Skip to main content

Techniques for Higher-Order Structure Determination

  • Chapter
  • First Online:
Biophysics for Therapeutic Protein Development

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 4))

Abstract

Maintaining the higher-order structure (HOS) of the protein is critical for obtaining robust processes and developing stable formulations for therapeutic proteins. Loss of HOS potentially contributes to increased aggregation, enhanced immunogenicity, and loss of function. The physical characterization of proteins requires precise analytical techniques that interrogate the primary sequence and HOSs. Techniques must provide sufficient detail to better understand the structure and integrity of protein therapeutic and assess product performance. This chapter provides an overview of a number of biophysical techniques that are commonly used to monitor HOS during biotherapeutics development. Potential applications that are discussed include absorbance, fluorescence, Fourier transform infrared (FTIR), circular dichroism (CD), vibrational optical activity (VOA), and Raman spectroscopy. In addition, calorimetric techniques, light scattering, characterization of size and shape, oligomeric state, aggregation and self-association by analytical ultracentrifugation, and rheological characterization are discussed. Special emphasis is placed on techniques that are unique with respect to their ability to monitor different degradation pathways of therapeutic proteins. Further, the chapter highlights the need for employing multiple and often complementary biophysical techniques during development since each technique offers insight into different aspects of the protein HOS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PD, Chen Y, Ma K, Zagorski MG, Sonnichsen FD, McLaughlin ML, Barkley MD (2002) Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc 124:9278–9286

    PubMed  CAS  Google Scholar 

  • Ahmad F, Salahuddin A (1976) Reversible unfolding of the major fraction of ovalbumin by guanidine hydrochloride. Biochemistry 15(23):5168–5175

    PubMed  CAS  Google Scholar 

  • Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948

    PubMed  CAS  Google Scholar 

  • Asher SA, Bormett RW, Chen XG, Lemmon DH, Cho N (1993) UV resonance Raman spectroscopy using a new cw laser source: convenience and experimental simplicity. Appl Spectrosc 47:628–633

    CAS  Google Scholar 

  • Bai Y, Sosnick TR, Mayne L, Englander SW (1995) Protein folding intermediates: native-state hydrogen exchange. Science 269:192–197

    PubMed  CAS  Google Scholar 

  • Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5:808–814

    PubMed  CAS  Google Scholar 

  • Bandekar J (1992) Amide modes and protein conformation. Biochim Biophys Acta 1120:123–143

    PubMed  CAS  Google Scholar 

  • Barron LD (2006) Structure and behaviour of biomolecules from Raman optical activity. Curr Opin Struct Biol 16:638–643

    PubMed  CAS  Google Scholar 

  • Barron LD, Hecht L, Bell AF, Wilson G (1996) Recent developments in Raman optical activity of biopolymers. Appl Spectrosc 50:619–629

    CAS  Google Scholar 

  • Barron LD, Hecht L, Blanch EW, Bell AF (2000) Solution structure and dynamics of biomolecules from Raman optical activity. Prog Biophys Mol Biol 73:1–49

    PubMed  CAS  Google Scholar 

  • Bartlett AI, Radford SE (2009) An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat Struct Mol Biol 16:582–588

    PubMed  CAS  Google Scholar 

  • Baumruk V, Keiderling TA (1993) Vibrational circular dichroism of proteins in H2O solution. J Am Chem Soc 115:6939–6942

    CAS  Google Scholar 

  • Benevides JM, Overman SA, Thomas GJ Jr (2004) Raman spectroscopy of proteins. Curr Protoc Protein Sci, Chapter 17, Unit 17.18

    Google Scholar 

  • Billeter M, Vendrell J, Wider G, Aviles FX, Coll M, Guasch A, Huber R, Wuthrich K (1992) Comparison of the NMR solution structure with the X-ray crystal structure of the activation domain from procarboxypeptidase B. J Biomol NMR 2:1–10

    PubMed  CAS  Google Scholar 

  • Billeter M, Wagner G, Wuthrich K (2008) Solution NMR structure determination of proteins revisited. J Biomol NMR 42:155–158

    PubMed  CAS  Google Scholar 

  • Boehr DD, Dyson HJ, Wright PE (2006) An NMR perspective on enzyme dynamics. Chem Rev 106:3055–3079

    PubMed  CAS  Google Scholar 

  • Brandts JF, Lin LN (1990) Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry 29:6927–6940

    PubMed  CAS  Google Scholar 

  • Brennan JF, Wang Y, Ramachandra RD, Feld MS (1997) Near-infrared Raman spectrometer systems for human studies. Appl Spectrosc 51:201–208

