Skip to main content

Application of Biophysics to the Early Developability Assessment of Therapeutic Candidates and Its Application to Enhance Developability Properties

  • Chapter
  • First Online:
Biophysics for Therapeutic Protein Development

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 4))

Abstract

The emerging technologies in protein engineering and the greater demand for next-generation protein therapeutics with enhanced efficacy, safety, reduced immunogenicity, and improved delivery are translating into increased nomination of more extensively engineered, difficult to develop candidates for development. Recent advances in protein structure, stability, and function relationship combined with advances in biophysics are enabling more comprehensive and accurate developability and manufacturability screening during early research stages. This chapter focuses on current and future challenges in developing therapeutic biological drugs and the application of novel biophysical tools to screen and improve potential developability properties. Based on stage-related requirements like predictability, speed, limited material, and resource availability, the suitability and application of various biophysical tools are discussed. Two case studies are provided to demonstrate the value of such an early risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman MJ, Clapham DE (1997) Ion channels–basic science and clinical disease. N Engl J Med 336(22):1575–1586

    Article  PubMed  CAS  Google Scholar 

  • Adams CP, Brantner VV (2010) Spending on new drug development1. Health Econ 19(2):130–141

    Article  PubMed  Google Scholar 

  • Anandakumar R, Harn NR, Sathish HA, LeachWL, Oliver CN, Bishop SM (2008) American Association of Pharmaceutical Scientist, National Biotech Conference, 2008

    Google Scholar 

  • Anderson DR, Grillo-Lopez A, Varns C, Chambers KS, Hanna N (1997) Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin’s B-cell lymphoma. Biochem Soc Trans 25(2):705–708

    PubMed  CAS  Google Scholar 

  • Bajaj H, Sharma VK, Kalonia DS (2007) A high-throughput method for detection of protein self-­association and second virial coefficient using size-exclusion chromatography through simultaneous measurement of concentration and scattered light intensity. Pharm Res 24(11):2071–2083

    Article  PubMed  CAS  Google Scholar 

  • Batista FD, Neuberger MS (1998) Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8(6):751–759

    Article  PubMed  CAS  Google Scholar 

  • Bee JS, Stevenson JL, Mehta B, Svitel J, Pollastrini J, Platz R, Freund E, Carpenter JF, Randolph TW (2009) Response of a concentrated monoclonal antibody formulation to high shear. Biotechnol Bioeng 103(5):936–943

    Article  PubMed  CAS  Google Scholar 

  • Bekard IB, Asimakis P, Bertolini J, Dunstan DE (2011) The effects of shear flow on protein structure and function. Biopolymers 95(11):733–745

    PubMed  CAS  Google Scholar 

  • Biddlecombe JG, Craig AV, Zhang H, Uddin S, Mulot S, Fish BC, Bracewell DG (2007) Determining antibody stability: creation of solid–liquid interfacial effects within a high shear environment. Biotechnol Prog 23(5):1218–1222

    PubMed  CAS  Google Scholar 

  • Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 97(20):10701–10705

    Article  PubMed  CAS  Google Scholar 

  • Carter PJ (2011) Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317(9):1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Cellmer T, Bratko D, Prausnitz JM, Blanch HW (2007) Protein aggregation in silico. Trends Biotechnol 25(6):254–261

    Article  PubMed  CAS  Google Scholar 

  • Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10(5):301–316

    Article  PubMed  CAS  Google Scholar 

  • Chari R, Jerath K, Badkar AV, Kalonia DS (2009) Long- and short-range electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharm Res 26(12):2607–2618

    Article  PubMed  CAS  Google Scholar 

  • Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL (2009a) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA 106(29):11937–11942

    Article  PubMed  CAS  Google Scholar 

  • Chennamsetty N, Helk B, Voynov V, Kayser V, Trout BL (2009b) Aggregation-prone motifs in human immunoglobulin G. J Mol Biol 391(2):404–413

    Article  PubMed  CAS  Google Scholar 

  • Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003a) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20(9):1325–1336

    Article  PubMed  CAS  Google Scholar 

  • Chi EY, Krishnan S, Kendrick BS, Chang BS, Carpenter JF, Randolph TW (2003b) Roles of ­conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor. Protein Sci 12(5):903–913

    Article  PubMed  CAS  Google Scholar 

  • Dall’Acqua WF, Cook KE, Damschroder MM, Woods RM, Wu H (2006a) Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J Immunol 177(2):1129–1138

    PubMed  Google Scholar 

  • Dall’Acqua WF, Kiener PA, Wu H (2006b) Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281(33):23514–23524

    Article  PubMed  Google Scholar 

  • DiMasi JA, Grabowski HG (2007) The cost of biopharmaceutical R&D: is biotech different? Manag Decis Econ 28(4–5):469–479

    Article  Google Scholar 

  • Famm K, Hansen L, Christ D, Winter G (2008) Thermodynamically stable aggregation-resistant antibody domains through directed evolution. J Mol Biol 376(4):926–931

