2013). Biophysical Analysis in Support of Development of Protein Pharmaceuticals. In: Narhi, L. (eds) Biophysics for Therapeutic Protein Development. Biophysics for the Life Sciences, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4316-2_8

Download citation

Publish with us

Policies and ethics