    CAS  Google Scholar 

  • Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    PubMed  CAS  Google Scholar 

  • Cantor RC, Schimmel PR (1980) Biophysical Chemistry: techniques for the study of biological structure and function, vol 2. W. H. Freeman, San Francisco

    Google Scholar 

  • Cao XL, Dukor RK, Nafie LA (2008) Reduction of linear birefringence in vibrational circular dichroism measurement: use of a rotating half-wave plate. Theor Chem Acc 119:69–79

    CAS  Google Scholar 

  • Carpenter JF, Prestrelski SJ, Dong A (1998) Application of infrared spectroscopy to development of stable lyophilized protein formulations. Eur J Pharm Biopharm 45:231–238

    PubMed  CAS  Google Scholar 

  • Chalmers J, Griffiths P (eds) (2002) Handbook of vibrational spectroscopy. Wiley, Chichester

    Google Scholar 

  • Chance B (1953) The carbon monoxide compounds of the cytochrome oxidases. I. Difference spectra. J Biol Chem 202:383–396

    PubMed  CAS  Google Scholar 

  • Chance B, Pappenheimer AM Jr (1954) Kinetic and spectrophotometric studies of cytochrome b5 in midgut homogenates of cecropia. J Biol Chem 209:931–943

    PubMed  CAS  Google Scholar 

  • Chill JH, Naider F (2011) A solution NMR view of protein dynamics in the biological membrane. Curr Opin Struct Biol 21:627–633

    PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR et al (1989) Conformations of immunoglobulin hypervariable regions. Nature 342:877–883

    PubMed  CAS  Google Scholar 

  • Cimmperman P, Baranauskiene L, Jachimoviciute S, Jachno J, Torresan J, Michailoviene V, Matuliene J, Sereikaite J, Bumelis V, Matulis D (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95:3222–3231

    PubMed  CAS  Google Scholar 

  • Daniel E, Weber G (1966) Cooperative effects in binding by bovine serum albumin. I. The binding of 1-anilino-8-naphthalenesulfonate. Fluorimetric titrations. Biochemistry 5:1893–1900

    PubMed  CAS  Google Scholar 

  • D'Antonio J, Murphy BM, Manning MC, Al-Azzam WA (2012) Comparability of protein therapeutics: quantitative comparison of second-derivative amide I infrared spectra. J Pharm Sci 101:2025–2033

    PubMed  Google Scholar 

  • Davies DR, Cohen GH (1996) Interactions of protein antigens with antibodies. Proc Natl Acad Sci USA 93:7–12

    PubMed  CAS  Google Scholar 

  • Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-­derivative amide I infrared spectra. Biochemistry 29:3303–3308

    PubMed  CAS  Google Scholar 

  • Dong J, Dinakarpandian D, Carey PR (1998) Extending the Raman analysis of biological samples to the 100 micromolar concentration range. Appl Spectrosc 52:1117–1122

    CAS  Google Scholar 

  • dos Remedios CG, Moens PD (1995) Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J Struct Biol 115:175–185

    PubMed  Google Scholar 

  • Dousseau F, Pezolet M (1990) Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry 29:8771–8779

    PubMed  CAS  Google Scholar 

  • Dukor RK, Keiderling TA (1991) Reassessment of the random coil conformation: vibrational CD study of proline oligopeptides and related polypeptides. Biopolymers 31:1747–1761

    PubMed  CAS  Google Scholar 

  • Eberstein W, Georgalis Y, Saenger W (1994) Molecular interactions in crystallizing lysozyme solutions studied by photon correlation spectroscopy. J Cryst Growth 143:71–78

    CAS  Google Scholar 

  • Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121

    PubMed  CAS  Google Scholar 

  • Englander SW (2000) Protein folding intermediates and pathways studied by hydrogen exchange. Annu Rev Biophys Biomol Struct 29:213–238

    PubMed  CAS  Google Scholar 

  • Englander SW (2006) Hydrogen exchange and mass spectrometry: a historical perspective. J Am Soc Mass Spectrom 17:1481–1489

    PubMed  CAS  Google Scholar 

  • Englander SW, Mayne L, Bai Y, Sosnick TR (1997) Hydrogen exchange: the modern legacy of Linderstrom-Lang. Protein Sci 6:1101–1109

    PubMed  CAS  Google Scholar 

  • Epstein HF, Schechter AN, Chen RF, Anfinsen CB (1971) Folding of staphylococcal nuclease: kinetic studies of two processes in acid renaturation. J Mol Biol 60:499–508