    Article  PubMed  CAS  Google Scholar 

  • Finch DK, Sleeman MA, Moisan J, Ferraro F, Botterell S, Campbell J, Cochrane D, Cruwys S, England E, Lane S, Rendall E, Sinha M, Walker C, Rees G, Bowen MA, Schneider A, Liang M, Faggioni R, Fung M, Mallinder PR, Wilkinson T, Kolbeck R, Vaughan T, Lowe DC (2011) Whole-molecule antibody engineering: generation of a high-affinity anti-IL-6 antibody with extended pharmacokinetics. J Mol Biol 411(4):791–807

    Article  PubMed  CAS  Google Scholar 

  • Foote J, Eisen HN (1995) Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci USA 92(5):1254–1256

    Article  PubMed  CAS  Google Scholar 

  • Fowler SB, Poon S, Muff R, Chiti F, Dobson CM, Zurdo J (2005) Rational design of aggregation-­resistant bioactive peptides: reengineering human calcitonin. Proc Natl Acad Sci USA 102(29):10105–10110

    Article  PubMed  CAS  Google Scholar 

  • Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13(3):245–255

    Article  PubMed  CAS  Google Scholar 

  • George A, Wilson WW (1994) Predicting protein crystallization from a dilute solution property. Acta Crystallogr D Biol Crystallogr 50(Pt 4):361–365

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DS, Bishop SM, Shah AU, Sathish HA (2010) Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stability. J Pharm Sci

    Google Scholar 

  • Hageman MJ (2006) Solubility, solubilization and dissolution in drug delivery during lead optimization. Springer, New York

    Google Scholar 

  • He F, Becker GW, Litowski JR, Narhi LO, Brems DN, Razinkov VI (2009) High-throughput dynamic light scattering method for measuring viscosity of concentrated protein solutions. Anal Biochem 399(1):141–143

    Article  PubMed  Google Scholar 

  • Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K (2011) Engineering the variable region of therapeutic IgG antibodies. MAbs 3(3):243–252

    Article  PubMed  Google Scholar 

  • Jespers L, Schon O, Famm K, Winter G (2004) Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 22(9):1161–1165

    Article  PubMed  CAS  Google Scholar 

  • Johnson DH, Parupudi A, Wilson WW, DeLucas LJ (2009) High-throughput self-interaction chromatography: applications in protein formulation prediction. Pharm Res 26(2):296–305

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Ekeroth J, Elwing H, Carlsson U (2005) Reduction of irreversible protein adsorption on solid surfaces by protein engineering for increased stability. J Biol Chem 280(27):25558–25564

    Article  PubMed  CAS  Google Scholar 

  • Kayser V, Chennamsetty N, Voynov V, Forrer K, Helk B, Trout BL (2011) Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnol J 6(1):38–44

    Article  PubMed  CAS  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    Article  PubMed  CAS  Google Scholar 

  • Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325(5):979–989

    Article  PubMed  CAS  Google Scholar 

  • Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K, Hanai N (2009) Engineered therapeutic antibodies with improved effector functions. Cancer Sci 100(9):1566–1572

    Article  PubMed  CAS  Google Scholar 

  • Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL (2012) Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 101(1):102–115

    Article  PubMed  CAS  Google Scholar 

  • Le Brun V, Friess W, Bassarab S, Muhlau S, Garidel P (2010) A critical evaluation of ­self-­interaction chromatography as a predictive tool for the assessment of protein-protein interactions in protein formulation development: a case study of a therapeutic monoclonal antibody. Eur J Pharm Biopharm 75(1):16–25

    Article  PubMed  Google Scholar 

  • Liu J, Nguyen MD, Andya JD, Shire SJ (2005) Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci 94(9):1928–1940

    Article  PubMed  CAS  Google Scholar 

  • Lundstrom K (2005) Structural genomics of GPCRs. Trends Biotechnol 23(2):103–108

    Article  PubMed  CAS  Google Scholar 

  • Ma P, Zemmel R (2002) Value of novelty? Nat Rev Drug Discov 1(8):571–572

    Article  PubMed  CAS  Google Scholar 

  • Mehta CM, White ET, Litster JD (2012) Correlation of second virial coefficient with solubility for proteins in salt solutions. Biotechnol Prog 28(1):163–170

    Article  PubMed  CAS  Google Scholar 

  • Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S, Goodall M, Lund J, Jefferis R (2000) The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 37(12–13):697–706

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2005) Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations. J Pharm Sci 94(8):1668–1675

    Article  PubMed  CAS  Google Scholar 

  • Naylor J, Beech DJ (2009) Extracellular ion channel inhibitor antibodies. Open Drug Discov J 1:36–42

    Article  CAS  Google Scholar 

  • Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9(10):767–774

    Article  PubMed  CAS  Google Scholar 

  • Norde W (1986) Adsorption of proteins from solution at the solid–liquid interface. Adv Colloid Interface Sci 25(4):267–340

    Article  PubMed  CAS  Google Scholar 

  • Oganesyan V, Damschroder MM, Leach W, Wu H, Dall’Acqua WF (2008) Structural characterization of a mutated, ADCC-enhanced human Fc fragment. Mol Immunol 45(7):1872–1882