    PubMed  CAS  Google Scholar 

  • Ferreon AC, Moran CR, Gambin Y, Deniz AA (2011) Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 472:179–204

    Google Scholar 

  • Flanagan JM, Kataoka M, Shortle D, Engelman DM (1992) Truncated staphylococcal nuclease is compact but disordered. Proc Natl Acad Sci USA 89:748–752

    PubMed  CAS  Google Scholar 

  • Foldes-Papp Z, Demel U, Domej W, Tilz GP (2002) A new dimension for the development of fluorescence-based assays in solution: from physical principles of FCS detection to biological applications. Exp Biol Med (Maywood) 227:291–300

    CAS  Google Scholar 

  • Fu K, Griebenow K, Hsieh L, Klibanov AM, Langer R (1999) FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J Control Release 58:357–366

    PubMed  CAS  Google Scholar 

  • Goldberg DS, Bishop SM, Shah AU, Sathish HA (2010) Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stability. J Pharm Sci

    Google Scholar 

  • Goldberg DS, Bishop SM, Shah AU, Sathish HA (2011) Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stability. J Pharm Sci 100(4):1306–1315

    CAS  Google Scholar 

  • Goldstein SR, Kidder LH, Herne TM, Levin IW, Lewis EN (1996) The design and implementation of a high-fidelity Raman imaging microscope. J Microsc 184:35–45

    PubMed  CAS  Google Scholar 

  • Grauw CJ, Otto C, Greve J (1997) Linescan Raman microspectrometry for biological applications. Appl Spectrosc 51:1607–1612

    Google Scholar 

  • Greenfield NJ (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem 235:1–10

    PubMed  CAS  Google Scholar 

  • Greenfield NJ (2006a) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    PubMed  CAS  Google Scholar 

  • Greenfield NJ (2006b) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat Protoc 1:2733–2741

    PubMed  CAS  Google Scholar 

  • Greenfield NJ (2006c) Analysis of the kinetics of folding of proteins and peptides using circular dichroism. Nat Protoc 1:2891–2899

    PubMed  CAS  Google Scholar 

  • Greenfield NJ (2007) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535

    Google Scholar 

  • Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116

    PubMed  CAS  Google Scholar 

  • Griebenow K, Klibanov AM (1995) Lyophilization-induced reversible changes in the secondary structure of proteins. Proc Natl Acad Sci USA 92:10969–10976

    PubMed  CAS  Google Scholar 

  • Griffiths PR, de Haseth JA (1986) Fourier transform infrared spectroscopy. Wiley Interscience, New York

    Google Scholar 

  • Hamuro Y, Weber PC, Griffin PR (2005) High-throughput analysis of protein structure by hydrogen/deuterium exchange mass spectrometry. Methods Biochem Anal 45:131–157

    PubMed  CAS  Google Scholar 

  • Harding SE (1980) The combination of the viscosity increment with the harmonic mean rotational relaxation time for determining the conformation of biological macromolecules in solution. Biochem J 189(2):359–361

    PubMed  CAS  Google Scholar 

  • Harding SE (1981) A compound hydrodynamic shape function derived from viscosity and molecular covolume measurements. Int J Biol Macromol 3(5):340–341

    CAS  Google Scholar 

  • Harding SE (1997) The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog Biophys Mol Biol 68(2–3):207–262

    PubMed  CAS  Google Scholar 

  • Haris PI, Chapman D (1995) The conformational analysis of peptides using Fourier transform IR spectroscopy. Biopolymers 37:251–263

    PubMed  CAS  Google Scholar 

  • Haris PI, Lee DC, Chapman D (1986) A Fourier transform infrared investigation of the structural differences between ribonuclease A and ribonuclease S. Biochim Biophys Acta 874:255–265

    PubMed  CAS  Google Scholar 

  • Haris PI, Chapman D, Harrison RA, Smith KF, Perkins SJ (1990) Conformational transition between native and reactive center cleaved forms of alpha 1-antitrypsin by Fourier transform infrared spectroscopy and small-angle neutron scattering. Biochemistry 29:1377–1380

    PubMed  CAS  Google Scholar 

  • Hashimoto S, Ikeda T, Takeuuchi H, Harada I (1993) Utilization of a prism monochromator as a sharp-cut bandpass filter in ultraviolet Raman spectroscopy. Appl Spectrosc 47:1283–1285