    Article  PubMed  CAS  Google Scholar 

  • Payne RW, Nayar R, Tarantino R, Del Terzo S, Moschera J, Di J, Heilman D, Bray B, Manning MC, Henry CS (2006) Second virial coefficient determination of a therapeutic peptide by self-­interaction chromatography. Biopolymers 84(5):527–533

    Article  PubMed  CAS  Google Scholar 

  • Pepinsky RB, Silvian L, Berkowitz SA, Farrington G, Lugovskoy A, Walus L, Eldredge J, Capili A, Mi S, Graff C, Garber E (2010) Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis. Protein Sci 19(5):954–966

    PubMed  CAS  Google Scholar 

  • Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M, Norenberg S, Stark Y, Kolln J, Popp A, Urlinger S, Enzelberger M (2011) HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 413(1):261–278

    Article  PubMed  CAS  Google Scholar 

  • Presta LG (2008) Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20(4):460–470

    Article  PubMed  CAS  Google Scholar 

  • Remmele RL Jr, Nightlinger NS, Srinivasan S, Gombotz WR (1998) Interleukin-1 receptor (IL-­1R) liquid formulation development using differential scanning calorimetry. Pharm Res 15(2):200–208

    Article  PubMed  CAS  Google Scholar 

  • Salinas BA, Sathish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW (2010) Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pharm Sci 99(1):82–93

    Article  PubMed  CAS  Google Scholar 

  • Saluja A, Kalonia DS (2008) Nature and consequences of protein-protein interactions in high protein concentration solutions. Int J Pharm 358(1–2):1–15

    Article  PubMed  CAS  Google Scholar 

  • Scherer TM, Liu J, Shire SJ, Minton AP (2010) Intermolecular interactions of IgG1 monoclonal antibodies at high concentrations characterized by light scattering. J Phys Chem B 114(40):12948–12957

    Article  PubMed  CAS  Google Scholar 

  • Sethuraman A, Belfort G (2005) Protein structural perturbation and aggregation on homogeneous surfaces. Biophys J 88(2):1322–1333

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Zhang L, Duan S, Williams TD, Vlasak J, Ionescu R, Topp EM (2009) Effect of protein structure on deamidation rate in the Fc fragment of an IgG1 monoclonal antibody. Protein Sci 18(8):1573–1584

    Article  PubMed  CAS  Google Scholar 

  • Stewart R, Thom G, Levens M, Guler-Gane G, Holgate R, Rudd PM, Webster C, Jermutus L, Lund J (2011) A variant human IgG1-Fc mediates improved ADCC. Protein Eng Des Sel 24(9):671–678

    Article  PubMed  CAS  Google Scholar 

  • Sule SV, Sukumar M, Weiss WF, Marcelino-Cruz AM, Sample T, Tessier PM (2011) High-­throughput analysis of concentration-dependent antibody self-association. Biophys J 101(7):1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Tadros T (2011) Interparticle interactions in concentrated suspensions and their bulk (rheological) properties. Adv Colloid Interface Sci 168(1–2):263–277

    Article  PubMed  CAS  Google Scholar 

  • Tessier PM, Jinkoji J, Cheng YC, Prentice JL, Lenhoff AM (2008) Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay. J Am Chem Soc 130(10): 3106–3112

    Article  PubMed  CAS  Google Scholar 

  • Thomas CR, Geer D (2011) Effects of shear on proteins in solution. Biotechnol Lett 33(3):443–456

    Article  PubMed  CAS  Google Scholar 

  • Valente JJ, Payne RW, Manning MC, Wilson WW, Henry CS (2005) Colloidal behavior of ­proteins: effects of the second virial coefficient on solubility, crystallization and aggregation of proteins in aqueous solution. Curr Pharm Biotechnol 6(6):427–436

    Article  PubMed  CAS  Google Scholar 

  • Vlasak J, Ionescu R (2011) Fragmentation of monoclonal antibodies. MAbs 3(3):253–263

    Article  PubMed  Google Scholar 

  • Wendorf JR, Radke CJ, Blanch HW (2004) Reduced protein adsorption at solid interfaces by sugar excipients. Biotechnol Bioeng 87(5):565–573

    Article  PubMed  CAS  Google Scholar 

  • Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21(21):3940–3947

    Article  PubMed  CAS  Google Scholar 

  • Yadav S, Scherer TM, Shire SJ, Kalonia DS (2011) Use of dynamic light scattering to determine second virial coefficient in a semidilute concentration regime. Anal Biochem 411(2):292–296

    Article  PubMed  CAS  Google Scholar 

  • Yadav S, Shire SJ, Kalonia DS (2012) Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J Pharm Sci 101(3):998–1011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements 

Authors wish to thank Nancy Craighead at MedImmune for critical review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasige Sathish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sathish, H., Angell, N., Lowe, D., Shah, A., Bishop, S. (2013). Application of Biophysics to the Early Developability Assessment of Therapeutic Candidates and Its Application to Enhance Developability Properties. In: Narhi, L. (eds) Biophysics for Therapeutic Protein Development. Biophysics for the Life Sciences, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4316-2_6

Download citation

Publish with us

Policies and ethics