    CAS  Google Scholar 

  • Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499

    PubMed  CAS  Google Scholar 

  • Hawe A, Rispens T, Herron JN, Jiskoot W (2011) Probing bis-ANS binding sites of different affinity on aggregated IgG by steady-state fluorescence, time-resolved fluorescence and isothermal titration calorimetry. J Pharm Sci 100:1294–1305

    Google Scholar 

  • He F, Hogan S, Latypov RF, Narhi LO, Razinkov VI (2009a) High throughput thermostability screening of monoclonal antibody formulations. J Pharm Sci 99:1707–1720

    Google Scholar 

  • He F, Phan DH, Hogan S, Bailey R, Becker GW, Narhi LO, Razinkov VI (2009b) Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence. J Pharm Sci 99:2598–2608

    Google Scholar 

  • Hermansson AM (1972) Functional properties of proteins for foods. Lebensin-Wiss Technol 5:24

    CAS  Google Scholar 

  • Hermansson AM (1979) Aspects of protein structure, rheology and texturization. Food Texture Rheol [Proc Symp] 265–282

    Google Scholar 

  • Herr AB, Ballister ER, Bjorkman PJ (2003) Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. Nature 423:614–620

    PubMed  CAS  Google Scholar 

  • van Holde KE, Johnson WC, Ho (2006) Methods for the Separation and Characterization of Macromolecules. In: van Holde KE, Johnson WC, Ho PS. Principles of Physical Biochemistry. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall:213–275

    Google Scholar 

  • Hynes TR, Fox RO (1991) The crystal structure of staphylococcal nuclease refined at 1.7 A resolution. Proteins 10:92–105

    PubMed  CAS  Google Scholar 

  • Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120

    PubMed  CAS  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    PubMed  CAS  Google Scholar 

  • Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12:3–18

    PubMed  CAS  Google Scholar 

  • Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB (2011) Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 63:1118–1159

    PubMed  CAS  Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    PubMed  CAS  Google Scholar 

  • Keiderling TA, Silva RA, Yoder G, Dukor RK (1999) Vibrational circular dichroism spectroscopy of selected oligopeptide conformations. Bioorg Med Chem 7:133–141

    PubMed  CAS  Google Scholar 

  • Keiderling TA, Kubelka J, Hilario J (eds) (2006) Vibrational circular dichroism of biopolymers: summary of methods and applications. CRC, Boca Raton

    Google Scholar 

  • Kielec JM, Valentine KG, Wand AJ (2009) A method for solution NMR structural studies of large integral membrane proteins: reverse micelle encapsulation. Biochim Biophys Acta 1798:150–160

    PubMed  Google Scholar 

  • Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298

    PubMed  CAS  Google Scholar 

  • Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364

    PubMed  CAS  Google Scholar 

  • Krishinan KS, Brandts JF (1978) Scanning calorimetry. Methods Enzymol 49:3–14

    PubMed  CAS  Google Scholar 

  • Kubelka J, Hofrichter J, Eaton WA (2004) The protein folding “speed limit”. Curr Opin Struct Biol 14:76–88

    PubMed  CAS  Google Scholar 

  • Kurouski D, Lombardi RA, Dukor RK, Lednev IK, Nafie LA (2010) Direct observation and pH control of reversed supramolecular chirality in insulin fibrils by vibrational circular dichroism. Chem Commun (Camb) 46:7154–7156

    CAS  Google Scholar 

  • Kurouski D, Dukor RK, Lu X, Nafie LA, Lednev IK (2012) Spontaneous inter-conversion of insulin fibril chirality. Chem Commun (Camb) 48:2837–2839

    CAS  Google Scholar 

  • Ladbury JE, Chowdhry BZ (1996) Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 3:791–801

    PubMed  CAS  Google Scholar 

  • Lakhani A, Malon P, Keiderling TA (2009) Comparison of vibrational circular dichroism instruments: development of a new dispersive VCD. Appl Spectrosc 63:775–785

    PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  • LeTilly V, Royer CA (1993) Fluorescence anisotropy assays implicate protein–protein interactions in regulating trp repressor DNA binding. Biochemistry 32:7753–7758

    PubMed  CAS  Google Scholar 

  • Li CH, Li T (2009) Application of vibrational spectroscopy to the structural characterization of monoclonal antibody and its aggregate. Curr Pharm Biotechnol 10:391–399

    PubMed  CAS  Google Scholar 

  • Li Y, Williams TD, Topp EM (2008) Effects of excipients on protein conformation in lyophilized solids by hydrogen/deuterium exchange mass spectrometry. Pharm Res 25:259–267

    PubMed  CAS  Google Scholar 

  • Li Y, Mach H, Blue JT (2011) High throughput formulation screening for global aggregation behaviors of three monoclonal antibodies. J Pharm Sci 100:2120–2135

    PubMed  CAS  Google Scholar 

  • Liu J, Andya JD, Shire SJ (2006) A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J 8:E580–E589

    PubMed  CAS  Google Scholar 

  • Loria JP, Berlow RB, Watt ED (2008) Characterization of enzyme motions by solution NMR relaxation dispersion. Acc Chem Res 41:214–221

    PubMed  CAS  Google Scholar 

  • Lundqvist R (1999) Molecular weight studies on hydroxypropyl methyl cellulose. Part 2. Intrinsic viscosity. Int J Polym Anal Charact 5(1):61–84

    CAS  Google Scholar 

  • Ma S, Cao X, Mak M, Sadik A, Walkner C, Freedman TB, Lednev IK, Dukor RK, Nafie LA (2007) Vibrational circular dichroism shows unusual sensitivity to protein fibril formation and development in solution. J Am Chem Soc 129:12364–12365

    PubMed  CAS  Google Scholar 

  • Machtle W, Borger L (2006) Sedimentation velocity. In: Machtle W, Borger L (eds) Analytical ultracentrifugation of polymers and nanoparticles. Heidelberg Springer:47–96

    Google Scholar 

  • Macosko CW (1994) In: Macosko CW (ed) Rheology: principles, measurements and applications. Wiley-VCH, New York, p 550

    Google Scholar 

  • Mandel M (1993) Applications of dynamic light scattering to polyelectrolytes in solution. In: Brown W (ed) Dynamic light scattering: the method and some applications. Oxford University Press, New York, pp 319–371

    Google Scholar 

  • Manley G, Loria JP (2012) NMR insights into protein allostery. Arch Biochem Biophys 519:223–231

    PubMed  CAS  Google Scholar 

  • Mann CJ, Royer CA, Matthews CR (1993) Tryptophan replacements in the trp aporepressor from Escherichia coli: probing the equilibrium and kinetic folding models. Protein Sci 2:1853–1861

    PubMed  CAS  Google Scholar 

  • Markley JL, Ulrich EL, Westler WM, Volkman BF (2003) Macromolecular structure determination by NMR spectroscopy. Methods Biochem Anal 44:89–113

    PubMed  CAS  Google Scholar 

  • Matulis D, Kranz JK, Salemme FR, Todd MJ (2005) Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry 44:5258–5266

    PubMed  CAS  Google Scholar 

  • Meyer JD, Bai SJ, Rani M, Suryanarayanan R, Nayar R, Carpenter JF, Manning MC (2004) Infrared spectroscopic studies of protein formulations containing glycine. J Pharm Sci 93:1359–1366

    PubMed  CAS  Google Scholar 

  • Mezzasalma TM, Kranz JK, Chan W, Struble GT, Schalk-Hihi C, Deckman IC, Springer BA, Todd MJ (2007) Enhancing recombinant protein quality and yield by protein stability profiling. J Biomol Screen 12:418–428

    PubMed  CAS  Google Scholar 

  • Mittermaier AK, Kay LE (2009) Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci 34:601–611

    PubMed  CAS  Google Scholar 

  • Miura T, Takeuchi H, Harada I (1991) Raman spectroscopic characterization of tryptophan side chains in lysozyme bound to inhibitors: role of the hydrophobic box in the enzymatic function. Biochemistry 30:6074–6080

    PubMed  CAS  Google Scholar 

  • Miyawaki A (2011) Proteins on the move: insights gained from fluorescent protein technologies. Nat Rev Mol Cell Biol 12:656–668

    PubMed  CAS  Google Scholar 

  • Miyazawa T, Shimanouchi T, Mizushima S (1956) Characteristic infrared bands of monosubstituted amides. J Chem Phys 24:408

    CAS  Google Scholar 

  • Monkos K, Turczynski B (1991) Determination of the axial ratio of globular proteins in aqueous solution using viscometric measurements. Int J Biol Macromol 13(6):341–344

    PubMed  CAS  Google Scholar 

  • Murphy KP, Freire E (1992) Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem 43:313–361

    PubMed  CAS  Google Scholar 

  • Nafie LA (1996) Vibrational optical activity. Appl Spectrosc 50:14A–26A

    CAS  Google Scholar 

  • Nafie LA (2011) Vibrational optical activity: principles and applications. Wiley, Chichester

    Google Scholar 

  • Nafie LA, Dukor RK (eds) (2007) Applications of vibrational optical activity in the pharmaceutical industry. Wiley, Chichester

    Google Scholar 

  • Nashine VC, Hammes-Schiffer S, Benkovic SJ (2010) Coupled motions in enzyme catalysis. Curr Opin Chem Biol 14:644–651

    PubMed  CAS  Google Scholar 

  • Norvaisas P, Petrauskas V, Matulis D (2012) Thermodynamics of cationic and anionic surfactant interaction. J Phys Chem B 116:2138–2144

    PubMed  CAS  Google Scholar 

  • Otto MR, Lillo MP, Beechem JM (1994) Resolution of multiphasic reactions by the combination of fluorescence total-intensity and anisotropy stopped-flow kinetic experiments. Biophys J 67:2511–2521

    PubMed  CAS  Google Scholar 

  • Perez C, Castellanos IJ, Costantino HR, Al-Azzam W, Griebenow K (2002) Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J Pharm Pharmacol 54:301–313

    PubMed  CAS  Google Scholar 

  • Perrin F (1926) J Phys Radium 1:390–401

    Google Scholar 

  • Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8:E564–E571

    PubMed  CAS  Google Scholar 

  • Philo JS (2005) Analytical ultracentrifugation. In: Borchardt RT, Middaugh CR, series eds. Biotechnology: pharmaceutical aspects, Jiskoot W, Crommelin D, vol eds. Volume III: Methods for structural analysis of protein pharmaceuticals. AAPS Press, Arlington, pp 379–412

    Google Scholar 

  • Pollok BA, Heim R (1999) Using GFP in FRET-based applications. Trends Cell Biol 9:57–60

    PubMed  CAS  Google Scholar 

  • Putnam WS, Prabhu S, Zheng Y, Subramanyam M, Wang YM (2010) Pharmacokinetic, pharmacodynamic and immunogenicity comparability assessment strategies for monoclonal antibodies. Trends Biotechnol 28:509–516

    PubMed  CAS  Google Scholar 

  • Ramsey JD, Gill ML, Kamerzell TJ, Price ES, Joshi SB, Bishop SM, Oliver CN, Middaugh CR (2009) Using empirical phase diagrams to understand the role of intramolecular dynamics in immunoglobulin G stability. J Pharm Sci 98:2432–2447

    PubMed  CAS  Google Scholar 

  • Raso SW, Clark PL, Haase-Pettingell C, King J, Thomas GJ Jr (2001) Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys–>Ser mutant proteins. J Mol Biol 307:899–911

    PubMed  CAS  Google Scholar 

  • Rossmann MG (2001) Molecular replacement–historical background. Acta Crystallogr D Biol Crystallogr 57:1360–1366

    PubMed  CAS  Google Scholar 

  • Royer CA (1993) Understanding fluorescence decay in proteins. Biophys J 65:9–10

    PubMed  CAS  Google Scholar 

  • Royer CA (1995) Fluorescence spectroscopy. Methods Mol Biol 40:65–89

    PubMed  CAS  Google Scholar 

  • Royer CA (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106:1769–1784

    PubMed  CAS  Google Scholar 

  • Royer CA, Scarlata SF (2008) Fluorescence approaches to quantifying biomolecular interactions. Methods Enzymol 450:79–106

    PubMed  CAS  Google Scholar 

  • Sanchez-Ruiz JM (2011) Probing free-energy surfaces with differential scanning calorimetry. Annu Rev Phys Chem 62:231–255

    PubMed  CAS  Google Scholar 

  • Sapienza PJ, Lee AL (2010) Using NMR to study fast dynamics in proteins: methods and applications. Curr Opin Pharmacol 10:723–730

    PubMed  CAS  Google Scholar 

  • Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J 82:1096–1111

    PubMed  CAS  Google Scholar 

  • Schümmer P. Mechanics of Non-Newtonian Fluids. Von W. R. Schowalter. Pergamon Press, Oxford–Frankfurt 1978. 1. Aufl., IX, 300 S., zahlr. Abb. u. Tab., geb., $ 35.00. Chemie Ingenieur Technik. 1979;51(7):766–766

    Google Scholar 

  • Schweitzer-Stenner R, Eker F, Huang Q, Griebenow K, Mosz P, Kozlowski P (2002) Structure analysis of dipeptides in water by exploring and utilizing the structural sensitivity of amide III by polarized visible Raman, FTIR spectroscopy and DFT based normal coordinate analysis. J Phys Chem B 106:4294–4304

    CAS  Google Scholar 

  • Scott DJ, Schuck P (2005) A brief introduction to the analytical ultracentrifugation of proteins for beginners. In: Scott DJ, Harding SE, Rowe AJ (eds) Analytical ultracentrifugation techniques and methods. RSC Publishing, Cambridge, pp 1–25

    Google Scholar 

  • Sharp KA, Nicholls A, Friedman R, Honig B (1991) Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models. Biochemistry 30:9686–9697

    PubMed  CAS  Google Scholar 

  • Shaw DJ (1992) Rheology. Colloidal and surface chemistry, 4th edn. Butterworth-Heinemann, Boston

    Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    PubMed  CAS  Google Scholar 

  • Shi Z, Chen K, Liu Z, Kallenbach NR (2006) Conformation of the backbone in unfolded proteins. Chem Rev 106:1877–1897

    PubMed  CAS  Google Scholar 

  • Siamwiza MN, Lord RC, Chen MC, Takamatsu T, Harada I, Matsuura H, Shimanouchi T (1975) Interpretation of the doublet at 850 and 830 cm−1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 14:4870–4876

    PubMed  CAS  Google Scholar 

  • Skinner AL, Laurence JS (2008) High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands. J Pharm Sci 97:4670–4695

    PubMed  CAS  Google Scholar 

  • Skinner AL, Laurence JS (2010) Probing residue–specific interactions in the stabilization of proteins using high-resolution NMR: a study of disulfide bond compensation. J Pharm Sci 99:2643–2654

    PubMed  CAS  Google Scholar 

  • Skinner JJ, Lim WK, Bedard S, Black BE, Englander SW (2012) Protein dynamics viewed by hydrogen exchange. Protein Sci 21:996–1005

    PubMed  CAS  Google Scholar 

  • Smith BC (1996) Fundamentals of fourier transform infrared spectroscopy. CRC, Boca Raton

    Google Scholar 

  • Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Sondermann P, Oosthuizen V (2002) X-ray crystallographic studies of IgG-Fc gamma receptor interactions. Biochem Soc Trans 30:481–486

    PubMed  CAS  Google Scholar 

  • Spink CH (2008) Differential scanning calorimetry. Methods Cell Biol 84:115–141

    PubMed  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 81:678–699

    CAS  Google Scholar 

  • Stern KG (1937) Spectroscopy of catalase. J Gen Physiol 20:631–648

    PubMed  CAS  Google Scholar 

  • Stokes GG (1852) On the change of refrangibility of light. Philos Trans R Soc Lond 142:463–562

    Google Scholar 

  • Surewicz WK, Mantsch HH (1988) New insight into protein secondary structure from resolution-­enhanced infrared spectra. Biochim Biophys Acta 952:115–130

    PubMed  CAS  Google Scholar 

  • Suryaprakash P, Prakash V (2000) Unfolding of multimeric proteins in presence of denaturants. A case study of helianthinin from Helianthus annuus L. Nahrung 44(3):178–183

    PubMed  CAS  Google Scholar 

  • Susi H, Byler DM (1986) Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol 130:290–311

    PubMed  CAS  Google Scholar 

  • Susi H, Timasheff SN, Stevens L (1967) Infrared spectra and protein conformations in aqueous solutions. I. The amide I band in H2O and D2O solutions. J Biol Chem 242:5460–5466

    PubMed  CAS  Google Scholar 

  • Tamm LK, Lai AL, Li Y (2007) Combined NMR and EPR spectroscopy to determine structures of viral fusion domains in membranes. Biochim Biophys Acta 1768:3052–3060

    PubMed  CAS  Google Scholar 

  • Tanford C, Buzzell JG (1956) The viscosity of aqueous solutions of bovine serum albumin between pH 4.3 and 10.5. J Phys Chem 60:225–231

    CAS  Google Scholar 

  • Tsuboi M, Suzuki M, Overman SA, Thomas GJ Jr (2000) Intensity of the polarized Raman band at 1340–1345 cm−1 as an indicator of protein alpha-helix orientation: application to Pf1 filamentous virus. Biochemistry 39:2677–2684

    PubMed  CAS  Google Scholar 

  • Tsutsui Y, Wintrode PL (2007) Hydrogen/deuterium exchange-mass spectrometry: a powerful tool for probing protein structure, dynamics and interactions. Curr Med Chem 14:2344–2358

    PubMed  CAS  Google Scholar 

  • Tu RS, Breedveld V (2005) Microrheological detection of protein unfolding. Phys Rev E Stat Nonlin Soft Matter Phys 72(4 Pt 1):041914

    PubMed  Google Scholar 

  • Van Holde KE, Johnson WC, Ho PS (2006) Principles of physical biochemistry. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  • Velazquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E (2004) Isothermal titration calorimetry. Curr Protoc Cell Biol, Chapter 17, Unit 17.18

    Google Scholar 

  • Venyaminov S, Kalnin NN (1990a) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30:1243–1257

    PubMed  CAS  Google Scholar 

  • Venyaminov S, Kalnin NN (1990b) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in alpha-, beta-, and random coil conformations. Biopolymers 30:1259–1271

    PubMed  CAS  Google Scholar 

  • Wand AJ (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol 8:926–931

    PubMed  CAS  Google Scholar 

  • Wang Y, Purrello R, Jordan T, Spiro TG (1991) UVRR spectroscopy of the peptide bond. J Am Chem Soc 113:6359–6368

    CAS  Google Scholar 

  • Weber G (1952a) Polarization of the fluorescence of macromolecules. II. Fluorescent conjugates of ovalbumin and bovine serum albumin. Biochem J 51:155–167

    PubMed  CAS  Google Scholar 

  • Weber G (1952b) Polarization of the fluorescence of macromolecules. I. Theory and experimental method. Biochem J 51:145–155

    PubMed  CAS  Google Scholar 

  • Weber G, Daniel E (1966) Cooperative effects in binding by bovine serum albumin. II. The binding of 1-anilino-8-naphthalenesulfonate. Polarization of the ligand fluorescence and quenching of the protein fluorescence. Biochemistry 5:1900–1907

    PubMed  CAS  Google Scholar 

  • Weber G, Laurence DJ (1954) Fluorescent indicators of adsorption in aqueous solution and on the solid phase. Biochem J 56:xxxi

    PubMed  CAS  Google Scholar 

  • Weber PC, Salemme FR (2003) Applications of calorimetric methods to drug discovery and the study of protein interactions. Curr Opin Struct Biol 13:115–121

    PubMed  CAS  Google Scholar 

  • Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386

    PubMed  CAS  Google Scholar 

  • Wyatt PJ (1993) Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 272(1):1–40

    CAS  Google Scholar 

  • Yang JT (1961) The viscosity of macromolecules in relation to molecular conformations. Adv Protein Chem 16:323–401

    PubMed  CAS  Google Scholar 

  • Yoder G, Polese A, Silva RAGD, Formaggio F, Crisma M, Broxterman QB, Kamphuis J, Toniolo C, Keiderling TA (1997) Conformational characterization of terminally blocked L-(alpha Me)Val homopeptides using vibrational and electronic circular dichroism. 3(10)-helical stabilization by peptide–peptide interaction. J Am Chem Soc 119:10278–10285

    CAS  Google Scholar 

  • Zhang R, Monsma F (2010) Fluorescence-based thermal shift assays. Curr Opin Drug Discov Devel 13:389–402

    PubMed  CAS  Google Scholar 

  • Zhu F, Tranter GE, Isaacs NW, Hecht L, Barron LD (2006) Delineation of protein structure classes from multivariate analysis of protein Raman optical activity data. J Mol Biol 363:19–26

    PubMed  CAS  Google Scholar 

  • Ziarek JJ, Peterson FC, Lytle BL, Volkman BF (2011) Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol 493:241–275

    PubMed  CAS  Google Scholar 

  • Zuber G, Prestrelski SJ, Benedek K (1992) Application of Fourier transform infrared spectroscopy to studies of aqueous protein solutions. Anal Biochem 207:150–156

    PubMed  CAS  Google Scholar 

  • Zubriene A, Matuliene J, Baranauskiene L, Jachno J, Torresan J, Michailoviene V, Cimmperman P, Matulis D (2009) Measurement of nanomolar dissociation constants by titration calorimetry and thermal shift assay – radicicol binding to Hsp90 and ethoxzolamide binding to CAII. Int J Mol Sci 10:2662–2680

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Lee Olszewski, Dr. Doug Nesta, Dr. Aston Liu, and Dr. Joseph Rinella at GlaxoSmithKline Biopharm Development for supporting this publication. We thank Dr. Rina K. Dukor from BioTools Inc. and Prof. Laurence A. Nafie from Syracuse University for their insights and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasfi Al-Azzam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kranz, J., AlAzzam, F., Saluja, A., Svitel, J., Al-Azzam, W. (2013). Techniques for Higher-Order Structure Determination. In: Narhi, L. (eds) Biophysics for Therapeutic Protein Development. Biophysics for the Life Sciences, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4316-2_3

Download citation

Publish with us

Policies and ethics